Search results for: electronic waste
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4463

Search results for: electronic waste

2633 Elaboration of Titania Nanotubes on Ti₆Al₄V Substrate by Electrochemical Anodization for Dental Application

Authors: Abdelghani Boucheham, Ahcene Karaali, Amar Manseri

Abstract:

Nanostructured Titania layers formed on the surface of titanium and titanium alloys by anodic oxidation play an important role in the enhancement of their biocompatibility and osseointegration in the human body. In the current work, highly ordered titania nanotube array films were elaborated on Ti₆Al₄V medical grade alloys in organic electrolyte containing ethylene glycol, 0.2 wt. % NH₄F and 4 vol. % H₂O at an applied potential of 60 V for different durations. The diameters, lengths and wall thicknesses of the obtained nanotubes were characterized by scanning electronic microscopy (SEM).

Keywords: anodization, dental implants, titania nanotubes, titanium alloys, SEM

Procedia PDF Downloads 255
2632 Optimization of Ultrasound Assisted Extraction of Polysaccharides from Plant Waste Materials: Selected Model Material is Hazelnut Skin

Authors: T. Yılmaz, Ş. Tavman

Abstract:

In this study, optimization of ultrasound assisted extraction (UAE) of hemicellulose based polysaccharides from plant waste material has been studied. Selected material is hazelnut skin. Extraction variables for the operation are extraction time, amplitude and application temperature. Optimum conditions have been evaluated depending on responses such as amount of wet crude polysaccharide, total carbohydrate content and dried sample. Pretreated hazelnut skin powders were used for the experiments. 10 grams of samples were suspended in 100 ml water in a jacketed vessel with additional magnetic stirring. Mixture was sonicated by immersing ultrasonic probe processor. After the extraction procedures, ethanol soluble and insoluble sides were separated for further examinations. The obtained experimental data were analyzed by analysis of variance (ANOVA). Second order polynomial models were developed using multiple regression analysis. The individual and interactive effects of applied variables were evaluated by Box Behnken Design. The models developed from the experimental design were predictive and good fit with the experimental data with high correlation coefficient value (R2 more than 0.95). Extracted polysaccharides from hazelnut skin are assumed to be pectic polysaccharides according to the literature survey of Fourier Transform Spectrometry (FTIR) analysis results. No more change can be observed between spectrums of different sonication times. Application of UAE at optimized condition has an important effect on extraction of hemicellulose from plant material by satisfying partial hydrolysis to break the bounds with other components in plant cell wall material. This effect can be summarized by varied intensity of microjets and microstreaming at varied sonication conditions.

Keywords: hazelnut skin, optimization, polysaccharide, ultrasound assisted extraction

Procedia PDF Downloads 334
2631 On the Design of Wearable Fractal Antenna

Authors: Amar Partap Singh Pharwaha, Shweta Rani

Abstract:

This paper is aimed at proposing a rhombus shaped wearable fractal antenna for wireless communication systems. The geometrical descriptors of the antenna have been obtained using bacterial foraging optimization (BFO) for wide band operation. The method of moment based IE3D software has been used to simulate the antenna and observed that miniaturization of 13.08% has been achieved without degrading the resonating properties of the proposed antenna. An analysis with different substrates has also been done in order to evaluate the effectiveness of electrical permittivity on the presented structure. The proposed antenna has low profile, light weight and has successfully demonstrated wideband and multiband characteristics for wearable electronic applications.

Keywords: BFO, bandwidth, electrical permittivity, fractals, wearable antenna

Procedia PDF Downloads 466
2630 An Investigation on the Need to Provide Environmental Sanitation Facilities to Informal Settlement in Shagari Low-Cost Katsina State for Sustainable Built Environment

Authors: Abdullahi Mannir Rawayau

Abstract:

This paper identifies the problems that have aided the decoy to adequate basic infrastructural amenities, sub-standard housing, over-crowding, poor ventilation in homes and work places, sanitation, and non-compliance with building bye-laws and regulation. The paper also asserts the efficient disposal of solid and liquid waste is one of the challenges in the informal areas due to threats on the environment and public health. Sanitation services in the informal settlements have been found to be much lower compared to the average for unban. Bearing in mind a factor which prevents sustainable sanitation in informal areas which include low incomes, insecure tenure, low education levels, difficulty topography and transitory populations, and this study aim to identify effective strategies for achieving sustainable sanitation with specific reference to the informal settlement. Using the Shanghai Low-Cost as a case study. The primary data collected was through observation and interview method. Similarly, the secondary data used for the study was collected through literature reviews from extent studies with specific reference to informal settlement. A number of strategies towards achieving sustainable sanitation in the study were identified here in classified into three (3):- Advocacy and capacity building, infrastructural provision and institutionalization of systems and processes. The paper concludes with the premise on the need to build alliances between the government and stakeholders concerned with sanitation provision through the creation of sanitation and employ adaptable technology. Provision of sanitation facilities in public areas and to establish a statutory body for timely response to sanitation waste management in Katsina. It is imperative to check and prevent further decay for harmonious living and sustainable development.

Keywords: built environment, sanitation, facilities, settlement

Procedia PDF Downloads 230
2629 Removal of Pb²⁺ from Waste Water Using Nano Silica Spheres Synthesized on CaCO₃ as a Template: Equilibrium and Thermodynamic Studies

Authors: Milton Manyangadze, Joseph Govha, T. Bala Narsaiah, Ch. Shilpa Chakra

Abstract:

The availability and access to fresh water is today a serious global challenge. This has been a direct result of factors such as the current rapid industrialization and industrial growth, persistent droughts in some parts of the world, especially in the sub-Saharan Africa as well as population growth. Growth of the chemical processing industry has also seen an increase in the levels of pollutants in our water bodies which include heavy metals among others. Heavy metals are known to be dangerous to both human and aquatic life. As such, they have been linked to several diseases. This is mainly because they are highly toxic. They are also known to be bio accumulative and non-biodegradable. Lead for example, has been linked to a number of health problems which include damage of vital internal body systems like the nervous and reproductive system as well as the kidneys. From this background therefore, the removal of the toxic heavy metal, Pb2+ from waste water was investigated using nano silica hollow spheres (NSHS) as the adsorbent. Synthesis of NSHS was done using a three-stage process in which CaCO3 nanoparticles were initially prepared as a template. This was followed by treatment of the formed oxide particles with NaSiO3 to give a nanocomposite. Finally, the template was destroyed using 2.0M HCl to give NSHS. Characterization of the nanoparticles was done using analytical techniques like XRD, SEM, and TGA. For the adsorption process, both thermodynamic and equilibrium studies were carried out. Thermodynamic studies were carried out and the Gibbs free energy, Enthalpy and Entropy of the adsorption process were determined. The results revealed that the adsorption process was both endothermic and spontaneous. Equilibrium studies were also carried out in which the Langmuir and Freundlich isotherms were tested. The results showed that the Langmuir model best described the adsorption equilibrium.

