Search results for: non-linear dynamics features
5941 Bi-Component Particle Segregation Studies in a Spiral Concentrator Using Experimental and CFD Techniques
Authors: Prudhvinath Reddy Ankireddy, Narasimha Mangadoddy
Abstract:
Spiral concentrators are commonly used in various industries, including mineral and coal processing, to efficiently separate materials based on their density and size. In these concentrators, a mixture of solid particles and fluid (usually water) is introduced as feed at the top of a spiral channel. As the mixture flows down the spiral, centrifugal and gravitational forces act on the particles, causing them to stratify based on their density and size. Spiral flows exhibit complex fluid dynamics, and interactions involve multiple phases and components in the process. Understanding the behavior of these phases within the spiral concentrator is crucial for achieving efficient separation. An experimental bi-component particle interaction study is conducted in this work utilizing magnetite (heavier density) and silica (lighter density) with different proportions processed in the spiral concentrator. The observation separation reveals that denser particles accumulate towards the inner region of the spiral trough, while a significant concentration of lighter particles are found close to the outer edge. The 5th turn of the spiral trough is partitioned into five zones to achieve a comprehensive distribution analysis of bicomponent particle segregation. Samples are then gathered from these individual streams using an in-house sample collector, and subsequent analysis is conducted to assess component segregation. Along the trough, there was a decline in the concentration of coarser particles, accompanied by an increase in the concentration of lighter particles. The segregation pattern indicates that the heavier coarse component accumulates in the inner zone, whereas the lighter fine component collects in the outer zone. The middle zone primarily consists of heavier fine particles and lighter coarse particles. The zone-wise results reveal that there is a significant fraction of segregation occurs in inner and middle zones. Finer magnetite and silica particles predominantly accumulate in outer zones with the smallest fraction of segregation. Additionally, numerical simulations are also carried out using the computational fluid dynamics (CFD) model based on the volume of fluid (VOF) approach incorporating the RSM turbulence model. The discrete phase model (DPM) is employed for particle tracking, thereby understanding the particle segregation of magnetite and silica along the spiral trough.Keywords: spiral concentrator, bi-component particle segregation, computational fluid dynamics, discrete phase model
Procedia PDF Downloads 705940 Pathologies in the Left Atrium Reproduced Using a Low-Order Synergistic Numerical Model of the Cardiovascular System
Authors: Nicholas Pearce, Eun-jin Kim
Abstract:
Pathologies of the cardiovascular (CV) system remain a serious and deadly health problem for human society. Computational modelling provides a relatively accessible tool for diagnosis, treatment, and research into CV disorders. However, numerical models of the CV system have largely focused on the function of the ventricles, frequently overlooking the behaviour of the atria. Furthermore, in the study of the pressure-volume relationship of the heart, which is a key diagnosis of cardiac vascular pathologies, previous works often evoke popular yet questionable time-varying elastance (TVE) method that imposes the pressure-volume relationship instead of calculating it consistently. Despite the convenience of the TVE method, there have been various indications of its limitations and the need for checking its validity in different scenarios. A model of the combined left ventricle (LV) and left atrium (LA) is presented, which consistently considers various feedback mechanisms in the heart without having to use the TVE method. Specifically, a synergistic model of the left ventricle is extended and modified to include the function of the LA. The synergy of the original model is preserved by modelling the electro-mechanical and chemical functions of the micro-scale myofiber for the LA and integrating it with the microscale and macro-organ-scale heart dynamics of the left ventricle and CV circulation. The atrioventricular node function is included and forms the conduction pathway for electrical signals between the atria and ventricle. The model reproduces the essential features of LA behaviour, such as the two-phase pressure-volume relationship and the classic figure of eight pressure-volume loops. Using this model, disorders in the internal cardiac electrical signalling are investigated by recreating the mechano-electric feedback (MEF), which is impossible where the time-varying elastance method is used. The effects of AV node block and slow conduction are then investigated in the presence of an atrial arrhythmia. It is found that electrical disorders and arrhythmia in the LA degrade the CV system by reducing the cardiac output, power, and heart rate.Keywords: cardiovascular system, left atrium, numerical model, MEF
Procedia PDF Downloads 1175939 Clothing Features of Greek Orthodox Woman Immigrants in Konya (Iconium)
Authors: Kenan Saatcioglu, Fatma Koc
Abstract:
When the immigration is considered, it has been found that communities were continuously influenced by the immigrations from the date of the emergence of mankind until the day. The political, social and economic reasons seen at the various periods caused the communities go to new places from where they have lived before. Immigrations have occurred as a result of unequal opportunities among communities, social exclusion and imposition, compulsory homeland emerging politically, exile and war. Immigration is a social tool that is defined as a geographical relocation of people from a housing unit (city, village etc.) to another to spend all or part of their future lives. Immigrations have an effect on the history of humanity directly or indirectly, revealing new dimensions for communities to evaluate the concept of homeland. With these immigrations, communities carried their cultural values to their new settlements leading to a new interaction process. With this interaction process both migrant and native community cultures were reshaped and richer cultural values emerged. The clothes of these communities are amongst the most important visual evidence of this rich cultural interaction. As a result of these immigrations, communities affected each other culture’s clothing mutually and they started adding features of other cultures to the garments of its own, resulting new clothing cultures in time. The cultural and historical differences between these communities are seem to be the most influential factors of keeping the clothing cultures of the people alive. The most important and tragic of these immigrations took place after the Turkish War of Independence that was fought against Greece in 1922. The concept of forced immigration was a result of Lausanne Peace Treaty, which was signed between Turkish and Greek governments on 30th January 1923. As a result Greek Orthodoxes, who lived in Turkey (Anatolia and Thrace) and Muslim Turks, who lived in Greece were forced to immigrate. In this study, clothing features of Greek Orthodox woman immigrants who emigrated from Turkey to Greece in the period of the ‘1923 Greek-Turkish Population Exchange’ are aimed to be examined. In the study using the descriptive research method, before the ‘1923 Greek-Turkish Population Exchange’, the clothings belong to Greek Orthodox woman immigrants who lived in ‘Konya (Iconium)’ region in the Ottoman Empire, are discussed. In the study that is based on two different clothings belonging to ‘Konya (Iconium)’ region in the clothing collection archive at the ‘National Historical Museum’ in Greece, clothings of the Greek Orthodox woman immigrants are discussed with cultural norms, beliefs, values as well as in terms of form, ornamentation and dressing styles. Technical drawings are provided demonstrating formal features of the clothing parts that formed clothing integrity and their properties are described with the use of related literature in this study. This study is of importance that that it contains Greek Orthodox refugees’ clothings that are found in the clothing collection archive at the ‘National Historical Museum’ in Greece reflecting the cultural identities, providing information and documentation on the clothing features of the ‘1923 Greek-Turkish Population Exchange’.Keywords: clothing, Greece, Greek Orthodoxes, immigration, national historical museum, Turkey
Procedia PDF Downloads 2515938 Two-Dimensional CFD Simulation of the Behaviors of Ferromagnetic Nanoparticles in Channel
Authors: Farhad Aalizadeh, Ali Moosavi
Abstract:
This paper presents a two-dimensional Computational Fluid Dynamics (CFDs) simulation for the steady, particle tracking. The purpose of this paper is applied magnetic field effect on Magnetic Nanoparticles velocities distribution. It is shown that the permeability of the particles determines the effect of the magnetic field on the deposition of the particles and the deposition of the particles is inversely proportional to the Reynolds number. Using MHD and its property it is possible to control the flow velocity, remove the fouling on the walls and return the system to its original form. we consider a channel 2D geometry and solve for the resulting spatial distribution of particles. According to obtained results when only magnetic fields are applied perpendicular to the flow, local particles velocity is decreased due to the direct effect of the magnetic field return the system to its original fom. In the method first, in order to avoid mixing with blood, the ferromagnetic particles are covered with a gel-like chemical composition and are injected into the blood vessels. Then, a magnetic field source with a specified distance from the vessel is used and the particles are guided to the affected area. This paper presents a two-dimensional Computational Fluid Dynamics (CFDs) simulation for the steady, laminar flow of an incompressible magnetorheological (MR) fluid between two fixed parallel plates in the presence of a uniform magnetic field. The purpose of this study is to develop a numerical tool that is able to simulate MR fluids flow in valve mode and determineB0, applied magnetic field effect on flow velocities and pressure distributions.Keywords: MHD, channel clots, magnetic nanoparticles, simulations
Procedia PDF Downloads 3705937 Computational Fluid Dynamics Design and Analysis of Aerodynamic Drag Reduction Devices for a Mazda T3500 Truck
Authors: Basil Nkosilathi Dube, Wilson R. Nyemba, Panashe Mandevu
Abstract:
In highway driving, over 50 percent of the power produced by the engine is used to overcome aerodynamic drag, which is a force that opposes a body’s motion through the air. Aerodynamic drag and thus fuel consumption increase rapidly at speeds above 90kph. It is desirable to minimize fuel consumption. Aerodynamic drag reduction in highway driving is the best approach to minimize fuel consumption and to reduce the negative impacts of greenhouse gas emissions on the natural environment. Fuel economy is the ultimate concern of automotive development. This study aims to design and analyze drag-reducing devices for a Mazda T3500 truck, namely, the cab roof and rear (trailer tail) fairings. The aerodynamic effects of adding these append devices were subsequently investigated. To accomplish this, two 3D CAD models of the Mazda truck were designed using the Design Modeler. One, with these, append devices and the other without. The models were exported to ANSYS Fluent for computational fluid dynamics analysis, no wind tunnel tests were performed. A fine mesh with more than 10 million cells was applied in the discretization of the models. The realizable k-ε turbulence model with enhanced wall treatment was used to solve the Reynold’s Averaged Navier-Stokes (RANS) equation. In order to simulate the highway driving conditions, the tests were simulated with a speed of 100 km/h. The effects of these devices were also investigated for low-speed driving. The drag coefficients for both models were obtained from the numerical calculations. By adding the cab roof and rear (trailer tail) fairings, the simulations show a significant reduction in aerodynamic drag at a higher speed. The results show that the greatest drag reduction is obtained when both devices are used. Visuals from post-processing show that the rear fairing minimized the low-pressure region at the rear of the trailer when moving at highway speed. The rear fairing achieved this by streamlining the turbulent airflow, thereby delaying airflow separation. For lower speeds, there were no significant differences in drag coefficients for both models (original and modified). The results show that these devices can be adopted for improving the aerodynamic efficiency of the Mazda T3500 truck at highway speeds.Keywords: aerodynamic drag, computation fluid dynamics, fluent, fuel consumption
