Search results for: zero valent iron nanoparticles
498 Early Detection of Instability in Emulsions via Diffusing Wave Spectroscopy
Authors: Coline Bretz, Andrea Vaccaro, Dario Leumann
Abstract:
The food, personal care, and cosmetic industries are seeing increased consumer demand for more sustainable and innovative ingredients. When developing new formulations incorporating such ingredients, stability is one of the first criteria that must be assessed, and it is thus of great importance to have a method that can detect instabilities early and quickly. Diffusing Wave Spectroscopy (DWS) is a light scattering technique that probes the motion,i.e., the mean square displacement (MSD), of colloids, such as nanoparticles in a suspension or droplets in emulsions. From the MSD, the rheological properties of the surrounding medium can be determined via the so-called microrheology approach. In the case of purely viscous media, it is also possible to obtain information about particle size. DWS can thus be used to monitor the size evolution of particles, droplets, or bubbles in aging dispersions, emulsions, or foams. In the context of early instability detection in emulsions, DWS offers considerable advantages, as the samples are measured in a contact-free manner, using only small quantities of samples loaded in a sealable cuvette. The sensitivity and rapidity of the technique are key to detecting and following the ageing of emulsions reliably. We present applications of DWS focused on the characterization of emulsions. In particular, we demonstrate the ability to record very subtle changes in the structural properties early on. We also discuss the various mechanisms at play in the destabilization of emulsions, such as coalescence or Ostwald ripening, and how to identify them through this technique.Keywords: instrumentation, emulsions, stability, DWS
Procedia PDF Downloads 64497 Protective Effect of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats
Authors: Aman Upaganlawar, Upasana Khairnar, Chandrashekhar Upasani
Abstract:
The present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride-induced spleen toxicity in rats. Male Wistar rats of either sex (200-250g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o), ascorbic acid (40 mg/kg/day, p.o), and combination of protocatechuic acid (20 mg/kg/day, p.o) and ascorbic acid (20 mg/kg/day, p.o) followed by aniline hydrochloride. At the end of treatment period, serum and tissue parameters were evaluated. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (Hemoglobin content, Red Blood Cells, White Blood Cells and Total iron content), tissue parameters (Lipid peroxidation, Reduced glutathione, Nitric oxide content) compared to control group. Histopathology of aniline hydrochloride-induced spleen showed significant damage compared to control rats. Treatment with Protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride-induced spleen toxicity. In conclusion Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride-induced splenic toxicity in rats.Keywords: aniline, spleen toxicity, protocatechuic acid, ascorbic acid, antioxidants
Procedia PDF Downloads 357496 Combined Synchrotron Radiography and Diffraction for in Situ Study of Reactive Infiltration of Aluminum into Iron Porous Preform
Authors: S. Djaziri, F. Sket, A. Hynowska, S. Milenkovic
Abstract:
The use of Fe-Al based intermetallics as an alternative to Cr/Ni based stainless steels is very promising for industrial applications that use critical raw materials parts under extreme conditions. However, the development of advanced Fe-Al based intermetallics with appropriate mechanical properties presents several challenges that involve appropriate processing and microstructure control. A processing strategy is being developed which aims at producing a net-shape porous Fe-based preform that is infiltrated with molten Al or Al-alloy. In the present work, porous Fe-based preforms produced by two different methods (selective laser melting (SLM) and Kochanek-process (KE)) are studied during infiltration with molten aluminum. In the objective to elucidate the mechanisms underlying the formation of Fe-Al intermetallic phases during infiltration, an in-house furnace has been designed for in situ observation of infiltration at synchrotron facilities combining x-ray radiography (XR) and x-ray diffraction (XRD) techniques. The feasibility of this approach has been demonstrated, and information about the melt flow front propagation has been obtained. In addition, reactive infiltration has been achieved where a bi-phased intermetallic layer has been identified to be formed between the solid Fe and liquid Al. In particular, a tongue-like Fe₂Al₅ phase adhering to the Fe and a needle-like Fe₄Al₁₃ phase adhering to the Al were observed. The growth of the intermetallic compound was found to be dependent on the temperature gradient present along the preform as well as on the reaction time which will be discussed in view of the different obtained results.Keywords: combined synchrotron radiography and diffraction, Fe-Al intermetallic compounds, in-situ molten Al infiltration, porous solid Fe preforms
Procedia PDF Downloads 226495 Study of Nanocrystalline Al Doped Zns Thin Films by Chemical Bath Deposition Method
Authors: Hamid Merzouk, Djahida Touati-Talantikite, Amina Zaabar
Abstract:
New nanosized materials are in huge expansion worldwide. They play a fundamental role in various industrial applications thanks their unique and functional properties. Moreover, in recent years, a great effort has been made to the design and control fabrication of nanostructured semiconductors such zinc sulphide. In recent years, much attention has been accorded in doped and co-doped ZnS to improve the ZnS films quality. We present in this work the preparation and characterization of ZnS and Al doped ZnS thin films. Nanoparticles ZnS and Al doped ZnS films are prepared by chemical bath deposition method (CBD), for various dopant concentrations. Thin films are deposed onto commercial microscope glass slides substrates. Thiourea is used as sulfide ion source, zinc acetate as zinc ion source and manganese acetate as manganese ion source in alkaline bath at 90 °C. X-ray diffraction (XRD) analyses are carried out at room temperature on films and powders with a powder diffractometer, using CuKα radiation. The average grain size obtained from the Debye–Scherrer’s formula is around 10 nm. Films morphology is examined by scanning electron microscopy. IR spectra of representative sample are recorded with the FTIR between 400 and 4000 cm-1.The transmittance (70 %) is performed with the UV–VIS spectrometer in the wavelength range 200–800 nm. This value is enhanced by Al doping.Keywords: ZnS, nanostructured semiconductors, thin films, chemical bath deposition
Procedia PDF Downloads 524494 Prevalence and Correlates of Anemia in Adolescents in Riyadh City, Kingdom of Saudi Arabia
Authors: Aljohara M. Alquaiz, Tawfik A. M. Khoja, Abdullah Alsharif, Ambreen Kazi, Ashry Gad Mohamed, Hamad Al Mane, Abdullah Aldiris, Shaffi Ahamed Shaikh