Keywords: characterization, endothermic, equilibrium studies, Freundlich, Langmuir, nanoparticles, thermodynamic studies

Procedia PDF Downloads 221
2628 Enhancing Warehousing Operation In Cold Supply Chain Through The Use Of IOT And Lifi Technologies

Authors: Sarah El-Gamal, Passent Hossam, Ahmed Abd El Aziz, Rojina Mahmoud, Ahmed Hassan, Dalia Hilal, Eman Ayman, Hana Haytham, Omar Khamis

Abstract:

Several concerns fall upon the supply chain, especially the cold supply chain. According to the literature, the main challenges in the cold supply chain are the distribution and storage phases. In this research, researchers focused on the storage area, which contains several activities such as the picking activity that faces a lot of obstacles and challenges The implementation of IoT solutions enables businesses to monitor the temperature of food items, which is perhaps the most critical parameter in cold chains. Therefore, researchers proposed a practical solution that would help in eliminating the problems related to ineffective picking for products, especially fish and seafood products, by using IoT technology, most notably LiFi technology. Thus, guaranteeing sufficient picking, reducing waste, and consequently lowering costs. A prototype was specially designed and examined. This research is a single case study research. Two methods of data collection were used; observation and semi-structured interviews. Semi-structured interviews were conducted with managers and decision maker at Carrefour Alexandria to validate the problem and the proposed practical solution using IoTandLiFi technology. A total of three interviews were conducted. As a result, a SWOT analysis was achieved in order to highlight all the strengths and weaknesses of using the recommended Lifi solution in the picking process. According to the investigations, it was found that the use of IoT and LiFi technology is cost effective, efficient, and reduces human errors, minimize the percentage of product waste and thus save money and cost. Thus, increasing customer satisfaction and profits gained.

Keywords: cold supply chain, picking process, temperature control, IOT, warehousing, LIFI

Procedia PDF Downloads 197
2627 Enhanced Pollutant Removal Efficiency in a Long-Term Integrated Constructed Wetland System Using Cork and Date Palm By-Products as Biomaterials

Authors: Khadija Kraiem, Salma Bessadok, Dorra Tabassi, Atef Jaouani

Abstract:

This study investigated the long-term impact of incorporating biowaste (i.e., cork and date stones) as a natural and cost-effective alternative to traditional substrates (e.g. gravel) in constructed wetlands (CWs). Results showed that pollutant removal efficiency was significantly improved after the addition of biowaste under different hydraulic retention time (HRT) conditions. In vertical flow constructed wetlands (VFCWs), the addition of cork improved chemical oxygen demand (COD) removal from 64% to 86%. In horizontal flow constructed wetlands (HFCWs), COD removal increased from 67% to 81% with cork and to 85% with date stones. Ammonium removal was also boosted, with cork in VFCWs increasing efficiency from 34% to 56%. In HFCWs, it improved from 24% to 47% with cork and to 44% with date stones. Furthermore, our data showed that the addition of biowastes improved the removal of micropollutants, such as bisphenol A (BPA) and diclofenac (DFC), with the highest removal rates of BPA (86%) and DFC (89%) observed in the wetland with date stones. However, no significant changes were observed in pathogen removal. Additionally, the incorporation of biowastes reduced the required HRT for efficient pollutant removal, although it did not significantly affect the contribution of plant species. Importantly, this study highlights the dual benefits of using biowaste. On the environmental side, reusing agricultural and industrial residues such as cork and date stones can reduce landfill waste and promotes sustainable waste management. From an economic perspective, these materials offer a cost-effective alternative to traditional substrates and are therefore suitable for wider application in the CWs. These findings highlight the potential of biowaste as a sustainable, efficient solution for wastewater treatment.

Keywords: constructred wetlands, cork, date stones, pollutant removal, wastewater

Procedia PDF Downloads 4
2626 Effect of Processing Parameters on the Physical Properties of Pineapple Pomace Based Aquafeed

Authors: Oluwafemi Babatunde Oduntan, Isaac A. Bamgboye

Abstract:

The solid waste disposal and its management from pineapple juice processing constitute environmental contamination affecting public health. The use of this by-product called pomace has potentials to reduce cost of aquafeed. Pineapple pomace collected after juice extraction was dried and milled. The interactive effects of feeding rate (1.28, 1.44 and 1.60kg/min), screw speed (305, 355 and 405rpm), moisture content (16, 19 and 22%), temperatures (60, 80, 100 and 120°C), cutting speed (1300, 1400 and 1500rpm), pomace inclusion ratio (5, 10, 15, 20%) and open surface die (50, 75 and 100%) on the extrudate physical properties (bulk density, unit density, expansion ratio, durability and floatability) were investigated using optimal custom design (OCD) matrix and response surface methodology. The predicted values were found to be in good agreement with the experimental values for, expansion ratio, durability and floatability (R2 = 0.7970; 0.9264; 0.9098 respectively) with the exceptions of unit density and bulk density (R2 = 0.1639; 0.2768 respectively). All the extrudates showed relatively high floatability, durability. The inclusion of pineapple pomace produced less expanded and more compact textured extrudates. Results indicated that increased in the value of pineapple pomace, screw speed, feeding rate decreased unit density, bulk density, expansion ratio, durability and floatability of the extrudate. However, increasing moisture content of feed mash resulted in increase unit density and bulk density. Addition of extrusion temperature and cutting speed increased the floatability and durability of extrudate. The proportion of pineapple pomace in aquafeed extruded product was observed to have significantly lower effect on the selected responses.