Procedia PDF Downloads 1415936 Investigating the Relationship between Iranian EFL Teachers' Motivation, Creativity and Job Stress
Authors: Mehrab Karimian
Abstract:
This study investigates the intricate relationships among Iranian EFL teachers’ motivation, creativity, and job stress in Shiraz and Fasa institutes. The primary aim is to explore these links using quantitative methods, providing a comprehensive understanding of how these factors interact within the educational context. The research employed convenient sampling, gathering data from 101 EFL teachers through three specific questionnaires: the Motivation to Teach Questionnaire, Teacher Creativity Questionnaire, and Job Stress Questionnaire. The methodology involved rigorous statistical analyses, including Pearson correlation and multiple regression, to interpret the collected data. The findings revealed positive relationships between motivation and creativity, as well as between motivation and job stress. However, no significant link was observed between creativity and job stress. Notably, creativity emerged as a strong predictor of motivation, highlighting its crucial role in the motivational dynamics of EFL teachers. The theoretical importance of this study lies in its contribution to understanding how motivation can influence both creativity and job stress among EFL teachers. By emphasizing the complex interplay of these factors, the study provides valuable insights that can inform future research and educational practices. The data collection process was thorough, utilizing well-established questionnaires to ensure the reliability and validity of the findings. Statistical analyses such as Pearson correlation and multiple regression were employed to interpret the relationships between motivation, creativity, and job stress. These analyses provided a detailed understanding of how these variables interact, offering a nuanced view of the motivational and stress dynamics in the teaching profession. The study addressed key questions regarding the influence of motivation on creativity and job stress, underscoring the predictive power of creativity on motivation. The conclusion drawn from the study suggests that motivated EFL teachers may experience higher levels of job stress. This finding highlights the need for targeted interventions to support teacher well-being and maintain their motivation. Such interventions could include professional development programs, stress management workshops, and creative teaching strategies to help teachers manage stress while fostering their motivation and creativity. Reviewers have commended the study for its contribution to the field, particularly in revealing the intricate dynamics between motivation, creativity, and job stress in EFL teachers. They recommend enhancing the methodology by considering potential confounding variables and incorporating qualitative approaches to complement the quantitative findings. These suggestions aim to provide a more comprehensive understanding of the factors influencing EFL teachers’ motivation, creativity, and job stress.Keywords: creativity, Job stress, gender, years of teaching experience
Procedia PDF Downloads 225935 Analysis of Flow Dynamics of Heated and Cooled Pylon Upstream to the Cavity past Supersonic Flow with Wall Heating and Cooling
Authors: Vishnu Asokan, Zaid M. Paloba
Abstract:
Flow over cavities is an important area of research due to the significant change in flow physics caused by cavity aspect ratio, free stream Mach number and the nature of upstream boundary layer approaching the cavity leading edge. Cavity flow finds application in aircraft wheel well, weapons bay, combustion chamber of scramjet engines, etc. These flows are highly unsteady, compressible and turbulent and it involves mass entrainment coupled with acoustics phenomenon. Variation of flow dynamics in an angled cavity with a heated and cooled pylon upstream to the cavity with spatial combinations of heat flux addition and removal to the wall studied numerically. The goal of study is to investigate the effect of energy addition, removal to the cavity walls and pylon cavity flow dynamics. Preliminary steady state numerical simulations on inclined cavities with heat addition have shown that wall pressure profiles, as well as the recirculation, are influenced by heat transfer to the compressible fluid medium. Such a hybrid control of cavity flow dynamics in the form of heat transfer and pylon geometry can open out greater opportunities in enhancement of mixing and flame holding requirements of supersonic combustors. Addition of pylon upstream to the cavity reduces the acoustic oscillations emanating from the geometry. A numerical unsteady analysis of supersonic flow past cavities exposed to cavity wall heating and cooling with heated and cooled pylon helps to get a clear idea about the oscillation suppression in the cavity. A Cavity of L/D 4 and aft wall angle 22 degree with an upstream pylon of h/D=1.5 mm with a wall angle 29 degree exposed to supersonic flow of Mach number 2 and heat flux of 40 W/cm² and -40 W/cm² modeled for the above study. In the preliminary study, the domain is modeled and validated numerically with a turbulence model of SST k-ω using an HLLC implicit scheme. Both qualitative and quantitative flow data extracted and analyzed using advanced CFD tools. Flow visualization is done using numerical Schlieren method as the fluid medium gives the density variation. The heat flux addition to the wall increases the secondary vortex size of the cavity and removal of energy leads to the reduction in vortex size. The flow field turbulence seems to be increasing at higher heat flux. The shear layer thickness increases as heat flux increases. The steady state analysis of wall pressure shows that there is variation on wall pressure as heat flux increases. Shift in frequency of unsteady wall pressure analysis is an interesting observation for the above study. The time averaged skin friction seems to be reducing at higher heat flux due to the variation in viscosity of fluid inside the cavity.Keywords: energy addition, frequency shift, Numerical Schlieren, shear layer, vortex evolution