Abstract:
Objective: To determine the prevalence and correlates of anemia in male and female adolescents in Riyadh, Kingdom of Saudi Arabia. Design: A cross-sectional community based study setting: Five primary health care centers in Riyadh. Subjects: We invited 203 male and 292 female adolescents aged 13-18 years for interview, anthropometric measurements and complete blood count. Blood hemoglobin was measured with coulter cellular analysis system using light scatter method. Results: Using the WHO cut-off of Hb < 12gms/dl, 16.7%(34) males and 34%(100) females were suffering from anemia. The mean Hb (±SD) in males and females was 13.5(±1.4) and 12.3(±1.2) mg/dl, respectively. Mean(±SD) MCV, MCH, MCHC and RDW in male and female adolescents were 77.8(±6.2) vs76.4(±10.3)fL, 26.1(±2.7) vs25.5(±2.6)pg, 32.7(±2.4) vs32.2(±2.6)g/dL, 13.9(±1.4) vs13.6(±1.3)%, respectively. Multivariate logistic regression revealed that positive family history of iron deficiency anemia(IDA)(OR 4.7,95%CI 1.7–12.2), infrequent intake (OR 3.7,95%CI 1.3–10.0) and never intake of fresh juices(OR 3.5,95%CI 1.4–9.5), 13 to 14 years age (OR 3.1,95%CI 1.2–9.3) were significantly associated with anemia in male adolescents; whereas in females: family history of IDA (OR 3.4, 95%CI 1.5–7.6), being over-weight(OR 3.0,95%CI 1.4–6.1), no intake of fresh juice (OR 2.6,95%CI 1.4–5.1), living in an apartment (OR 2.0, 95%CI 1.1-3.8) or living in small house (OR 2.5, 95%CI 1.2-5.3) were significantly associated with anemia. Conclusion: Anemia is more prevalent among Saudi female adolescents as compared to males. Important factors like positive family history of IDA, overweight, lack of fresh juice intake and low socioeconomic status are significantly associated with anemia in adolescents.Keywords: adolescents, anemia, correlates, obesity
Procedia PDF Downloads 349493 Numerical Study of Entropy Generation Due to Hybrid Nano-Fluid Flow through Coaxial Porous Disks
Authors: Muhammad Bilal Ameen, M. Zubair Akbar Qureshi
Abstract:
The current investigation of two-dimensional hybrid nanofluid flows with two coaxial parallel disks has been presented. Consider the hybrid nanofluid has been taken as steady-state. Consider the coaxial disks that have been porous. Consider the heat equation to examine joule heating and viscous dissipation effects. Nonlinear partial differential equations have been solved numerically. For shear stress and heat transfer, results are tabulated. Hybrid nanoparticles and Eckert numbers are increasing for heat transfer. Entropy generation is expanded with radiation parameters Eckert, Reynold, Prandtl, and Peclet numbers. A set of ordinary differential equations is obtained to utilize the capable transformation variables. The numerical solution of the continuity, momentum, energy, and entropy generation equations is obtaining using the command bvp4c of Matlab as a solver. To explore the impact of main parameters like suction/infusion, Prandtl, Reynold, Eckert, Peclet number, and volume fraction parameters, various graphs have been plotted and examined. It is concluded that a convectional nanofluid is highly compared by entropy generation with the boundary layer of hybrid nanofluid.Keywords: entropy generation, hybrid nano fluid, heat transfer, porous disks
Procedia PDF Downloads 150492 Numerical Study of Natural Convection in a Nanofluid-Filled Vertical Cylinder under an External Magnetic Field
Authors: M. Maache, R. Bessaih
Abstract:
In this study, the effect of the magnetic field direction on the free convection heat transfer in a vertical cylinder filled with an Al₂O₃ nanofluid is investigated numerically. The external magnetic field is applied in either direction axial and radial on a cylinder having an aspect ratio H/R0=5, bounded by the top and the bottom disks at temperatures Tc and Th and by an adiabatic side wall. The equations of continuity, Navier Stocks and energy are non-dimensionalized and then discretized by the finite volume method. A computer program based on the SIMPLER algorithm is developed and compared with the numerical results found in the literature. The numerical investigation is carried out for different governing parameters namely: The Hartmann number (Ha=0, 5, 10, …, 40), nanoparticles volume fraction (ϕ=0, 0.025, …,0.1) and Rayleigh number (Ra=103, Ra=104 and Ra=105). The behavior of average Nusselt number, streamlines and temperature contours are illustrated. The results revel that the average Nusselt number increases with an increase of the Rayleigh number but it decreases with an increase in the Hartmann number. Depending on the magnetic field direction and on the values of Hartmann and Rayleigh numbers, an increase of the solid volume fraction may result enhancement or deterioration of the heat transfer performance in the nanofluid.Keywords: natural convection, nanofluid, magnetic field, vertical cylinder
Procedia PDF Downloads 315491 Magnetocaloric Effect in Ho₂O₃ Nanopowder at Cryogenic Temperature
Authors: K. P. Shinde, M. V. Tien, H. Lin, H.-R. Park, S.-C.Yu, K. C. Chung, D.-H. Kim
Abstract:
Magnetic refrigeration provides an attractive alternative cooling technology due to its potential advantages such as high cooling efficiency, environmental friendliness, low noise, and compactness over the conventional cooling techniques based on gas compression. Magnetocaloric effect (MCE) occurs by changes in entropy (ΔS) and temperature (ΔT) under external magnetic fields. We have been focused on identifying materials with large MCE in two temperature regimes, not only room temperature but also at cryogenic temperature for specific technological applications, such as space science and liquefaction of hydrogen in fuel industry. To date, the commonly used materials for cryogenic refrigeration are based on hydrated salts. In the present work, we report giant MCE in rare earth Ho2O3 nanopowder at cryogenic temperature. HoN nanoparticles with average size of 30 nm were prepared by using plasma arc discharge method with gas composition of N2/H2 (80%/20%). The prepared HoN was sintered in air atmosphere at 1200 oC for 24 hrs to convert it into oxide. Structural and morphological properties were studied by XRD and SEM. XRD confirms the pure phase and cubic crystal structure of Ho2O3 without any impurity within error range. It has been discovered that Holmium oxide exhibits giant MCE at low temperature without magnetic hysteresis loss with the second-order antiferromagnetic phase transition with Néels temperature around 2 K. The maximum entropy change was found to be 25.2 J/kgK at an applied field of 6 T.Keywords: magnetocaloric effect, Ho₂O₃, magnetic entropy change, nanopowder
Procedia PDF Downloads 149490 Performance Evaluation of 3D Printed ZrO₂ Ceramic Components by Nanoparticle Jetting™
Authors: Shengping Zhong, Qimin Shi, Yaling Deng, Shoufeng Yang
Abstract:
Additive manufacturing has exerted a tremendous fascination on the development of the manufacturing and materials industry in the past three decades. Zirconia-based advanced ceramic has been poured substantial attention in the interest of structural and functional ceramics. As a novel material jetting process for selectively depositing nanoparticles, NanoParticle Jetting™ is capable of fabricating dense zirconia components with a high-detail surface, precisely controllable shrinkage, and remarkable mechanical properties. The presence of NPJ™ gave rise to a higher elevation regarding the printing process and printing accuracy. Emphasis is placed on the performance evaluation of NPJ™ printed ceramic components by which the physical, chemical, and mechanical properties are evaluated. The experimental results suggest the Y₂O₃-stabilized ZrO₂ boxes exhibit a high relative density of 99.5%, glossy surface of minimum 0.33 µm, general linear shrinkage factor of 17.47%, outstanding hardness and fracture toughness of 12.43±0.09 GPa and 7.52±0.34 MPa·m¹/², comparable flexural strength of 699±104 MPa, and dense and homogeneous grain distribution of microstructure. This innovative NanoParticle Jetting system manifests an overwhelming potential in dental, medical, and electronic applications.Keywords: nanoparticle jetting, ZrO₂ ceramic, materials jetting, performance evaluation
Procedia PDF Downloads 177489 Waste-Based Surface Modification to Enhance Corrosion Resistance of Aluminium Bronze Alloy
Authors: Wilson Handoko, Farshid Pahlevani, Isha Singla, Himanish Kumar, Veena Sahajwalla
Abstract:
Aluminium bronze alloys are well known for their superior abrasion, tensile strength and non-magnetic properties, due to the co-presence of iron (Fe) and aluminium (Al) as alloying elements and have been commonly used in many industrial applications. However, continuous exposure to the marine environment will accelerate the risk of a tendency to Al bronze alloys parts failures. Although a higher level of corrosion resistance properties can be achieved by modifying its elemental composition, it will come at a price through the complex manufacturing process and increases the risk of reducing the ductility of Al bronze alloy. In this research, the use of ironmaking slag and waste plastic as the input source for surface modification of Al bronze alloy was implemented. Microstructural analysis conducted using polarised light microscopy and scanning electron microscopy (SEM) that is equipped with energy dispersive spectroscopy (EDS). An electrochemical corrosion test was carried out through Tafel polarisation method and calculation of protection efficiency against the base-material was determined. Results have indicated that uniform modified surface which is as the result of selective diffusion process, has enhanced corrosion resistance properties up to 12.67%. This approach has opened a new opportunity to access various industrial utilisations in commercial scale through minimising the dependency on natural resources by transforming waste sources into the protective coating in environmentally friendly and cost-effective ways.Keywords: aluminium bronze, waste-based surface modification, tafel polarisation, corrosion resistance
Procedia PDF Downloads 236488 Investigations of Metals and Metal-Antibrowning Agent Effects on Polyphenol Oxidase Activity from Red Poppy Leaf
Authors: Gulnur Arabaci
Abstract:
Heavy metals are one of the major groups of contaminants in the environment and many of them are toxic even at very low concentration in plants and animals. However, some metals play important roles in the biological function of many enzymes in living organisms. Metals such as zinc, iron, and cooper are important for survival and activity of enzymes in plants, however heavy metals can inhibit enzyme which is responsible for defense system of plants. Polyphenol oxidase (PPO) is a copper-containing metalloenzyme which is responsible for enzymatic browning reaction of plants. Enzymatic browning is a major problem for the handling of vegetables and fruits in food industry. It can be increased and effected with many different futures such as metals in the nature and ground. In the present work, PPO was isolated and characterized from green leaves of red poppy plant (Papaver rhoeas). Then, the effect of some known antibrowning agents which can form complexes with metals and metals were investigated on the red poppy PPO activity. The results showed that glutathione was the most potent inhibitory effect on PPO activity. Cu(II) and Fe(II) metals increased the enzyme activities however, Sn(II) had the maximum inhibitory effect and Zn(II) and Pb(II) had no significant effect on the enzyme activity. In order to reduce the effect of heavy metals, the effects of metal-antibrowning agent complexes on the PPO activity were determined. EDTA and metal complexes had no significant effect on the enzyme. L-ascorbic acid and metal complexes decreased but L-ascorbic acid-Cu(II)-complex had no effect. Glutathione–metal complexes had the best inhibitory effect on Red poppy leaf PPO activity.Keywords: inhibition, metal, red poppy, poly phenol oxidase (PPO)
Procedia PDF Downloads 328487 Numerical Solution of Magneto-Hydrodynamic Flow of a Viscous Fluid in the Presence of Nanoparticles with Fractional Derivatives through a Cylindrical Tube
Authors: Muhammad Abdullah, Asma Rashid Butt, Nauman Raza
Abstract:
Biomagnetic fluids like blood play key role in different applications of medical science and bioengineering. In this paper, the magnetohydrodynamic flow of a viscous fluid with magnetic particles through a cylindrical tube is investigated. The fluid is electrically charged in the presence of a uniform external magnetic field. The movement in the fluid is produced due to the cylindrical tube. Initially, the fluid and tube are at rest and at time t=0⁺, the tube starts to move along its axis. To obtain the mathematical model of flow with fractional derivatives fractional calculus approach is used. The solution of the flow model is obtained by using Laplace transformation. The Simon's numerical algorithm is employed to obtain inverse Laplace transform. The hybrid technique, we are employing has less computational effort as compared to other methods. The numerical calculations have been performed with Mathcad software. As the special cases of our problem, the solution of flow model with ordinary derivatives and flow without magnetic particles has been procured. Finally, the impact of non-integer fractional parameter alpha, Hartmann number Ha, and Reynolds number Re on flow and magnetic particles velocity is analyzed and depicted by graphs.Keywords: viscous fluid, magnetic particles, fractional calculus, laplace transformation
Procedia PDF Downloads 206486 Prediction For DC-AC PWM Inverters DC Pulsed Current Sharing From Passive Parallel Battery-Supercapacitor Energy Storage Systems
Authors: Andreas Helwig, John Bell, Wangmo
Abstract:
Hybrid energy storage systems (HESS) are gaining popularity for grid energy storage (ESS) driven by the increasingly dynamic nature of energy demands, requiring both high energy and high power density. Particularly the ability of energy storage systems via inverters to respond to increasing fluctuation in energy demands, the combination of lithium Iron Phosphate (LFP) battery and supercapacitor (SC) is a particular example of complex electro-chemical devices that may provide benefit to each other for pulse width modulated DC to AC inverter application. This is due to SC’s ability to respond to instantaneous, high-current demands and batteries' long-term energy delivery. However, there is a knowledge gap on the current sharing mechanism within a HESS supplying a load powered by high-frequency pulse-width modulation (PWM) switching to understand the mechanism of aging in such HESS. This paper investigates the prediction of current utilizing various equivalent circuits for SC to investigate sharing between battery and SC in MATLAB/Simulink simulation environment. The findings predict a significant reduction of battery current when the battery is used in a hybrid combination with a supercapacitor as compared to a battery-only model. The impact of PWM inverter carrier switching frequency on current requirements was analyzed between 500Hz and 31kHz. While no clear trend emerged, models predicted optimal frequencies for minimized current needs.Keywords: hybrid energy storage, carrier frequency, PWM switching, equivalent circuit models
Procedia PDF Downloads 26485 Contamination with Heavy Metals of Frozen Fish Sold in Open Markets in Ondo City, Southwest Nigeria
Authors: Adebisi M. Tiamiyu, Adewale F. Adeyemi, Olu-Ayobamikale V. Irewunmi
Abstract:
Fish consumption has increased in recent years in both developing and advanced countries, owing to increased awareness of its nutritional and therapeutic benefits and its availability and affordability relative to other animal protein sources. Fish and fish products, however, are extremely prone to contamination by a wide range of hazardous organic and inorganic substances. This study assessed the levels of three heavy metals, copper (Cu), iron (Fe), and zinc (Zn), in frozen fish imported into Nigeria and sold in Ondo City for their safety for human consumption as recommended by WHO and FEPA. Three species of frozen fish (Scombrus scombrus, Merluccius merluccius, and Clupea harengus) were purchased, and the wet tissues (gills, muscles, and liver) were digested using a 3:1 mixture of nitric acid (HNO3) and hydrochloric acid (HCL). An atomic absorption spectrophotometer (AAS) was used to detect the amount of metal in the tissues. The levels of heavy metals in different fish species' organs varied. The fish had Zn > Fe > Cu heavy metal concentrations in that order. While the concentration of Cu and Fe in the tissues of all three fish species studied were within the WHO and FEPA prescribed limits for food fish, the concentration of Zn in the muscles of M. merluccius (0.262±0.052), C. harengus harengus (0.327±0.099), and S. scombrus (0.362±0.119) was above the prescribed limit (0.075 ppm) set by FEPA. An excessive amount of zinc in the body can cause nausea, headaches, decreased immunity, and appetite loss.Keywords: heavy metal, atomic absorption spectrophotometer, fish, agencies
Procedia PDF Downloads 69484 Cu Nanoparticle Embedded-Zno Nanoplate Thin Films for Highly Efficient Photocatalytic Hydrogen Production
Authors: Premrudee Promdet, Fan Cui, Gi Byoung Hwang, Ka Chuen To, Sanjayan Sathasivam, Claire J. Carmalt, Ivan P. Parkin
Abstract:
A novel single-step fabrication of Cu nanoparticle embedded ZnO (Cu.ZnO) thin films was developed by aerosol-assisted chemical vapor deposition for stable and efficient hydrogen production in Photoelectrochemical (PEC) cell. In this approach, the Cu.ZnO nanoplate thin films were grown by using acetic acid to promote preferential growth and enhance surface active sites, where Cu nanoparticles can be formed under chemical deposition by reduction of Cu salt. Studies using photoluminescence spectroscopy indicate the enhanced photocatalytic performance is attributed to hot electron generated from SPR. The Cu metal in the composite material is functioning as a sensitizer to supply electrons to the semiconductor resulting in enhanced electron density for redox reaction. This work not only describes a way to obtain photoanodes with high photocatalytic activity but also suggests a low-cost route towards production of photocatalysts for hydrogen production. This work also supports a vital need to understand electron transfer between photoexcited semiconductor materials and metals, a requirement for tailoring the properties of semiconductor/metal composites.Keywords: photocatalysis, photoelectrochemical cell (PEC), aerosol-assisted chemical vapor deposition (AACVD), surface plasmon resonance (SPR)
Procedia PDF Downloads 219483 Ultrasound Enhanced Release of Active Targeting Liposomes Used for Cancer Treatment
Authors: Najla M. Salkho, Vinod Paul, Pierre Kawak, Rute F. Vitor, Ana M. Martin, Nahid Awad, Mohammad Al Sayah, Ghaleb A. Husseini
Abstract:
Liposomes are popular lipid bilayer nanoparticles that are highly efficient in encapsulating both hydrophilic and hydrophobic therapeutic drugs. Liposomes promote a low risk controlled release of the drug avoiding the side effects of the conventional chemotherapy. One of the great potentials of liposomes is the ability to attach a wide range of ligands to their surface producing ligand-mediated active targeting of cancer tumour with limited adverse off-target effects. Ultrasound can also aid in the controlled and specified release of the drug from the liposomes by breaking it apart and releasing the drug in the specific location where the ultrasound is applied. Our research focuses on the synthesis of PEGylated liposomes (contain poly-ethylene glycol) encapsulated with the model drug calcein and studying the effect of low frequency ultrasound applied at different power densities on calcein release. In addition, moieties are attached to the surface of the liposomes for specific targeting of the cancerous cells which over-express the receptors of these moieties, ultrasound is then applied and the release results are compared with the moiety free liposomes. The results showed that attaching these moieties to the surface of the PEGylated liposomes not only enhance their active targeting but also stimulate calcein release from these liposomes.Keywords: active targeting, liposomes, moieties, ultrasound
Procedia PDF Downloads 602482 Hybrid Nano Material of Ground Egg Shells with Metal Oxide for Lead Removal
Authors: A. Threepanich, S. Youngme, P. Praipipat
Abstract:
Although ground egg shells had the ability to eliminate lead in water, their efficiency may decrease in a case of contaminating of other cations such as Na⁺, Ca²⁺ in the water. The development of ground egg shells may solve this problem in which metal oxides are a good choice for this case since they have the ability to remove any heavy metals including lead in the water. Therefore, this study attempts to use this advantage for improving ground egg shells for the specific lead removal efficiency in the water. X-ray fluorescence (XRF) technique was used for the chemical element contents analysis of ground egg shells (GES) and ground egg shells with metal oxide (GESM), and Transmission electron microscope (TEM) technique was used to examine the material sizes. The batch test studies were designed to investigate the factor effects on dose (5, 10, 15 grams), pH (5, 7, 9), and settling time (1, 3, 5 hours) for the lead removal efficiency in the water. The XRF analysis results showed GES contained calcium (Ca) 91.41% and Silicon (Si) 4.03% and GESM contained calcium (Ca) 91.41%, Silicon (Si) 4.03%, and Iron (Fe) 3.05%. TEM results confirmed the sizes of GES and GESM in the range of 1-20 nm. The batch test studies showed the best optimum conditions for the lead removal in the water of GES and GESM in dose, pH, and settling time were 10 grams, pH 9, 5 hours and 5 grams, pH 9, 3 hours, respectively. The competing ions (Na⁺ and Ca²⁺) study reported GESM had the higher % lead removal efficiency than GES at 90% and 60%, respectively. Therefore, this result can confirm that adding of metal oxide to ground egg shells helps to improve the lead removal efficiency in the water.Keywords: nano material, ground egg shells, metal oxide, lead
Procedia PDF Downloads 135481 Exceptionally Glauconite-Rich Strata from the Miocene Bejaoua Facies of Northern Tunisia: Origin, Composition, and Depositional Conditions
Authors: Abdelbasset Tounekti, Kamel Boukhalfa, Tathagata Roy Choudhury, Mohamed Soussi, Santanu Banerjee
Abstract:
The exceptionally glauconite-rich Miocene strata are superbly exposed throughout the front of the nappes zone of northern Tunisia. Each of the glauconitic fine-grained intervals coincide with the peak rise of third order sea-level cycles during the Burdigalian-Langhiantime. These deposits show coarsening- and thickening-upward glauconitic shale and sandstone, recording a shallowing upward progression across offshore-shoreface settings. Petrographic investigation reveals that the glauconite was originated from the alteration of fecal pellets, and lithoclast including feldspar, volcanic particle, and quartz and infillings with intraparticle pores. Mineralogical analysis of both randomly oriented and air-dried, ethylene-glycolate, and heated glauconite pellets show the low intensity of (002) reflection peaks, indicating high iron substitution for aluminum in octahedral sites. Geochemical characterization of the Miocene glauconite reveals a high K2O and variable Fe2O3 (total) content. A combination of layer lattice and divertissement theories explains the origin of glauconite. The formation of glauconite was facilitated by the abundant supply of Fe through contemporaneous volcanism in Algeria and surrounding areas, which accompanied the African-European plate convergence. Therefore, the occurrence of glauconite in the Miocene succession of Tunisia is influenced by the combination of eustacy and volcanism.Keywords: glauconite, autogenic, volcanism, geochemistry, chamosite, northern Tunisia, miocene
Procedia PDF Downloads 291480 Hysteresis Modeling in Iron-Dominated Magnets Based on a Deep Neural Network Approach
Authors: Maria Amodeo, Pasquale Arpaia, Marco Buzio, Vincenzo Di Capua, Francesco Donnarumma
Abstract:
Different deep neural network architectures have been compared and tested to predict magnetic hysteresis in the context of pulsed electromagnets for experimental physics applications. Modelling quasi-static or dynamic major and especially minor hysteresis loops is one of the most challenging topics for computational magnetism. Recent attempts at mathematical prediction in this context using Preisach models could not attain better than percent-level accuracy. Hence, this work explores neural network approaches and shows that the architecture that best fits the measured magnetic field behaviour, including the effects of hysteresis and eddy currents, is the nonlinear autoregressive exogenous neural network (NARX) model. This architecture aims to achieve a relative RMSE of the order of a few 100 ppm for complex magnetic field cycling, including arbitrary sequences of pseudo-random high field and low field cycles. The NARX-based architecture is compared with the state-of-the-art, showing better performance than the classical operator-based and differential models, and is tested on a reference quadrupole magnetic lens used for CERN particle beams, chosen as a case study. The training and test datasets are a representative example of real-world magnet operation; this makes the good result obtained very promising for future applications in this context.Keywords: deep neural network, magnetic modelling, measurement and empirical software engineering, NARX
Procedia PDF Downloads 130479 Tungsten-Based Powders Produced in Plasma Systems
Authors: Andrey V. Samokhin, Nikolay V. Alekseev, Mikhail A. Sinaiskii
Abstract:
The report presents the results of R&D of plasma-chemical production of W, W-Cu, W-Ni-Fe nanopowders as well as spherical micropowders of these compounds for their use in modern 3D printing technologies. Plasma-chemical synthesis of nanopowdersis based on the reduction of tungsten oxide compounds powders in a stream of hydrogen-containing low-temperature thermal plasma generated in an electric arc plasma torch. The synthesis of W-Cu and W-Ni-Fe nanocompositesiscarried out using the reduction of a mixture of the metal oxides. Using the synthesized tungsten-based nanocomposites powders, spherical composite micropowders with a submicron structure canbe manufactured by spray dryinggranulation of nanopowder suspension and subsequent densification and spheroidization of granules by melting in a low-temperature thermal plasma flow. The DC arc plasma systems are usedfor the synthesis of nanopowdersas well as for the spheroidization of microgranuls. Plasma systems have a capacity of up to 1 kg/h for nanopowder and up to 5 kg/h for spheroidized powder. All synthesized nanopowders consist of aggregated particles with sizes less than 100 nm, and nanoparticles of W-Cu and W-Ni-Fe composites have core (W) –shell (Cu or Ni-Fe) structures. The resulting dense spherical microparticles with a size of 20-60 microns have a submicron structure with a uniform distribution of metals over the particle volume. The produced tungsten-based nano- and spherical micropowderscan be used to develop new materials and manufacture products using advanced modern technologies.Keywords: plasma, powders, production, tungsten-based
Procedia PDF Downloads 120478 A Study on Marble-Slag Based Geopolymer Green Concrete
Authors: Zong-Xian Qiu, Ta-Wui Cheng, Wei-Hao Lee, Yung-Chin Ding
Abstract:
The greenhouse effect is an important issue since it has been responsible for global warming. Carbon dioxide plays an important part of role in the greenhouse effect. Therefore, human has the responsibility for reducing CO₂ emissions in their daily operations. Except iron making and power plants, another major CO₂ production industry is cement industry. According to the statistics by EPA of Taiwan, production 1 ton of Portland cement will produce 520.29 kg of CO₂. There are over 7.8 million tons of CO₂ produced annually. Thus, trying to development low CO₂ emission green concrete is an important issue, and it can reduce CO₂ emission problems in Taiwan. The purpose of this study is trying to use marble wastes and slag as the raw materials to fabricate geopolymer green concrete. The result shows the marble based geopolymer green concrete have good workability and the compressive strength after curing for 28 days and 365 days can be reached 44MPa and 53MPa in indoor environment, 28MPa and 40.43MPa in outdoor environment. The acid resistance test shows the geopolymer green concrete have good resistance for chemical attack. The coefficient of permeability of geopolymer green concrete is better than Portland concrete. By comparing with Portland cement products, the marble based geopolymer not only reduce CO₂ emission problems but also provides great performance in practices. According to the experiment results shown that geopolymer concrete has great potential for further engineering development in the future, the new material could be expected to replace the Portland cement products in the future days.Keywords: marble, slag, geopolymer, green concrete, CO₂ emission
Procedia PDF Downloads 138477 Gas Phase Extraction: An Environmentally Sustainable and Effective Method for The Extraction and Recovery of Metal from Ores
Authors: Kolela J Nyembwe, Darlington C. Ashiegbu, Herman J. Potgieter
Abstract:
Over the past few decades, the demand for metals has increased significantly. This has led to a decrease and decline of high-grade ore over time and an increase in mineral complexity and matrix heterogeneity. In addition to that, there are rising concerns about greener processes and a sustainable environment. Due to these challenges, the mining and metal industry has been forced to develop new technologies that are able to economically process and recover metallic values from low-grade ores, materials having a metal content locked up in industrially processed residues (tailings and slag), and complex matrix mineral deposits. Several methods to address these issues have been developed, among which are ionic liquids (IL), heap leaching, and bioleaching. Recently, the gas phase extraction technique has been gaining interest because it eliminates many of the problems encountered in conventional mineral processing methods. The technique relies on the formation of volatile metal complexes, which can be removed from the residual solids by a carrier gas. The complexes can then be reduced using the appropriate method to obtain the metal and regenerate-recover the organic extractant. Laboratory work on the gas phase have been conducted for the extraction and recovery of aluminium (Al), iron (Fe), copper (Cu), chrome (Cr), nickel (Ni), lead (Pb), and vanadium V. In all cases the extraction revealed to depend of temperature and mineral surface area. The process technology appears very promising, offers the feasibility of recirculation, organic reagent regeneration, and has the potential to deliver on all promises of a “greener” process.Keywords: gas-phase extraction, hydrometallurgy, low-grade ore, sustainable environment
Procedia PDF Downloads 132476 Improvement in the Photocatalytic Activity of Nanostructured Manganese Ferrite – Type of Materials by Mechanochemical Activation
Authors: Katerina Zaharieva, Katya Milenova, Zara Cherkezova-Zheleva, Alexander Eliyas, Boris Kunev, Ivan Mitov
Abstract:
The synthesized nanosized manganese ferrite-type of samples have been tested as photocatalysts in the reaction of oxidative degradation of model contaminant Reactive Black 5 (RB5) dye in aqueous solutions under UV irradiation. As it is known this azo dye is applied in the textile-coloring industry and it is discharged into the waterways causing pollution. The co-precipitation procedure has been used for the synthesis of manganese ferrite-type of materials: Sample 1 - Mn0.25Fe2.75O4, Sample 2 - Mn0.5Fe2.5O4 and Sample 3 - MnFe2O4 from 0.03M aqueous solutions of MnCl2•4H2O, FeCl2•4H2O and/or FeCl3•6H2O and 0.3M NaOH in appropriate amounts. The mechanochemical activation of co-precipitated ferrite-type of samples has been performed in argon (Samples 1 and 2) or in air atmosphere (Sample 3) for 2 hours at a milling speed of 500 rpm. The mechano-chemical treatment has been carried out in a high energy planetary ball mill type PM 100, Retsch, Germany. The mass ratio between balls and powder was 30:1. As a result mechanochemically activated Sample 4 - Mn0.25Fe2.75O4, Sample 5 - Mn0.5Fe2.5O4 and Sample 6 - MnFe2O4 have been obtained. The synthesized manganese ferrite-type photocatalysts have been characterized by X-ray diffraction method and Moessbauer spectroscopy. The registered X-ray diffraction patterns and Moessbauer spectra of co-precipitated ferrite-type of materials show the presence of manganese ferrite and additional akaganeite phase. The presence of manganese ferrite and small amounts of iron phases is established in the mechanochemically treated samples. The calculated average crystallite size of manganese ferrites varies within the range 7 – 13 nm. This result is confirmed by Moessbauer study. The registered spectra show superparamagnetic behavior of the prepared materials at room temperature. The photocatalytic investigations have been made using polychromatic UV-A light lamp (Sylvania BLB, 18 W) illumination with wavelength maximum at 365 nm. The intensity of light irradiation upon the manganese ferrite-type photocatalysts was 0.66 mW.cm-2. The photocatalytic reaction of oxidative degradation of RB5 dye was carried out in a semi-batch slurry photocatalytic reactor with 0.15 g of ferrite-type powder, 150 ml of 20 ppm dye aqueous solution under magnetic stirring at rate 400 rpm and continuously feeding air flow. The samples achieved adsorption-desorption equilibrium in the dark period for 30 min and then the UV-light was turned on. After regular time intervals aliquot parts from the suspension were taken out and centrifuged to separate the powder from solution. The residual concentrations of dye were established by a UV-Vis absorbance single beam spectrophotometer CamSpec M501 (UK) measuring in the wavelength region from 190 to 800 nm. The photocatalytic measurements determined that the apparent pseudo-first-order rate constants calculated by linear slopes approximating to first order kinetic equation, increase in following order: Sample 3 (1.1х10-3 min-1) < Sample 1 (2.2х10-3 min-1) < Sample 2 (3.3 х10-3 min-1) < Sample 4 (3.8х10-3 min-1) < Sample 6 (11х10-3 min-1) < Sample 5 (15.2х10-3 min-1). The mechanochemically activated manganese ferrite-type of photocatalyst samples show significantly higher degree of oxidative degradation of RB5 dye after 120 minutes of UV light illumination in comparison with co-precipitated ferrite-type samples: Sample 5 (92%) > Sample 6 (91%) > Sample 4 (63%) > Sample 2 (53%) > Sample 1 (42%) > Sample 3 (15%). Summarizing the obtained results we conclude that the mechanochemical activation leads to a significant enhancement of the degree of