Keywords: aquafeed, extrusion, physical properties, pineapple pomace, waste

Procedia PDF Downloads 276
2625 Applying Miniaturized near Infrared Technology for Commingled and Microplastic Waste Analysis

Authors: Monika Rani, Claudio Marchesi, Stefania Federici, Laura E. Depero

Abstract:

Degradation of the aquatic environment by plastic litter, especially microplastics (MPs), i.e., any water-insoluble solid plastic particle with the longest dimension in the range 1µm and 1000 µm (=1 mm) size, is an unfortunate indication of the advancement of the Anthropocene age on Earth. Microplastics formed due to natural weathering processes are termed as secondary microplastics, while when these are synthesized in industries, they are called primary microplastics. Their presence from the highest peaks to the deepest points in oceans explored and their resistance to biological and chemical decay has adversely affected the environment, especially marine life. Even though the presence of MPs in the marine environment is well-reported, a legitimate and authentic analytical technique to sample, analyze, and quantify the MPs is still under progress and testing stages. Among the characterization techniques, vibrational spectroscopic techniques are largely adopted in the field of polymers. And the ongoing miniaturization of these methods is on the way to revolutionize the plastic recycling industry. In this scenario, the capability and the feasibility of a miniaturized near-infrared (MicroNIR) spectroscopy combined with chemometrics tools for qualitative and quantitative analysis of urban plastic waste collected from a recycling plant and microplastic mixture fragmented in the lab were investigated. Based on the Resin Identification Code, 250 plastic samples were used for macroplastic analysis and to set up a library of polymers. Subsequently, MicroNIR spectra were analysed through the application of multivariate modelling. Principal Components Analysis (PCA) was used as an unsupervised tool to find trends within the data. After the exploratory PCA analysis, a supervised classification tool was applied in order to distinguish the different plastic classes, and a database containing the NIR spectra of polymers was made. For the microplastic analysis, the three most abundant polymers in the plastic litter, PE, PP, PS, were mechanically fragmented in the laboratory to micron size. The distinctive arrangement of blends of these three microplastics was prepared in line with a designed ternary composition plot. After the PCA exploratory analysis, a quantitative model Partial Least Squares Regression (PLSR) allowed to predict the percentage of microplastics in the mixtures. With a complete dataset of 63 compositions, PLS was calibrated with 42 data-points. The model was used to predict the composition of 21 unknown mixtures of the test set. The advantage of the consolidated NIR Chemometric approach lies in the quick evaluation of whether the sample is macro or micro, contaminated, coloured or not, and with no sample pre-treatment. The technique can be utilized with bigger example volumes and even considers an on-site evaluation and in this manner satisfies the need for a high-throughput strategy.

Keywords: chemometrics, microNIR, microplastics, urban plastic waste

Procedia PDF Downloads 168
2624 Quick Response Codes in Physio: A Simple Click to Long-Term Oxygen Therapy Education

Authors: K. W. Lee, C. M. Choi, H. C. Tsang, W. K. Fong, Y. K. Cheng, L. Y. Chan, C. K. Yuen, P. W. Lau, Y. L. To, K. C. Chow

Abstract:

QR (Quick Response) Code is a matrix barcode. It enables users to open websites, photos and other information with mobile devices by just snapping the code. In usual Long Term Oxygen Therapy arrangement, piles of LTOT related information like leaflets from different oxygen service providers are given to patients to choose an appropriate plan according to their needs. If these printed materials are transformed into electronic format (QR Code), it would be more environmentally-friendly. More importantly, electronic materials including LTOT equipment operation and dyspnoea relieving techniques also empower patients in long-term disease management. The objective to this study is to investigate the effect of QR code in patient education on new LTOT users. This study was carried out in medical wards of North District Hospital. Adult patients and relatives who followed commands, were able to use smartphones with internet services and required LTOT arrangement on hospital discharge were recruited. In LTOT arrangement, apart from the usual LTOT education booklets which included patients’ personal information (e.g. oxygen titration and six-minute walk test results etc.), extra leaflets consisted of 1. QR codes of LTOT plans from different oxygen service providers, 2. Education materials of dyspnoea management and 3. Instructions on LTOT equipment operation were given. Upon completion of LTOT arrangement, a questionnaire about the use of QR code on patient education was filled in by patients or relatives. A total of 10 new LTOT users were recruited from November 2017 to January 2018. Initially, 70% of them did not know anything about the QR code, but all of them understood its operation after a simple demonstration. 70% of them agreed that it was convenient to use (20% strongly agree, 40% agree, 10% somewhat agree). 80% of them agreed that QR code could facilitate the retrieval of more LTOT related information (10% strongly agree, 70% agree) while 90% agreed that we should continue delivering QR code leaflets to new LTOT users in the future (30% strongly agree, 40% agree, 20% somewhat agree). It is proven that QR code is a convenient and environmentally-friendly tool to deliver information. It is also relatively easy to be introduced to new users. It has received welcoming feedbacks from current users.

Keywords: long-term oxygen therapy, physiotherapy, patient education, QR code

Procedia PDF Downloads 149
2623 Electrocatalytic Properties of Ru-Pd Bimetal Quantum Dots/TiO₂ Nanotube Arrays Electrodes Composites with Double Schottky Junctions

Authors: Shiying Fan, Xinyong Li

Abstract:

The development of highly efficient multifunctional catalytic materials towards HER, ORR and Photo-fuel cell applications in terms of combined electrochemical and photo-electrochemical principles have currently confronted with dire challenges. In this study, novel palladium (Pd) and ruthenium (Ru) Bimetal Quantum Dots (BQDs) co-anchored on Titania nanotube (NTs) arrays electrodes have been successfully constructed by facial two-step electrochemical strategy. Double Schottky junctions with superior performance in electrocatalytic (EC) hydrogen generations and solar fuel cell energy conversions (PE) have been found. Various physicochemical techniques including UV-vis spectroscopy, TEM/EDX/HRTEM, SPV/TRV and electro-chemical strategy including EIS, C-V, I-V, and I-T, etc. were chronically utilized to systematically characterize the crystal-, electronic and micro-interfacial structures of the composites with double Schottky junction, respectively. The characterizations have implied that the marvelous enhancement of separation efficiency of electron-hole pairs generations is mainly caused by the Schottky-barriers within the nanocomposites, which would greatly facilitate the interfacial charge transfer for H₂ generations and solar fuel cell energy conversions. Moreover, the DFT calculations clearly indicated that the oriented growth of Ru and Pd bimetal atoms at the anatase (101) surface is mainly driven by the interaction between Ru/Pd and surface atoms, and the most active site for bimetal Ru and Pd adatoms on the perfect TiO₂ (101) surface is the 2cO-6cTi-3cO bridge sites and the 2cO-bridge sites with the highest adsorption energy of 9.17 eV. Furthermore, the electronic calculations show that in the nanocomposites, the number of impurity (i.e., co-anchored Ru-Pd BQDs) energy levels near Fermi surface increased and some were overlapped with original energy level, promoting electron energy transition and reduces the band gap. Therefore, this work shall provide a deeper insight for the molecular design of Bimetal Quantum Dots (BQDs) assembled onto Tatiana NTs composites with superior performance for electrocatalytic hydrogen productions and solar fuel cell energy conversions (PE) simultaneously.

