Search results for: time domain reflectometry (TDR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19365

Search results for: time domain reflectometry (TDR)

17565 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based On a Motion Polymorph-Primitives Algorithm

Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba

Abstract:

Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real-time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.

Keywords: robotics, aerial robots, motion primitives, helicopter

Procedia PDF Downloads 616
17564 Digital Watermarking Using Fractional Transform and (k,n) Halftone Visual Cryptography (HVC)

Authors: R. Rama Kishore, Sunesh Malik

Abstract:

Development in the usage of internet for different purposes in recent times creates great threat for the copy right protection of the digital images. Digital watermarking is the best way to rescue from the said problem. This paper presents detailed review of the different watermarking techniques, latest trends in the field and categorized like spatial and transform domain, blind and non-blind methods, visible and non visible techniques etc. It also discusses the different optimization techniques used in the field of watermarking in order to improve the robustness and imperceptibility of the method. Different measures are discussed to evaluate the performance of the watermarking algorithm. At the end, this paper proposes a watermarking algorithm using (k.n) shares of halftone visual cryptography (HVC) instead of (2, 2) share cryptography. (k,n) shares visual cryptography improves the security of the watermark. As halftone is a method of reprographic, it helps in improving the visual quality of watermark image. The proposed method uses fractional transformation to improve the robustness of the copyright protection of the method.

Keywords: digital watermarking, fractional transform, halftone, visual cryptography

Procedia PDF Downloads 355
17563 Holy Quran’s Hermeneutics from Self-Referentiality to the Quran by Quran’s Interpretation

Authors: Mohammad Ba’azm

Abstract:

The self-referentiality method as the missing ring of the Qur’an by Qur’an’s interpretation has a precise application at the level of the Quranic vocabulary, but after entering the domain of the verses, chapters and the whole Qur’an, it reveals its defect. Self-referentiality cannot show the clear concept of the Quranic scriptures, unlike the Qur’an by Qur’an’s interpretation method that guides us to the comprehension and exact hermeneutics. The Qur’an by Qur’an’s interpretation is a solid way of comprehension of the verses of the Qur'an and does not use external resources to provide implications and meanings with different theoretical and practical supports. In this method, theoretical supports are based on the basics and modalities that support and validate the legitimacy and validity of the interpretive method discussed, and the practical supports also relate to the practitioners of the religious elite. The combination of these two methods illustrates the exact understanding of the Qur'an at the level of Quranic verses, chapters, and the whole Qur’an. This study by examining the word 'book' in the Qur'an shows the difference between the two methods, and the necessity of attachment of these, in order to attain a desirable level for comprehensions meaning of the Qur'an. In this article, we have proven that by aspects of the meaning of the Quranic words, we cannot say any word has an exact meaning.

Keywords: Qur’an’s hermeneutic, self-referentiality, The Qur’an by Qur’an’s Interpretation, polysemy

Procedia PDF Downloads 187
17562 A Fluorescent Polymeric Boron Sensor

Authors: Soner Cubuk, Mirgul Kosif, M. Vezir Kahraman, Ece Kok Yetimoglu

Abstract:

Boron is an essential trace element for the completion of the life circle for organisms. Suitable methods for the determination of boron have been proposed, including acid - base titrimetric, inductively coupled plasma emission spectroscopy flame atomic absorption and spectrophotometric. However, the above methods have some disadvantages such as long analysis times, requirement of corrosive media such as concentrated sulphuric acid and multi-step sample preparation requirements and time-consuming procedures. In this study, a selective and reusable fluorescent sensor for boron based on glycosyloxyethyl methacrylate was prepared by photopolymerization. The response characteristics such as response time, pH, linear range, limit of detection were systematically investigated. The excitation/emission maxima of the membrane were at 378/423 nm, respectively. The approximate response time was measured as 50 sec. In addition, sensor had a very low limit of detection which was 0.3 ppb. The sensor was successfully used for the determination of boron in water samples with satisfactory results.

Keywords: boron, fluorescence, photopolymerization, polymeric sensor

Procedia PDF Downloads 283
17561 An Efficient Algorithm of Time Step Control for Error Correction Method

Authors: Youngji Lee, Yonghyeon Jeon, Sunyoung Bu, Philsu Kim

Abstract:

The aim of this paper is to construct an algorithm of time step control for the error correction method most recently developed by one of the authors for solving stiff initial value problems. It is achieved with the generalized Chebyshev polynomial and the corresponding error correction method. The main idea of the proposed scheme is in the usage of the duplicated node points in the generalized Chebyshev polynomials of two different degrees by adding necessary sample points instead of re-sampling all points. At each integration step, the proposed method is comprised of two equations for the solution and the error, respectively. The constructed algorithm controls both the error and the time step size simultaneously and possesses a good performance in the computational cost compared to the original method. Two stiff problems are numerically solved to assess the effectiveness of the proposed scheme.