Procedia PDF Downloads 1435934 "Black Book": Dutch Prototype or Jewish Outsider
Authors: Eyal Boers
Abstract:
This paper shall demonstrate how films can offer a valuable and innovative approach to the study of images, stereotypes, and national identity. "Black Book" ("Zwartboek", 2006), a World War Two film directed by Paul Verhoeven, tells the story of Rachel Stein, a young Jewish woman who becomes a member of a resistance group in the Netherlands. The main hypothesis in this paper maintains that Rachel's character possesses both features of the Dutch prototype (a white, secular, sexual, freedom-loving individualist who seems "Dutch" enough to be accepted into a Dutch resistance group and even infiltrate the local Nazi headquarters) and features which can be defined as specifically Jewish (a black-haired victim persecuted by the Nazis, transforming herself into a gentile, while remaining loyal to her fellow Jews and ultimately immigrating to Israel and becoming a Hebrew teacher in a Kibbutz). Finally, this paper claims that Rachel's "Dutchness" is symptomatic of Dutch nostalgia in the 21st century for the Jews as "others" who blend into dominant Dutch culture, while Rachel's "Jewish Otherness" reflects a transnational identity – one that is always shifting and traverses cultural and national boundaries. In this sense, a film about Dutch Jews in the Second World War reflects on issues of identity in the 21st Century.Keywords: Dutch, film, stereotypes, identity
Procedia PDF Downloads 1295933 An Image Processing Based Approach for Assessing Wheelchair Cushions
Authors: B. Farahani, R. Fadil, A. Aboonabi, B. Hoffmann, J. Loscheider, K. Tavakolian, S. Arzanpour
Abstract:
Wheelchair users spend long hours in a sitting position, and selecting the right cushion is highly critical in preventing pressure ulcers in that demographic. Pressure mapping systems (PMS) are typically used in clinical settings by therapists to identify the sitting profile and pressure points in the sitting area to select the cushion that fits the best for the users. A PMS is a flexible mat composed of arrays of distributed networks of flexible sensors. The output of the PMS systems is a color-coded image that shows the intensity of the pressure concentration. Therapists use the PMS images to compare different cushions fit for each user. This process is highly subjective and requires good visual memory for the best outcome. This paper aims to develop an image processing technique to analyze the images of PMS and provide an objective measure to assess the cushions based on their pressure distribution mappings. In this paper, we first reviewed the skeletal anatomy of the human sitting area and its relation to the PMS image. This knowledge is then used to identify the important features that must be considered in image processing. We then developed an algorithm based on those features to analyze the images and rank them according to their fit to the users' needs.Keywords: dynamic cushion, image processing, pressure mapping system, wheelchair
Procedia PDF Downloads 1715932 Offline Signature Verification in Punjabi Based On SURF Features and Critical Point Matching Using HMM
Authors: Rajpal Kaur, Pooja Choudhary
Abstract:
Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capabilities to the reliably distinguish between an authorized person and an imposter. The Signature recognition systems can categorized as offline (static) and online (dynamic). This paper presents Surf Feature based recognition of offline signatures system that is trained with low-resolution scanned signature images. The signature of a person is an important biometric attribute of a human being which can be used to authenticate human identity. However the signatures of human can be handled as an image and recognized using computer vision and HMM techniques. With modern computers, there is need to develop fast algorithms for signature recognition. There are multiple techniques are defined to signature recognition with a lot of scope of research. In this paper, (static signature) off-line signature recognition & verification using surf feature with HMM is proposed, where the signature is captured and presented to the user in an image format. Signatures are verified depended on parameters extracted from the signature using various image processing techniques. The Off-line Signature Verification and Recognition is implemented using Mat lab platform. This work has been analyzed or tested and found suitable for its purpose or result. The proposed method performs better than the other recently proposed methods.Keywords: offline signature verification, offline signature recognition, signatures, SURF features, HMM
Procedia PDF Downloads 3875931 The Effect of a Saturated Kink on the Dynamics of Tungsten Impurities in the Plasma Core
Authors: H. E. Ferrari, R. Farengo, C. F. Clauser
Abstract:
Tungsten (W) will be used in ITER as one of the plasma facing components (PFCs). The W could migrate to the plasma center. This could have a potentially deleterious effect on plasma confinement. Electron cyclotron resonance heating (ECRH) can be used to prevent W accumulation. We simulated a series of H mode discharges in ASDEX U with PFC containing W, where central ECRH was used to prevent W accumulation in the plasma center. The experiments showed that the W density profiles were flat after a sawtooth crash, and become hollow in between sawtooth crashes when ECRH has been applied. It was also observed that a saturated kink mode was active in these conditions. We studied the effect of saturated kink like instabilities on the redistribution of W impurities. The kink was modeled as the sum of a simple analytical equilibrium (large aspect ratio, circular cross section) plus the perturbation produced by the kink. A numerical code that follows the exact trajectories of the impurity ions in the total fields and includes collisions was employed. The code is written in Cuda C and runs in Graphical Processing Units (GPUs), allowing simulations with a large number of particles with modest resources. Our simulations show that when the W ions have a thermal velocity distribution, the kink has no effect on the W density. When we consider the plasma rotation, the kink can affect the W density. When the average passing frequency of the W particles is similar to the frequency of the kink mode, the expulsion of W ions from the plasma core is maximum, and the W density shows a hollow structure. This could have implications for the mitigation of W accumulation.Keywords: impurity transport, kink instability, tungsten accumulation, tungsten dynamics
Procedia PDF Downloads 1725930 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach
Authors: Abe Degale D., Cheng Jian
Abstract:
When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.Keywords: violence detection, faster RCNN, transfer learning and, surveillance video
Procedia PDF Downloads 1115929 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring
Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti
Abstract:
Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method.Keywords: anomaly detection, frequencies selection, modal analysis, neural network, sensor network, structural health monitoring, vibration measurement
Procedia PDF Downloads 1255928 A Hybrid of BioWin and Computational Fluid Dynamics Based Modeling of Biological Wastewater Treatment Plants for Model-Based Control
Authors: Komal Rathore, Kiesha Pierre, Kyle Cogswell, Aaron Driscoll, Andres Tejada Martinez, Gita Iranipour, Luke Mulford, Aydin Sunol
Abstract:
Modeling of Biological Wastewater Treatment Plants requires several parameters for kinetic rate expressions, thermo-physical properties, and hydrodynamic behavior. The kinetics and associated mechanisms become complex due to several biological processes taking place in wastewater treatment plants at varying times and spatial scales. A dynamic process model that incorporated the complex model for activated sludge kinetics was developed using the BioWin software platform for an Advanced Wastewater Treatment Plant in Valrico, Florida. Due to the extensive number of tunable parameters, an experimental design was employed for judicious selection of the most influential parameter sets and their bounds. The model was tuned using both the influent and effluent plant data to reconcile and rectify the forecasted results from the BioWin Model. Amount of mixed liquor suspended solids in the oxidation ditch, aeration rates and recycle rates were adjusted accordingly. The experimental analysis and plant SCADA data were used to predict influent wastewater rates and composition profiles as a function of time for extended periods. The lumped dynamic model development process was coupled with Computational Fluid Dynamics (CFD) modeling of the key units such as oxidation ditches in the plant. Several CFD models that incorporate the nitrification-denitrification kinetics, as well as, hydrodynamics was developed and being tested using ANSYS Fluent software platform. These realistic and verified models developed using BioWin and ANSYS were used to plan beforehand the operating policies and control strategies for the biological wastewater plant accordingly that further allows regulatory compliance at minimum operational cost. These models, with a little bit of tuning, can be used for other biological wastewater treatment plants as well. The BioWin model mimics the existing performance of the Valrico Plant which allowed the operators and engineers to predict effluent behavior and take control actions to meet the discharge limits of the plant. Also, with the help of this model, we were able to find out the key kinetic and stoichiometric parameters which are significantly more important for modeling of biological wastewater treatment plants. One of the other important findings from this model were the effects of mixed liquor suspended solids and recycle ratios on the effluent concentration of various parameters such as total nitrogen, ammonia, nitrate, nitrite, etc. The ANSYS model allowed the abstraction of information such as the formation of dead zones increases through the length of the oxidation ditches as compared to near the aerators. These profiles were also very useful in studying the behavior of mixing patterns, effect of aerator speed, and use of baffles which in turn helps in optimizing the plant performance.Keywords: computational fluid dynamics, flow-sheet simulation, kinetic modeling, process dynamics
Procedia PDF Downloads 2135927 Rheological and Computational Analysis of Crude Oil Transportation
Authors: Praveen Kumar, Satish Kumar, Jashanpreet Singh
Abstract:
Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future.Keywords: surfactant, natural, crude oil, rheology, CFD, viscosity
Procedia PDF Downloads 4585926 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System
Authors: Kay Thinzar Phu, Lwin Lwin Oo
Abstract:
In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection
Procedia PDF Downloads 3155925 Fluid-Structure Interaction Study of Fluid Flow past Marine Turbine Blade Designed by Using Blade Element Theory and Momentum Theory
Authors: Abu Afree Andalib, M. Mezbah Uddin, M. Rafiur Rahman, M. Abir Hossain, Rajia Sultana Kamol
Abstract:
This paper deals with the analysis of flow past the marine turbine blade which is designed by using the blade element theory and momentum theory for the purpose of using in the field of renewable energy. The designed blade is analyzed for various parameters using FSI module of Ansys. Computational Fluid Dynamics is used for the study of fluid flow past the blade and other fluidic phenomena such as lift, drag, pressure differentials, energy dissipation in water. Finite Element Analysis (FEA) module of Ansys was used to analyze the structural parameter such as stress and stress density, localization point, deflection, force propagation. Fine mesh is considered in every case for more accuracy in the result according to computational machine power. The relevance of design, search and optimization with respect to complex fluid flow and structural modeling is considered and analyzed. The relevancy of design and optimization with respect to complex fluid for minimum drag force using Ansys Adjoint Solver module is analyzed as well. The graphical comparison of the above-mentioned parameter using CFD and FEA and subsequently FSI technique is illustrated and found the significant conformity between both the results.Keywords: blade element theory, computational fluid dynamics, finite element analysis, fluid-structure interaction, momentum theory
Procedia PDF Downloads 3045924 Application of Deep Neural Networks to Assess Corporate Credit Rating
Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu
Abstract:
In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating
Procedia PDF Downloads 2385923 Effect of Different Ground Motion Scaling Methods on Behavior of 40 Story RC Core Wall Building
Authors: Muhammad Usman, Munir Ahmed
Abstract:
The demand of high-rise buildings has grown fast during the past decades. The design of these buildings by using RC core wall have been widespread nowadays in many countries. The RC core wall (RCCW) buildings encompasses central core wall and boundary columns joined through post tension slab at different floor levels. The core wall often provides greater stiffness as compared to the collective stiffness of the boundary columns. Hence, the core wall dominantly resists lateral loading i.e. wind or earthquake load. Non-linear response history analysis (NLRHA) procedure is the finest seismic design procedure of the times for designing high-rise buildings. The modern design tools for nonlinear response history analysis and performance based design has provided more confidence to design these structures for high-rise buildings. NLRHA requires selection and scaling of ground motions to match design spectrum for site specific conditions. Designers use several techniques for scaling ground motion records (time series). Time domain and frequency domain scaling are most commonly used which comprises their own benefits and drawbacks. Due to lengthy process of NLRHA, application of only one technique is conceivable. To the best of author’s knowledge, no consensus on the best procedures for the selection and scaling of the ground motions is available in literature. This research aims to provide the finest ground motion scaling technique specifically for designing 40 story high-rise RCCW buildings. Seismic response of 40 story RCCW building is checked by applying both the frequency domain and time domain scaling. Variable sites are selected in three critical seismic zones of Pakistan. The results indicates that there is extensive variation in seismic response of building for these scaling. There is still a need to build a consensus on the subjected research by investigating variable sites and buildings heights.Keywords: 40-storied RC core wall building, nonlinear response history analysis, ground motions, time domain scaling, frequency domain scaling
Procedia PDF Downloads 1355922 Bangladesh’s July Revolution: Analyzing the 2024 Movement for Free Speech and Democracy
Authors: Abu Bakar Siddik
Abstract:
The July Movement in Bangladesh marked a pivotal moment in the nation’s struggle for democratic freedom and the right to free speech. This movement, driven by citizens, intellectuals, and activists, opposed authoritarian governance and the violation of civil liberties. By encouraging support for democratic reforms, it significantly changed the political landscape and highlighted the importance of grassroots activism for human rights. This essay examines the sociopolitical dynamics of the July Movement and its roots in popular resistance to authoritarian rule. It explores the movement's beginnings, emphasizing how citizens, scholars, and activists united to challenge the regime that restricted freedom of speech. In order to show how the movement gathered support for democratic reforms and ultimately helped bring about the overthrow of the regime, the article examines significant demonstrations, speeches, and government acts. This book offers a thorough examination of how the July Movement changed Bangladesh's political landscape by acting as a revolution for free speech and a trigger for the overthrow of autocratic authority, using historical documents, media coverage, and firsthand recollections. This study provides insightful information about how grassroots activism advances human rights.Keywords: July movement, Bangladesh, free speech, democracy, authoritarianism, civil liberties, political change, human rights, social movements, protests, political landscape, regime change, activism, socio-political dynamics
Procedia PDF Downloads 325921 Exploring the Dynamics in the EU-Association of Southeast Asia Nations Interregional Relationship, 2012-2017
Authors: Xuechen Chen
Abstract:
The EU-ASEAN relations which can be dated back to 1972 represents one of the oldest group-to-group relationship in international politics. Despite a longstanding dialogue partnership, the EU and ASEAN have long been reluctant to forge deeper and substantial cooperation in political and security domains. However, the year of 2012 witnessed a salient shift in EU-ASEAN relations, with the EU significantly elevating ASEAN's profile in its external relations. Given the limited scholarly attention that has been devoted to this change in ASEAN-EU relations, this article explores why there has been a greater level of engagement and approximation between the EU and ASEAN. In particular, it asks why the EU, which had long been reluctant to recognize ASEAN as a strategic partner, has changed its policy towards ASEAN. Drawing on social constructivism, this article argues that the EU’s and ASEAN’s evolving identity-formation processes have played a significant role in reshaping their mutual perceptions, which subsequently leads to the modification of the interregional policies of both actors. The methodology of this study is based on content analysis of a wide range of official documents and policy papers from the EU and ASEAN, as well as more than 20 in-depth elite interviews with diplomats and experts working on the EU-ASEAN relationship from both organisations. Departing from the existing works which mainly adopt a Eurocentric perspective when analysing the EU-ASEAN interregionalism, this study suggests that the approximation of the EU-ASEAN relationship between 2012 and 2017 is driven by both actors’ adjustment of international identities, together with the internal dynamics and systematic changes within both regions.Keywords: Association of Southeast Asia Nations, European Union, EU foreign policy, interregionalism
Procedia PDF Downloads 1505920 Urban Form of the Traditional Arabic City in the Light of Islamic Values
Authors: Akeel Noori Al-Mulla Hwaish
Abstract:
The environmental impact, economics, social and cultural factors, and the processes by which people define history and meaning had influenced the dynamic shape and character of the traditional Islamic Arabic city. Therefore, in regard to the period when Islam was at its peak (7th- 13th Centuries), Islamic city wasn’t the highly dynamited at the scale of buildings and city planning that demonstrates a distinguished city as an ‘Islamic’ as appeared after centuries when the function of the buildings and their particular arrangement and planning scheme in relation to one another that defined an Islamic city character. The architectural features of the urban fabric of the traditional Arabic Islamic city are a reflection of the spiritual, social, and cultural characteristics of the people. It is a combination of Islamic values ‘Din’ and life needs ‘Dunia’ as Prophet Muhammad built the first Mosque in Madinah in the 1st year of his migration to it, then the Suq or market on 2nd of Hijrah, attached to the mosque to signify the birth of a new Muslims community which considers both, ’Din’ and ‘Dunia’ and initiated nucleus for what which called after that as an ‘Islamic’ city. This research will discuss the main characteristics and components of the traditional Arab cities and demonstrate the impact of the Islamic values on shaping the planning layout and general built environment features of the early traditional Arab cities.Keywords: urban, Islamic, Arabic, city
Procedia PDF Downloads 2035919 Characteristics Features and Action Mechanism of Some Country Made Pistols
Authors: Ajitesh Pal, Arpan Datta Roy, H. K. Pratihari
Abstract:
The different illegal firearms crudely made by skilled gunsmith from scrap materials are popularly known as country made firearms. Such firearms along with improvised ammunition are clandestinely marketed at the cheaper price without any license to the extremist group, criminal, poachers and firearm lovers. As per National Crime Records Bureau (NCRB), MHA, Govt of India about 80% firearm cases are committed by country made/improvised firearms. The ballistic division of the laboratory has examined a good number of cases. The analysis of firearm cases received for forensic examination revealed that 7.65mm calibre pistols mostly improvised firearm are commonly used in firearm related crime cases. In the present communication, physical parameters and other characteristics features of some 7.65mm calibre pistols have been discussed in detail. The detailed study on country made (CM) firearm will help to prepare a database related to type of material used, origin of the raw material and tools used for inscription. The study also includes to establish the chemistry of propellants & head stamp pattern. The database will be helpful to the firearm examiners, researchers, students pursuing study on forensic science as reference material.Keywords: improvised pistol, stringent gun law, working mechanism, parameters, database
Procedia PDF Downloads 735918 Identification System for Grading Banana in Food Processing Industry
Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan
Abstract:
In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.Keywords: banana, food processing, identification system, neural network
Procedia PDF Downloads 4735917 Oral Examination: An Important Adjunct to the Diagnosis of Dermatological Disorders
Authors: Sanjay Saraf
Abstract:
The oral cavity can be the site for early manifestations of mucocutaneous disorders (MD) or the only site for occurrence of these disorders. It can also exhibit oral lesions with simultaneous associated skin lesions. The MD involving the oral mucosa commonly presents with signs such as ulcers, vesicles and bullae. The unique environment of the oral cavity may modify these signs of the disease, thereby making the clinical diagnosis an arduous task. In addition to the unique environment of oral cavity, the overlapping of the signs of various mucocutaneous disorders, also makes the clinical diagnosis more intricate. The aim of this review is to present the oral signs of dermatological disorders having common oral involvement and emphasize their importance in early detection of the systemic disorders. The aim is also to highlight the necessity of oral examination by a dermatologist while examining the skin lesions. Prior to the oral examination, it must be imperative for the dermatologists and the dental clinicians to have the knowledge of oral anatomy. It is also important to know the impact of various diseases on oral mucosa, and the characteristic features of various oral mucocutaneous lesions. An initial clinical oral examination is may help in the early diagnosis of the MD. Failure to identify the oral manifestations may reduce the likelihood of early treatment and lead to more serious problems. This paper reviews the oral manifestations of immune mediated dermatological disorders with common oral manifestations.Keywords: dermatological investigations, genodermatosis, histological features, oral examination