Keywords: eletrocatalytic, Ru-Pd bimetallic quantum dots, titania nanotube arrays, double Schottky junctions, hydrogen production

Procedia PDF Downloads 144
2622 Participatory Approach for Urban Sustainability through Ostrom’s Principles

Authors: Kuladeep Kumar Sadevi

Abstract:

The shift towards raising global urban population has intense implications on the sustainability of the urban livelihoods. Rapid urbanization has made governments, companies and civil societies recognize that they are barely equipped to deal with growing urban demands, especially water, waste and energy management. Effective management of land, water, energy and waste at a community level should be addressed well to attain greener cities. In pursuit of Green livelihoods; various norms, codes, and green rating programmes have been followed by stakeholders at various levels. While the sustainability is being adapted at smaller scale developments, greening the urban environment at community/city level is still finding its path to reality. This is due to lack of the sense of ownership in the citizens for their immediate neighborhoods and city as a whole. This phenomenon can be well connected to the theory of 'tragedy of commons' with respect to the community engagement to manage the common pool resources. The common pool resource management has been well addressed by Elinor Ostrom, who shared the Nobel Prize in Economics in 2009 for her lifetime of scholarly work investigating how communities succeed or fail at managing common pool (finite) resources. This paper examines the applicability of Elinor Ostrom's 8 Principles for Managing a Commons, to meet urban sustainability. The key objective of this paper is to come up with a model for effective urban common pool resource management, which ultimately leads to sustainability as a whole. The paper brings out a methodology to understand various parameters involved in urban sustainability, examine the synergies of all such parameters, and application of Ostrom’s principles to correlate these parameters in order to attain effective urban resource management.

Keywords: common pool resources, green cities, green communities, participatory management, sustainable development, urban resource management, urban sustainability

Procedia PDF Downloads 361
2621 Bioflavonoids Derived from Mandarin Processing Wastes: Functional Hydrogels as a Sustainable Food Systems

Authors: Niharika Kaushal, Minni Singh

Abstract:

Fruit crops are widely cultivated throughout the World, with citrus being one of the most common. Mandarins, oranges, grapefruits, lemons, and limes are among the most frequently grown varieties. Citrus cultivars are industrially processed into juice, resulting in approx. 25-40% by wt. of biomass in the form of peels and seeds, generally considered as waste. In consequence, a significant amount of this nutraceutical-enriched biomass goes to waste, which, if utilized wisely, could revolutionize the functional food industry, as this biomass possesses a wide range of bioactive compounds, mainly within the class of polyphenols and terpenoids, making them an abundant source of functional bioactive. Mandarin is a potential source of bioflavonoids with putative antioxidative properties, and its potential application for developing value-added products is obvious. In this study, ‘kinnow’ mandarin (Citrus nobilis X Citrus deliciosa) biomass was studied for its flavonoid profile. For this, dried and pulverized peels were subjected to green and sustainable extraction techniques, namely, supercritical fluid extraction carried out under conditions pressure: 330 bar, temperature: 40 ̊ C and co-solvent: 10% ethanol. The obtained extract was observed to contain 47.3±1.06 mg/ml rutin equivalents as total flavonoids. Mass spectral analysis revealed the prevalence of polymethoxyflavones (PMFs), chiefly tangeretin and nobiletin. Furthermore, the antioxidant potential was analyzed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, which was estimated to be at an IC₅₀ of 0.55μg/ml. The pre-systemic metabolism of flavonoids limits their functionality, as was observed in this study through in vitro gastrointestinal studies where nearly 50.0% of the flavonoids were degraded within 2 hours of gastric exposure. We proposed nanoencapsulation as a means to overcome this problem, and flavonoids-laden polylactic-co-glycolic acid (PLGA) nano encapsulates were bioengineered using solvent evaporation method, and these were furnished to a particle size between 200-250nm, which exhibited protection of flavonoids in the gastric environment, allowing only 20% to be released in 2h. A further step involved impregnating the nano encapsulates within alginate hydrogels which were fabricated by ionic cross-linking, which would act as delivery vehicles within the gastrointestinal (GI) tract. As a result, 100% protection was achieved from the pre-systemic release of bioflavonoids. These alginate hydrogels had key significant features, i.e., less porosity of nearly 20.0%, and Cryo-SEM (Cryo-scanning electron microscopy) images of the composite corroborate the packing ability of the alginate hydrogel. As a result of this work, it is concluded that the waste can be used to develop functional biomaterials while retaining the functionality of the bioactive itself.

Keywords: bioflavonoids, gastrointestinal, hydrogels, mandarins

Procedia PDF Downloads 85
2620 Smart Architecture and Sustainability in the Built Environment for the Hatay Refugee Camp

Authors: Ali Mohammed Ali Lmbash

Abstract:

The global refugee crisis points to the vital need for sustainable and resistant solutions to different kinds of problems for displaced persons all over the world. Among the myriads of sustainable concerns, however, there are diverse considerations including energy consumption, waste management, water access, and resiliency of structures. Our research aims to develop distinct ideas for sustainable architecture given the exigent problems in disaster-threatened areas starting with the Hatay Refugee camp in Turkey where the majority of the camp dwellers are Syrian refugees. Commencing community-based participatory research which focuses on the socio-environmental issues of displaced populations, this study will apply two approaches with a specific focus on the Hatay region. The initial experiment uses Richter's predictive model and simulations to forecast earthquake outcomes in refugee campers. The result could be useful in implementing architectural design tactics that enhance structural reliability and ensure the security and safety of shelters through earthquakes. In the second experiment a model is generated which helps us in predicting the quality of the existing water sources and since we understand how greatly water is vital for the well-being of humans, we do it. This research aims to enable camp administrators to employ forward-looking practices while managing water resources and thus minimizing health risks as well as building resilience of the refugees in the Hatay area. On the other side, this research assesses other sustainability problems of Hatay Refugee Camp as well. As energy consumption becomes the major issue, housing developers are required to consider energy-efficient designs as well as feasible integration of renewable energy technologies to minimize the environmental impact and improve the long-term sustainability of housing projects. Waste management is given special attention in this case by imposing recycling initiatives and waste reduction measures to reduce the pace of environmental degradation in the camp's land area. As well, study gives an insight into the social and economic reality of the camp, investigating the contribution of initiatives such as urban agriculture or vocational training to the enhancement of livelihood and community empowerment. In a similar fashion, this study combines the latest research with practical experience in order to contribute to the continuing discussion on sustainable architecture during disaster relief, providing recommendations and info that can be adapted on every scale worldwide. Through collaborative efforts and a dedicated sustainability approach, we can jointly get to the root of the cause and work towards a far more robust and equitable society.

Keywords: smart architecture, Hatay Camp, sustainability, machine learning.

Procedia PDF Downloads 62
2619 A Novel Algorithm for Production Scheduling

Authors: Ali Mohammadi Bolban Abad, Fariborz Ahmadi

Abstract:

Optimization in manufacture is a method to use limited resources to obtain the best performance and reduce waste. In this paper a new algorithm based on eurygaster life is introduced to obtain a plane in which task order and completion time of resources are defined. Evaluation results show our approach has less make span when the resources are allocated with some products in comparison to genetic algorithm.

Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, NP-Hard problems, production scheduling

Procedia PDF Downloads 384
2618 Approaches for Minimizing Radioactive Tritium and ¹⁴C in Advanced High Temperature Gas-Cooled Reactors

Authors: Longkui Zhu, Zhengcao Li

Abstract:

High temperature gas-cooled reactors (HTGRs) are considered as one of the next-generation advanced nuclear reactors, in which porous nuclear graphite is used as neutron moderators, reflectors, structure materials, and cooled by inert helium. Radioactive tritium and ¹⁴C are generated in terms of reactions of thermal neutrons and ⁶Li, ¹⁴N, ¹⁰B impurely within nuclear graphite and the coolant during HTGRs operation. Currently, hydrogen and nitrogen diffusion behavior together with nuclear graphite microstructure evolution were investigated to minimize the radioactive waste release, using thermogravimetric analysis, X-ray computed tomography, the BET and mercury standard porosimetry methods. It is found that the peak value of graphite weight loss emerged at 573-673 K owing to nitrogen diffusion from graphite pores to outside when the system was subjected to vacuum. Macropore volume became larger while porosity for mesopores was smaller with temperature ranging from ambient temperature to 1073 K, which was primarily induced by coalescence of the subscale pores. It is suggested that the porous nuclear graphite should be first subjected to vacuum at 573-673 K to minimize the nitrogen and the radioactive 14°C before operation in HTGRs. Then, results on hydrogen diffusion show that the diffusible hydrogen and tritium could permeate into the coolant with diffusion coefficients of > 0.5 × 10⁻⁴ cm²·s⁻¹ at 50 bar. As a consequence, the freshly-generated diffusible tritium could release quickly to outside once formed, and an effective approach for minimizing the amount of radioactive tritium is to make the impurity contents extremely low in nuclear graphite and the coolant. Besides, both two- and three-dimensional observations indicate that macro and mesopore volume along with total porosity decreased with temperature at 50 bar on account of synergistic effects of applied compression strain, sharpened pore morphology, and non-uniform temperature distribution.

Keywords: advanced high temperature gas-cooled reactor, hydrogen and nitrogen diffusion, microstructure evolution, nuclear graphite, radioactive waste management

Procedia PDF Downloads 314
2617 Value Co-Creation in Used-Car Auctions: A Service Scientific Perspective

Authors: Safdar Muhammad Usman, Youji Kohda, Katsuhiro Umemoto

Abstract:

Electronic market place plays an important intermediary role for connecting dealers and retail customers. The main aim of this paper is to design a value co-creation model in used-car auctions. More specifically, the study has been designed in order to describe the process of value co-creation in used-car auctions, to explore the co-created values in used-car auctions, and finally conclude the paper indicating the future research directions. Our analysis shows that economic values as well as non-economic values are co-created in used-car auctions. In addition, this paper contributes to the academic society broadening the view of value co-creation in service science.

Keywords: value co-creation, used-car auctions, non-financial values, service science

Procedia PDF Downloads 368
2616 A Framework for Consumer Selection on Travel Destinations

Authors: J. Rhodes, V. Cheng, P. Lok

Abstract:

The aim of this study is to develop a parsimonious model that explains the effect of different stimulus on a tourist’s intention to visit a new destination. The model consists of destination trust and interest as the mediating variables. The model was tested using two different types of stimulus; both studies empirically supported the proposed model. Furthermore, the first study revealed that advertising has a stronger effect than positive online reviews. The second study found that the peripheral route of the elaboration likelihood model has a stronger influence power than the central route in this context.

Keywords: advertising, electronic word-of-mouth, elaboration likelihood model, intention to visit, trust

Procedia PDF Downloads 459
2615 Alphabet Recognition Using Pixel Probability Distribution

Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay

Abstract:

Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.

Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix

Procedia PDF Downloads 392
2614 Risk Assessment of Trace Metals in the Soil Surface of an Abandoned Mine, El-Abed Northwestern Algeria

Authors: Farida Mellah, Abdelhak Boutaleb, Bachir Henni, Dalila Berdous, Abdelhamid Mellah

Abstract:

Context/Purpose: One of the largest mining operations for lead and zinc deposits in northwestern Algeria in more than thirty years, El Abed is now the abandoned mine that has been inactive since 2004, leaving large amounts of accumulated mining waste under the influence of Wind, erosion, rain, and near agricultural lands. Materials & Methods: This study aims to verify the concentrations and sources of heavy metals for surface samples containing randomly taken soil. Chemical analyses were performed using iCAP 7000 Series ICP-optical emission spectrometer, using a set of environmental quality indicators by calculating the enrichment factor using iron and aluminum references, geographic accumulation index and geographic information system (GIS). On the basis of the spatial distribution. Results: The results indicated that the average metal concentration was: (As = 30,82),(Pb = 1219,27), (Zn = 2855,94), (Cu = 5,3), mg/Kg,based on these results, all metals except Cu passed by GBV in the Earth's crust. Environmental quality indicators were calculated based on the concentrations of trace metals such as lead, arsenic, zinc, copper, iron and aluminum. Interpretation: This study investigated the concentrations and sources of trace metals, and by using quality indicators and statistical methods, lead, zinc, and arsenic were determined from human sources, while copper was a natural source. And based on the spatial analysis on the basis of GIS, many hot spots were identified in the El-Abed region. Conclusion: These results could help in the development of future treatment strategies aimed primarily at eliminating materials from mining waste.

Keywords: soil contamination, trace metals, geochemical indices, El Abed mine, Algeria

Procedia PDF Downloads 76
2613 Textile-Based Sensing System for Sleep Apnea Detection

Authors: Mary S. Ruppert-Stroescu, Minh Pham, Bruce Benjamin

Abstract:

Sleep apnea is a condition where a person stops breathing and can lead to cardiovascular disease, hypertension, and stroke. In the United States, approximately forty percent of overnight sleep apnea detection tests are cancelled. The purpose of this study was to develop a textile-based sensing system that acquires biometric signals relevant to cardiovascular health, to transmit them wirelessly to a computer, and to quantitatively assess the signals for sleep apnea detection. Patient interviews, literature review and market analysis defined a need for a device that ubiquitously integrated into the patient’s lifestyle. A multi-disciplinary research team of biomedical scientists, apparel designers, and computer engineers collaborated to design a textile-based sensing system that gathers EKG, Sp02, and respiration, then wirelessly transmits the signals to a computer in real time. The electronic components were assembled from existing hardware, the Health Kit which came pre-set with EKG and Sp02 sensors. The respiration belt was purchased separately and its electronics were built and integrated into the Health Kit mother board. Analog ECG signals were amplified and transmitted to the Arduino™ board where the signal was converted from analog into digital. By using textile electrodes, ECG lead-II was collected, and it reflected the electrical activity of the heart. Signals were collected when the subject was in sitting position and at sampling rate of 250 Hz. Because sleep apnea most often occurs in people with obese body types, prototypes were developed for a man’s size medium, XL, and XXL. To test user acceptance and comfort, wear tests were performed on 12 subjects. Results of the wear tests indicate that the knit fabric and t-shirt-like design were acceptable from both lifestyle and comfort perspectives. The airflow signal and respiration signal sensors return good signals regardless of movement intensity. Future study includes reconfiguring the hardware to a smaller size, developing the same type of garment for the female body, and further enhancing the signal quality.