oxidative degradation of the RB5 dye and photocatalytic activity of tested manganese ferrite-type of catalyst samples under our experimental conditions. The mechanochemically activated Mn0.5Fe2.5O4 ferrite-type of material displays the highest photocatalytic activity (15.2х10-3 min-1) and degree of oxidative degradation of the RB5 dye (92%) compared to the other synthesized samples. Especially a significant improvement in the degree of oxidative degradation of RB5 dye (91%) has been determined for mechanochemically treated MnFe2O4 ferrite-type of sample with the highest extent of substitution of iron ions by manganese ions than in the case of the co-precipitated MnFe2O4 sample (15%). The mechanochemically activated manganese ferrite-type of samples show good photocatalytic properties in the reaction of oxidative degradation of RB5 azo dye in aqueous solutions and it could find potential application for dye removal from wastewaters originating from textile industry.Keywords: nanostructured manganese ferrite-type materials, photocatalytic activity, Reactive Black 5, water treatment
Procedia PDF Downloads 347475 Investigating Anti-bacterial and Anti-Covid-19 Virus Properties and Mode of Action of Mg(Oh)₂ and Copper-Infused Mg(Oh)₂ Nanoparticles on Coated Polypropylene Surfaces
Authors: Saleh Alkarri, Melinda Frame, Dimple Sharma, John Cairney, Lee Maddan, Jin H. Kim, Jonathan O. Rayner, Teresa M. Bergholz, Muhammad Rabnawaz
Abstract:
Reported herein is an investigation of anti-bacterial and anti-virus properties, mode of action of Mg(OH)₂ and copper-infused Mg(OH)₂ nanoplatelets (NPs) on melt-compounded and thermally embossed polypropylene (PP) surfaces. The anti-viral activity for the NPs was studied in aqueous liquid suspensions against SARS-CoV-2, and the mode of action was investigated on neat NPs and PP samples that were thermally embossed with NPs. Anti-bacterial studies for melt-compounded NPs in PP confirmed approximately 1 log reduction of E. coli populations in 24 h, while for thermally embossed NPs, an 8 log reduction of E. coli populations was observed. In addition, the NPs exhibit anti-viral activity against SARS-CoV-2. Fluorescence microscopy revealed that reactive oxygen species (ROS) is the main mode of action through which Mg(OH)₂ and Cu-Infused Mg(OH)₂act against microbes. Plastics with anti-microbial surfaces from where biocides are non-leachable are highly desirable. This work provides a general fabrication strategy for developing anti-microbial plastic surfaces.Keywords: anti-microbial activity, E. coli K-12 MG1655, anti-viral activity, SARS-CoV-2, copper-infused magnesium hydroxide, non-leachable, ROS, compounding, surface embossing, dyes
Procedia PDF Downloads 66474 Advanced Nanomaterials in Catalysis: Bridging the Gap Between Pollution Control and Renewable Energy
Authors: Abonyi Matthew Ndubuisi, Christopher Chiedozie Obi, Joseph Tagbo Nwabanne
Abstract:
This review focuses on the application of advanced nanomaterials in catalysis for pollution control and renewable energy solutions. This review provides a comprehensive examination of the latest developments in nanocatalysts, highlighting their role in addressing environmental challenges and facilitating sustainable energy solutions. The unique properties of nanomaterials, including high surface area, tunable electronic properties, and enhanced reactivity, make them ideal candidates for catalytic applications. This review explores various types of nanomaterials, such as metal nanoparticles, carbon-based nanostructures, and metal-organic frameworks, and their effectiveness in processes like photocatalysis, electrocatalysis, and hydrogen production. Additionally, the review discusses the environmental benefits of using nanocatalysts in pollution control, focusing on the degradation of pollutants in water and air. The potential of these materials to bridge the gap between environmental remediation and clean energy production is emphasized, showcasing their dual role in mitigating pollution and advancing renewable energy technologies. In conclusion, the review analyzes the current challenges and future directions in the field, highlighting the need for continued research to improve the design and application of nanocatalysts for a sustainable future.Keywords: nanomaterials, catalysis, pollution control, renewable energy, sustainable technology
Procedia PDF Downloads 23473 The Effect of Magnetite Particle Size on Methane Production by Fresh and Degassed Anaerobic Sludge
Authors: E. Al-Essa, R. Bello-Mendoza, D. G. Wareham
Abstract:
Anaerobic batch experiments were conducted to investigate the effect of magnetite-supplementation (7 mM) on methane production from digested sludge undergoing two different microbial growth phases, namely fresh sludge (exponential growth phase) and degassed sludge (endogenous decay phase). Three different particle sizes were assessed: small (50 - 150 nm), medium (168 – 490 nm) and large (800 nm - 4.5 µm) particles. Results show that, in the case of the fresh sludge, magnetite significantly enhanced the methane production rate (up to 32%) and reduced the lag phase (by 15% - 41%) as compared to the control, regardless of the particle size used. However, the cumulative methane produced at the end of the incubation was comparable in all treatment and control bottles. In the case of the degassed sludge, only the medium-sized magnetite particles increased significantly the methane production rate (12% higher) as compared to the control. Small and large particles had little effect on the methane production rate but did result in an extended lag phase which led to significantly lower cumulative methane production at the end of the incubation period. These results suggest that magnetite produces a clear and positive effect on methane production only when an active and balanced microbial community is present in the anaerobic digester. It is concluded that, (i) the effect of magnetite particle size on increasing the methane production rate and reducing lag phase duration is strongly influenced by the initial metabolic state of the microbial consortium, and (ii) the particle size would positively affect the methane production if it is provided within the nanometer size range.Keywords: anaerobic digestion, iron oxide, methanogenesis, nanoparticle
Procedia PDF Downloads 140472 Calcined Tertiaries Hydrotalcites as Supports of Cobalt-Molybdenum Based Catalysts for the Hydrodesulfurization Reaction of Dibenzothiophene
Authors: Edwin Oviedo, Carlos Linares, Philippe Ayrault, Sylvette Brunet
Abstract:
Nowadays, light conventional crude oils are going down. Therefore, the exploitation of heavy crude oils has been increasing. Hence, a major quantity of refractory sulfur compounds such as dibenzothiophene (DBT) should be removed. Many efforts have been carried out to modify hydrotreatment typical supports in order to increase hydrodesulfurization (HDS) reactions. The present work shows the synthesis of tertiaries MgFeAl(0.16), MgFeAl(0.32), CoFeAl, ZnFeAl hydrotalcites, as supports of CoMo based catalysts, where 0.16 and 0.32 are the Fe3+/Al3+ molar ratio. Solids were characterized by different techniques (XRD, CO2-TPD, H2-TPR, FT-IR, BET, Chemical Analysis and HRTEM) and tested in the DBT HDS reaction. The reactions conditions were: Temp=325°C, P=40 Bar, H2/feed=475. Results show that the catalysts CoMo/MgFeAl(0.16) and CoMo/MgFeAl(0.32), which were the most basics, reduced the sulfur content from 500ppm to less than 1 ppm, increasing the cyclohexylbenzene content, i.e. presented a higher selective toward the HYD pathway than reference catalyst CoMo/γ- Al2O3. This is suitable for improving the fuel quality due to the increase of the cetane number. These catalysts were also more active to the HDS reaction increasing the direct desulfurization (DDS) way and presented a good stability. It is advantageous when the gas oil centane number should be improved. Cobalt, iron or zinc species inside support could avoid the Co and Mo dispersion or form spinel species which could be less active to hydrodesulfuration reactions, while hydrotalcites containing Mg increases the HDS activity probably due to improved Co/Mo ratio.Keywords: catalyst, cetane number, dibenzothiophene, diesel, hydrodesulfurization, hydrotreatment, MoS2
Procedia PDF Downloads 159471 Sitagliptin-AntiCD4 Mab Conjugated T Cell Targeting Therapy for the Effective Treatment of Type I Diabetes
Authors: T. Mahesh, M. K. Samanta
Abstract:
Antibody dug conjugate (ADC’s) concept is a less explored and more trustable for the treatment of Type 1 diabetes (T1D). T1D is thought to arise from selective immunologically mediated destruction of the insulin- producing β-cells in the pancreatic islets of Langerhans with consequent insulin deficiency. It is evident that type 1 diabetes can be conquered, by 1) to stop immune destruction of βcells, 2) to replace or regenerate β-cells, and 3) to preserve β-cell function and mass. Many studies found that the regulatory T cells (Tregs) are crucial for the maintenance of immunological tolerance. Immune tolerance is liable for the activation of the Th1 response. The important role of Th1 response in pathology of T1D entails the depletion of CD4+ T cells, which initiated the use of anti-CD4 monoclonal antibodies (mAbs) against CD4+ T cells to interfere with induction of T1D.Insulin is regulated by Glucagon-Like Peptide-1 hormone (GLP-1) which also stimulates β-cells proliferation as the half-life of GLP-1 harmone is less due to rapid degradation by DPP-IV enzyme an alternative DPP-IV-inhibitors can increase the half-life of GLP-1 through which it conquers the replacement and reserve β-cells mass. Thus in the present study Anti-CD4 mAb was conjugated with Sitagliptin which is a DPP-IV inhibitor Drug loaded in Nanoparticles through Sulfo-MBS cross-linkers. The above study can be an effective approach for treatment to overcome the Passive subcutaneous insulin therapy.Keywords: antibody drug conjugates, anti-CD4 Mab, DPP IV inhibitors, GLP-1
Procedia PDF Downloads 389470 The Influences of Diagenetic Process on the Resistivity Values of Oil Sandstone Reservoirs
Authors: Mohamed M. A. Rahoma
Abstract:
A better understanding of the factors that control the resistivity values of Sandstone reservoirs is very important for petroleum exploration and production. This study is an attempt to find out the factors that could be the reason for the decrease in resistivity values of the Lower Akakus Sandstones, which are the main reservoir in the area in an onshore field located in the northern part of Ghadames Basin - Northwest of Libya in the contracted area 47, block 2 The study achieved is based on: 30 core chip samples taken from two wells (A3-47/02 and J1-47/02) and Routine Core Analysis (RCA). The results of petrography analysis (thin section, X-ray diffraction and SEM) demonstrated that the depth sits (intervals) which illustrated low resistivity values have a relatively high content of diagenetic clay and cement minerals, hence we can conclude that diagenetic events have a more significant impact on the resistivity values of studied interval for possibly two following reasons: The first essential reason, the extensive micro pores that mostly exist within clay minerals (Chlorite and Kaolinite where, about 30-50 % of their composition considered micro pores), resistivity log read low as noticed through the study. The highest value of micro pores recorded in core1 of J1-47/02 well due to most likely the kaolinite amount which was a slightly higher than the chlorite amount in this well (the bond water porosity for chlorite clay considered relatively the lowest porosity compared to other clay minerals). The second reason, the presence of diagenetic cement minerals (Siderite and Hematite, which contain an iron element as one of their components) within the studied interval as remarked from my study may cause decreasing in resistivity of the formation of the reservoir.Keywords: diagenetic cement, diagenetic clay, resistivity, petrography analysis
Procedia PDF Downloads 12469 Hemoglobin Levels at a Standalone Dialysis Unit
Authors: Babu Shersad, Partha Banerjee
Abstract:
Reduction in haemoglobin levels has been implicated to be a cause for reduced exercise tolerance and cardiovascular complications of chronic renal diseases. Trends of hemoglobin levels in patients on haemodialysis could be an indicator of efficacy of hemodialysis and an indicator of quality of life in haemodialysis patients. In the UAE, the rate of growth (of patients on dialysis) is 10 to 15 per cent per year. The primary mode of haemodialysis in the region is based on in-patient hospital-based hemodialysis units. The increase in risk of cardiovascular and cerebrovascular morbidity as well as mortality in pre-dialysis Chronic Renal Disease has been reported. However, data on the health burden on haemodialysis in standalone dialysis facilities is very scarce. This is mainly due to the paucity of ambulatory centres for haemodialysis in the region. AMSA is the first center to offer standalone dialysis in the UAE and a study over a one year period was performed. Patient data was analyzed using a questionnaire for 45 patients with an average of 2.5 dialysis sessions per week. All patients were on chronic haemodialysis as outpatients. The trends of haemoglobin levels as an independent variable were evaluated. These trends were interpreted in comparison with other parameters of renal function (creatinine, uric acid, blood pressure and ferritin). Trends indicate an increase in hemoglobin levels with increased supplementation of iron and erythropoietin over time. The adequacy of hemodialysis shows improvement concomitantly. This, in turn, correlates with better patient outcomes and has a direct impact on morbidity and mortality. This study is a pilot study and further studies are indicated so that objective parameters can be studied and validated for hemodialysis in the region.Keywords: haemodialysis, haemoglobin in haemodialysis, haemodialysis parameters, erythropoietic agents in haemodialysis
Procedia PDF Downloads 288