Procedia PDF Downloads 3595916 A Unified Constitutive Model for the Thermoplastic/Elastomeric-Like Cyclic Response of Polyethylene with Different Crystal Contents
Authors: A. Baqqal, O. Abduhamid, H. Abdul-Hameed, T. Messager, G. Ayoub
Abstract:
In this contribution, the effect of crystal content on the cyclic response of semi-crystalline polyethylene is studied over a large strain range. Experimental observations on a high-density polyethylene with 72% crystal content and an ultralow density polyethylene with 15% crystal content are reported. The cyclic stretching does appear a thermoplastic-like response for high crystallinity and an elastomeric-like response for low crystallinity, both characterized by a stress-softening, a hysteresis and a residual strain, whose amount depends on the crystallinity and the applied strain. Based on the experimental observations, a unified viscoelastic-viscoplastic constitutive model capturing the polyethylene cyclic response features is proposed. A two-phase representation of the polyethylene microstructure allows taking into consideration the effective contribution of the crystalline and amorphous phases to the intermolecular resistance to deformation which is coupled, to capture the strain hardening, to a resistance to molecular orientation. The polyethylene cyclic response features are captured by introducing evolution laws for the model parameters affected by the microstructure alteration due to the cyclic stretching.Keywords: cyclic loading unloading, polyethylene, semi-crystalline polymer, viscoelastic-viscoplastic constitutive model
Procedia PDF Downloads 2265915 Using Satellite Images Datasets for Road Intersection Detection in Route Planning
Authors: Fatma El-Zahraa El-Taher, Ayman Taha, Jane Courtney, Susan Mckeever
Abstract:
Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated.Keywords: satellite images, remote sensing images, data acquisition, autonomous vehicles
Procedia PDF Downloads 1495914 Application of Nonlinear Model to Optimize the Coagulant Dose in Drinking Water Treatment
Authors: M. Derraz, M.Farhaoui
Abstract:
In the water treatment processes, the determination of the optimal dose of the coagulant is an issue of particular concern. Coagulant dosing is correlated to raw water quality which depends on some parameters (turbidity, ph, temperature, conductivity…). The objective of this study is to provide water treatment operators with a tool that enables to predict and replace, sometimes, the manual method (jar testing) used in this plant to predict the optimum coagulant dose. The model is constructed using actual process data for a water treatment plant located in the middle of Morocco (Meknes).Keywords: coagulation process, aluminum sulfate, model, coagulant dose
Procedia PDF Downloads 2805913 Pressure-Controlled Dynamic Equations of the PFC Model: A Mathematical Formulation
Authors: Jatupon Em-Udom, Nirand Pisutha-Arnond
Abstract:
The phase-field-crystal, PFC, approach is a density-functional-type material model with an atomic resolution on a diffusive timescale. Spatially, the model incorporates periodic nature of crystal lattices and can naturally exhibit elasticity, plasticity and crystal defects such as grain boundaries and dislocations. Temporally, the model operates on a diffusive timescale which bypasses the need to resolve prohibitively small atomic-vibration time steps. The PFC model has been used to study many material phenomena such as grain growth, elastic and plastic deformations and solid-solid phase transformations. In this study, the pressure-controlled dynamic equation for the PFC model was developed to simulate a single-component system under externally applied pressure; these coupled equations are important for studies of deformable systems such as those under constant pressure. The formulation is based on the non-equilibrium thermodynamics and the thermodynamics of crystalline solids. To obtain the equations, the entropy variation around the equilibrium point was derived. Then the resulting driving forces and flux around the equilibrium were obtained and rewritten as conventional thermodynamic quantities. These dynamics equations are different from the recently-proposed equations; the equations in this study should provide more rigorous descriptions of the system dynamics under externally applied pressure.Keywords: driving forces and flux, evolution equation, non equilibrium thermodynamics, Onsager’s reciprocal relation, phase field crystal model, thermodynamics of single-component solid
Procedia PDF Downloads 3085912 An Insight into the Paddy Soil Denitrifying Bacteria and Their Relation with Soil Phospholipid Fatty Acid Profile
Authors: Meenakshi Srivastava, A. K. Mishra
Abstract:
This study characterizes the metabolic versatility of denitrifying bacterial communities residing in the paddy soil using the GC-MS based Phospholipid Fatty Acid (PLFA) analyses simultaneously with nosZ gene based PCR-DGGE (Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis) and real time Q-PCR analysis. We have analyzed the abundance of nitrous oxide reductase (nosZ) genes, which was subsequently related to soil PLFA profile and DGGE based denitrifier community structure. Soil denitrifying bacterial community comprised majority or dominance of Ochrobactrum sp. following Cupriavidus and uncultured bacteria strains in paddy soil of selected sites. Initially, we have analyzed the abundance of the nitrous oxide reductase gene (nosZ), which was found to be related with PLFA based lipid profile. Chandauli of Eastern UP, India represented greater amount of lipid content (C18-C20) and denitrifier’s diversity. This study suggests the positive co-relation between soil PLFA profiles, DGGE, and Q-PCR data. Thus, a close networking among metabolic abilities and taxonomic composition of soil microbial communities existed, and subsequently, such work at greater extent could be helpful in managing nutrient dynamics as well as microbial dynamics of paddy soil ecosystem.Keywords: denaturing gradient gel electrophoresis, DGGE, nitrifying and denitrifying bacteria, PLFA, Q-PCR
Procedia PDF Downloads 128