Keywords: sleep apnea, sensors, electronic textiles, wearables

Procedia PDF Downloads 277
2612 Micropower Composite Nanomaterials Based on Porous Silicon for Renewable Energy Sources

Authors: Alexey P. Antropov, Alexander V. Ragutkin, Nicolay A. Yashtulov

Abstract:

The original controlled technology for power active nanocomposite membrane-electrode assembly engineering on the basis of porous silicon is presented. The functional nanocomposites were studied by electron microscopy and cyclic voltammetry methods. The application possibility of the obtained nanocomposites as high performance renewable energy sources for micro-power electronic devices is demonstrated.

Keywords: cyclic voltammetry, electron microscopy, nanotechnology, platinum-palladium nanocomposites, porous silicon, power activity, renewable energy sources

Procedia PDF Downloads 358
2611 Transitioning Towards a Circular Economy in the Textile Industry: Approaches to Address Environmental Challenges

Authors: Atefeh Salehipoor

Abstract:

Textiles play a vital role in human life, particularly in the form of clothing. However, the alarming rate at which textiles end up in landfills presents a significant environmental risk. With approximately one garbage truck per second being filled with discarded textiles, urgent measures are required to mitigate this trend. Governments and responsible organizations are calling upon various stakeholders to shift from a linear economy to a circular economy model in the textile industry. This article highlights several key approaches that can be undertaken to address this pressing issue. These approaches include the creation of renewable raw material sources, rethinking production processes, maximizing the use and reuse of textile products, implementing reproduction and recycling strategies, exploring redistribution to new markets, and finding innovative means to extend the lifespan of textiles. However, the rapid accumulation of textiles in landfills poses a significant threat to the environment. This article explores the urgent need for the textile industry to transition from a linear economy model to a circular economy model. The linear model, characterized by the creation, use, and disposal of textiles, is unsustainable in the long term. By adopting a circular economy approach, the industry can minimize waste, reduce environmental impact, and promote sustainable practices. This article outlines key approaches that can be undertaken to drive this transition. Approaches to Address Environmental Challenges: 1. Creation of Renewable Raw Materials Sources: Exploring and promoting the use of renewable and sustainable raw materials, such as organic cotton, hemp, and recycled fibers, can significantly reduce the environmental footprint of textile production. 2. Rethinking Production Processes: Implementing cleaner production techniques, optimizing resource utilization, and minimizing waste generation are crucial steps in reducing the environmental impact of textile manufacturing. 3. Maximizing Use and Reuse of Textile Products: Encouraging consumers to prolong the lifespan of textile products through proper care, maintenance, and repair services can reduce the frequency of disposal and promote a culture of sustainability. 4. Reproduction and Recycling Strategies: Investing in innovative technologies and infrastructure to enable efficient reproduction and recycling of textiles can close the loop and minimize waste generation. 5. Redistribution of Textiles to New Markets: Exploring opportunities to redistribute textiles to new and parallel markets, such as resale platforms, can extend their lifecycle and prevent premature disposal. 6. Improvising Means to Extend Textile Lifespan: Encouraging design practices that prioritize durability, versatility, and timeless aesthetics can contribute to prolonging the lifespan of textiles. Conclusion The textile industry must urgently transition from a linear economy to a circular economy model to mitigate the adverse environmental impact caused by textile waste. By implementing the outlined approaches, such as sourcing renewable raw materials, rethinking production processes, promoting reuse and recycling, exploring new markets, and extending the lifespan of textiles, stakeholders can work together to create a more sustainable and environmentally friendly textile industry. These measures require collective action and collaboration between governments, organizations, manufacturers, and consumers to drive positive change and safeguard the planet for future generations.

Keywords: textiles, circular economy, environmental challenges, renewable raw materials, production processes, reuse, recycling, redistribution, textile lifespan extension

Procedia PDF Downloads 91
2610 The Effect of Restaurant Residuals on Performance of Japanese Quail

Authors: A. A. Saki, Y. Karimi, H. J. Najafabadi, P. Zamani, Z. Mostafaie

Abstract:

The restaurant residuals reasons such as competition between human and animal consumption of cereals, increasing environmental pollution and the high cost of production of livestock products is important. Therefore, in this restaurant residuals have a high nutritional value (protein and high energy) that it is possible can replace some of the poultry diets are especially Japanese quail. Today, the challenges of processing and consumption of these lesions occurring in modern industry would be confronting. Increasing costs, pressures, and problems associated with waste excretion, the need for re-evaluation and utilization of waste to livestock and poultry feed fortifies. This study aimed to investigate the effects of different levels of restaurant residuals on performance of 300 layer Japanese quails. This experiment included 5 treatments, 4 replicates, and 15 quails in each from 10 to 18 weeks age in a completely randomized design (CRD). The treatments consist of basal diet including corn and soybean meal (without residual restaurants), and treatments 2, 3, 4 and 5, includes a basal diet containing 5, 10, 15 and 20% of restaurant residuals, respectively. There were no significant effect of restaurant residuals levels on body weight (BW), feed conversion ratio (FCR), percentage of egg production (EP), egg mass (EM) between treatments (P > 0/05). However, feed intake (FI) of 5% restaurant residual was significantly higher than 20% treatment (P < 0/05). Egg weight (EW) was also higher by receiving 20% restaurant residuals compared with 10% in this respect (P < 0/05). Yolk weight (YW) of treatments containing 10 and 20% of the residual restaurant were significantly higher than control (P < 0/05). Eggs white weight (EWW) of 20 and 5% restaurants residual treatments were significantly increased compared by 10% (P < 0/05). Furthermore, EW, egg weight to shell surface area and egg surface area in 20% treatment were significantly higher than control and 10% treatment (P < 0/05). The overall results of this study have shown that restaurant residuals for laying quail diets in levels of 10 and 15 percent could be replaced with a part of the quail ration without any adverse effect.

Keywords: by-product, laying quail, performance, restaurant residuals

Procedia PDF Downloads 168
2609 Prevalence of Adverse Events in Children and Adolescents on Antiretroviral Therapy: Examining the Pediatric Cohort in the Eastern Cape

Authors: Shannon Glaspy, Gerald Boon, Jack Lambert

Abstract:

Studies on AE of highly active antiretroviral therapy (HAART) in children and adolescents are rare. The aim of this study is to observe the frequency of treatment limiting adverse drug reactions against years on ARVs and specific ARV regimen. Methods: A retrospective cohort study was conducted in East London, South Africa. All patient files in the pediatric (0 – 18 years) ARV cohort were examined, selecting only those patients started on HAART. ARV regimen changes explicitly due to AE, age on ARV treatment onset, age of AE onset, and gender were extrapolated. Eligible subjects were obtained from patient folders, anonymized and cross-referenced with data obtained from electronic records. A total of 1120 patients [592 male (52.9%) and 528 female (47.1%)] were charted by incidence and year. Additional information was extrapolated in cases where the patient experienced lipodystrophy and lipoatrophy to include the number of years on ARVs prior to the onset of the AE. Results: Of the 1120 HIV infected children of the hospital cohort, a total of 105 (9.37%) AE (53.3% male) observed were deemed eligible for the study due to completeness of medical history and agreement between electronic records and paper files. The AE cited were as follows: lipoatrophy 62 (5.53% of all subjects), lipodystrophy 27 (2.41%), neuropathy 9 (0.8%), anemia 2 (0.17%), Steven Johnsons Syndrome 1 (0.08%), elevated LFTs 1 (0.8%), breast hypertrophy (0.08%), gastritis 1 (0.08%) and rash 1 (0.08%). The most prevalence ARV regimens associated with the onset of the AE are: D4T/3TC/EFV 72 cases (64.86% of all AE), D4T/3TC/LOPr 24 cases (21.62%). Lipoatrophy and lipodystrophy combined represent 84.76% (89 cases) of all adverse events documented in this cohort. Within the 60 cases of lipoatrophy, the average number of years on ARVs associated with an AE is 3.54, with 14 cases experiencing an AE between 0-2 years of HAART. Within the 29 cases of lipodystrophy, the average number of years on ARVs associated with an AE is 3.89, with 4 cases experiencing an AE between 0-2 years on HAART. The regimen D4T/3TC/EFV is associated with 43 cases (71.66%) of lipoatrophy and 21 cases (72.41%) of lipodystrophy. D4T/3TC/LOPr is associated with 15 cases (25%) of lipoatrophy and 7 cases (24.14%) of lipodystrophy. The frequency of AE associated with ARV regimens could be misrepresented due to prevalence of different 1st line regimens which were not captured in this study, particularly with the systematic change of 1st line drugs from D4T to ABC in 2010. Conclusion: In this descriptive study we found a 9.37% prevalence of AE were significant enough to be treatment limiting among our cohort. Lipoatrophy accounted for 59.04% of all documented AE. Overall, D4T/3TC/EFV was associated with 64.86% of all AE, 71.66% of lipoatrophy cases and 72.41% of lipodystrophy cases.

Keywords: ARV, adverse events, HAART, pediatric

Procedia PDF Downloads 200
2608 Synthesis and Properties of Chitosan-Graft-Polyacrylamide/Gelatin Superabsorbent Composites for Wastewater Purification

Authors: Hafida Ferfera-Harrar, Nacera Aiouaz, Nassima Dairi

Abstract:

Super absorbents polymers received much attention and are used in many fields because of their superior characters to traditional absorbents, e.g., sponge and cotton. So, it is very important but challenging to prepare highly and fast-swelling super absorbents. A reliable, efficient and low-cost technique for removing heavy metal ions from waste water is the adsorption using bio-adsorbents obtained from biological materials, such as polysaccharides-based hydrogels super absorbents. In this study, novel multi-functional super absorbent composites type semi-interpenetrating polymer networks (Semi-IPNs) were prepared via graft polymerization of acrylamide onto chitosan backbone in presence of gelatin, CTS-g-PAAm/Ge, using potassium persulfate and N,N’ -methylenebisacrylamide as initiator and cross linker, respectively. These hydrogels were also partially hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. The formation of the grafted network was evidenced by Fourier Transform Infrared Spectroscopy (ATR-FTIR) and thermo gravimetric Analysis (TGA). The porous structures were observed by Scanning Electron Microscope (SEM). From TGA analysis, it was concluded that the incorporation of the Ge in the CTS-g-PAAm network has marginally affected its thermal stability. The effect of gelatin content on the swelling capacities of these super absorbent composites was examined in various media (distilled water, saline and pH-solutions).The water absorbency was enhanced by adding Ge in the network, where the optimum value was reached at 2 wt. % of Ge. Their hydrolysis has not only greatly optimized their absorption capacity but also improved the swelling kinetic. These materials have also showed reswelling ability. We believe that these super-absorbing materials would be very effective for the adsorption of harmful metal ions from waste water.

Keywords: chitosan, gelatin, superabsorbent, water absorbency

Procedia PDF Downloads 471
2607 Understanding Magnetic Properties of Cd1-xSnxCr2Se4 Using Local Structure Probes

Authors: P. Suchismita Behera, V. G. Sathe, A. K. Nigam, P. A. Bhobe

Abstract:

Co-existence of long-range ferromagnetism and semi-conductivity with correlated behavior of structural, magnetic, optical and electrical properties in various sites doping at CdCr2Se4 makes it a most promising candidate for spin-based electronic applications and magnetic devices. It orders ferromagnetically below TC = 130 K with a direct band gap of ~ 1.5 eV. The magnetic ordering is believed to result from strong competition between the direct antiferromagnetic Cr-Cr spin couplings and the ferromagnetic Cr-Se-Cr exchange interactions. With an aim of understanding the influence of crystal structure on its magnetic properties without disturbing the magnetic site, we investigated four compositions with 3%, 5%, 7% and 10% of Sn-substitution at Cd-site. Partial substitution of Cd2+ (0.78Å) by small sized nonmagnetic ion, Sn4+ (0.55Å), is expected to bring about local lattice distortion as well as a change in electronic charge distribution. The structural disorder would affect the Cd/Sn – Se bonds thus affecting the Cr-Cr and Cr-Se-Cr bonds. Whereas, the charge imbalance created due to Sn4+ substitution at Cd2+ leads to the possibility of Cr mixed valence state. Our investigation of the local crystal structure using the EXAFS, Raman spectroscopy and magnetic properties using SQUID magnetometry of the Cd1-xSnxCr2Se4 series reflects this premise. All compositions maintain the Fd3m cubic symmetry with tetrahedral distribution of Sn at Cd-site, as confirmed by XRD analysis. Lattice parameters were determined from the Rietveld refinement technique of the XRD data and further confirmed from the EXAFS spectra recorded at Cr K-edge. Presence of five Raman-active phonon vibrational modes viz. (T2g (1), T2g (2), T2g (3), Eg, A1g) in the Raman spectra further confirms the crystal symmetry. Temperature dependence of the Raman data provides interesting insight to the spin– phonon coupling, known to dominate the magneto-capacitive properties in the parent compound. Below the magnetic ordering temperature, the longitudinal damping of Eg mode associated with Se-Cd/Sn-Se bending and T2g (2) mode associated to Cr-Se-Cr interaction, show interesting deviations with respect to increase in Sn substitution. Besides providing the estimate of TC, the magnetic measurements recorded as a function of field provide the values of total magnetic moment for all the studied compositions indicative of formation of multiple Cr valences.

Keywords: exchange interactions, EXAFS, ferromagnetism, Raman spectroscopy, spinel chalcogenides

Procedia PDF Downloads 279
2606 Power Generation and Treatment potential of Microbial Fuel Cell (MFC) from Landfill Leachate

Authors: Beenish Saba, Ann D. Christy

Abstract:

Modern day municipal solid waste landfills are operated and controlled to protect the environment from contaminants during the biological stabilization and degradation of the solid waste. They are equipped with liners, caps, gas and leachate collection systems. Landfill gas is passively or actively collected and can be used as bio fuel after necessary purification, but leachate treatment is the more difficult challenge. Leachate, if not recirculated in a bioreactor landfill system, is typically transported to a local wastewater treatment plant for treatment. These plants are designed for sewage treatment, and often charge additional fees for higher strength wastewaters such as leachate if they accept them at all. Different biological, chemical, physical and integrated techniques can be used to treat the leachate. Treating that leachate with simultaneous power production using microbial fuel cells (MFC) technology has been a recent innovation, reported its application in its earliest starting phase. High chemical oxygen demand (COD), ionic strength and salt concentration are some of the characteristics which make leachate an excellent substrate for power production in MFCs. Different materials of electrodes, microbial communities, carbon co-substrates and temperature conditions are some factors that can be optimized to achieve simultaneous power production and treatment. The advantage of the MFC is its dual functionality but lower power production and high costs are the hurdles in its commercialization and more widespread application. The studies so far suggest that landfill leachate MFCs can produce 1.8 mW/m2 with 79% COD removal, while amendment with food leachate or domestic wastewater can increase performance up to 18W/m3 with 90% COD removal. The columbic efficiency is reported to vary between 2-60%. However efforts towards biofilm optimization, efficient electron transport system studies and use of genetic tools can increase the efficiency of the MFC and can determine its future potential in treating landfill leachate.

Keywords: microbial fuel cell, landfill leachate, power generation, MFC

Procedia PDF Downloads 321
2605 Lightweight Ceramics from Clay and Ground Corncobs

Authors: N.Quaranta, M. Caligaris, R. Varoli, A. Cristobal, M. Unsen, H. López

Abstract:

Corncobs are agricultural wastes and they can be used as fuel or as raw material in different industrial processes like cement manufacture, contaminant adsorption, chemical compound synthesis, etc. The aim of this work is to characterize this waste and analyze the feasibility of its use as a pore-forming material in the manufacture of lightweight ceramics for the civil construction industry. The characterization of raw materials is carried out by using various techniques: electron diffraction analysis X-ray, differential and gravimetric thermal analyses, FTIR spectroscopy, ecotoxicity evaluation, among others. The ground corncobs, particle size less than 2 mm, are mixed with clay up to 30% in volume and shaped by uniaxial pressure of 25 MPa, with 6% humidity, in moulds of 70mm x 40mm x 18mm. Then the green bodies are heat treated at 950°C for two hours following the treatment curves used in ceramic industry. The ceramic probes are characterized by several techniques: density, porosity and water absorption, permanent volumetric variation, loss on ignition, microscopies analysis, and mechanical properties. DTA-TGA analysis of corncobs shows in the range 20°-250°C a small loss in TGA curve and exothermic peaks at 250°-500°C. FTIR spectrum of the corncobs sample shows the characteristic pattern of this kind of organic matter with stretching vibration bands of adsorbed water, methyl groups, C–O and C–C bonds, and the complex form of the cellulose and hemicellulose glycosidic bonds. The obtained ceramic bodies present external good characteristics without loose edges and adequate properties for the market requirements. The porosity values of the sintered pieces are higher than those of the reference sample without waste addition. The results generally indicate that it is possible to use corncobs as porosity former in ceramic bodies without modifying the usual sintering temperatures employed in the industry.

Keywords: ceramic industry, biomass, recycling, hemicellulose glycosidic bonds

Procedia PDF Downloads 407
2604 Experimental Study of Nucleate Pool Boiling Heat Transfer Characteristics on Laser-Processed Copper Surfaces of Different Patterns

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

With the fast growth of integrated circuits and the trend towards making electronic devices smaller, the heat dissipation load of electronic devices has continued to go over the limit. The high heat flux element would not only harm the operation and lifetime of the equipment but would also impede the performance upgrade brought about by the iteration of technological updates, which would have a direct negative impact on the economic and production cost benefits of rising industries. Hence, in high-tech industries like radar, information and communication, electromagnetic power, and aerospace, the development and implementation of effective heat dissipation technologies were urgently required. Pool boiling is favored over other cooling methods because of its capacity to dissipate a high heat flux at a low wall superheat without the usage of mechanical components. Enhancing the pool boiling performance by increasing the heat transfer coefficient via surface modification techniques has received a lot of attention. There are several surface modification methods feasible today, but the stability and durability of surface modification are the greatest priority. Thus, laser machining is an interesting choice for surface modification due to its low production cost, high scalability, and repeatability. In this study, different patterns of laser-processed copper surfaces are fabricated to investigate the nucleate pool boiling heat transfer performance of distilled water. The investigation showed that there is a significant enhancement in the pool boiling heat transfer performance of the laser-processed surface compared to the reference surface due to the notable increase in nucleation frequency and nucleation site density. It was discovered that the heat transfer coefficients increased when both the surface area ratio and the ratio of peak-to-valley height of the microstructure were raised. It is believed that the development of microstructures on the surface as a result of laser processing is the primary factor in the enhancement of heat transfer performance.

Keywords: heat transfer coefficient, laser processing, micro structured surface, pool boiling

Procedia PDF Downloads 94