Keywords: stiff initial value problem, error correction method, generalized Chebyshev polynomial, node points

Procedia PDF Downloads 573
17560 The Creative Unfolding of “Reduced Descriptive Structures” in Musical Cognition: Technical and Theoretical Insights Based on the OpenMusic and PWGL Long-Term Feedback

Authors: Jacopo Baboni Schilingi

Abstract:

We here describe the theoretical and philosophical understanding of a long term use and development of algorithmic computer-based tools applied to music composition. The findings of our research lead us to interrogate some specific processes and systems of communication engaged in the discovery of specific cultural artworks: artistic creation in the sono-musical domain. Our hypothesis is that the patterns of auditory learning cannot be only understood in terms of social transmission but would gain to be questioned in the way they rely on various ranges of acoustic stimuli modes of consciousness and how the different types of memories engaged in the percept-action expressive systems of our cultural communities also relies on these shadowy conscious entities we named “Reduced Descriptive Structures”.

Keywords: algorithmic sonic computation, corrected and self-correcting learning patterns in acoustic perception, morphological derivations in sensorial patterns, social unconscious modes of communication

Procedia PDF Downloads 154
17559 African Swine Fewer Situation and Diagnostic Methods in Lithuania

Authors: Simona Pileviciene

Abstract:

On 24th January 2014, Lithuania notified two primary cases of African swine fever (ASF) in wild boars. The animals were tested positive for ASF virus (ASFV) genome by real-time PCR at the National Reference Laboratory for ASF in Lithuania (NRL), results were confirmed by the European Union Reference Laboratory for African swine fever (CISA-INIA). Intensive wild and domestic animal monitoring program was started. During the period of 2014-2017 ASF was confirmed in two large commercial pig holding with the highest biosecurity. Pigs were killed and destroyed. Since 2014 ASF outbreak territory from east and south has expanded to the middle of Lithuania. Diagnosis by PCR is one of the highly recommended diagnostic methods by World Organization for Animal Health (OIE) for diagnosis of ASF. The aim of the present study was to compare singleplex real-time PCR assays to a duplex assay allowing the identification of ASF and internal control in a single PCR tube and to compare primers, that target the p72 gene (ASF 250 bp and ASF 75 bp) effectivity. Multiplex real-time PCR assays prove to be less time consuming and cost-efficient and therefore have a high potential to be applied in the routine analysis. It is important to have effective and fast method that allows virus detection at the beginning of disease for wild boar population and in outbreaks for domestic pigs. For experiments, we used reference samples (INIA, Spain), and positive samples from infected animals in Lithuania. Results show 100% sensitivity and specificity.

Keywords: African swine fewer, real-time PCR, wild boar, domestic pig

Procedia PDF Downloads 166
17558 Preparation and Characterization of Nanocrystalline Cellulose from Acacia mangium

Authors: Samira Gharehkhani, Seyed Farid Seyed Shirazi, Abdolreza Gharehkhani, Hooman Yarmand, Ahmad Badarudin, Rushdan Ibrahim, Salim Newaz Kazi

Abstract:

Nanocrystalline cellulose (NCC) were prepared by acid hydrolysis and ultrasound treatment of bleached Acacia mangium fibers. The obtained rod-shaped nanocrystals showed a uniform size. The results showed that NCC with high crystallinity can be obtained using 64 wt% sulfuric acid. The effect of synthesis condition was investigated. Different reaction times were examined to produce the NCC and the results revealed that an optimum reaction time has to be used for preparing the NCC. Morphological investigation was performed using the transmission electron microscopy (TEM). Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA) were performed. X-ray diffraction (XRD) analysis revealed that the crystallinity increased with successive treatments. The NCC suspension was homogeneous and stable and no sedimentation was observed for a long time.

Keywords: acid hydrolysis, nanocrystalline cellulose, nano material, reaction time

Procedia PDF Downloads 505
17557 Parathyroid Hormone Receptor 1 as a Prognostic Indicator in Canine Osteosarcoma

Authors: Awf A. Al-Khan, Michael J. Day, Judith Nimmo, Mourad Tayebi, Stewart D. Ryan, Samantha J. Richardson, Janine A. Danks

Abstract:

Osteosarcoma (OS) is the most common type of malignant primary bone tumour in dogs. In addition to their critical roles in bone formation and remodeling, parathyroid hormone-related protein (PTHrP) and its receptor (PTHR1) are involved in progression and metastasis of many types of tumours in humans. The aims of this study were to determine the localisation and expression levels of PTHrP and PTHR1 in canine OS tissues using immunohistochemistry and to investigate if this expression is correlated with survival time. Formalin-fixed, paraffin-embedded tissue samples from 44 dogs with known survival time that had been diagnosed with primary osteosarcoma were analysed for localisation of PTHrP and PTHR1. Findings showed that both PTHrP and PTHR1 were present in all OS samples. The dogs with high level of PTHR1 protein (16%) had decreased survival time (P<0.05) compared to dogs with less PTHR1 protein. PTHrP levels did not correlate with survival time (P>0.05). The results of this study indicate that the PTHR1 is expressed differently in canine OS tissues and this may be correlated with poor prognosis. This may mean that PTHR1 may be useful as a prognostic indicator in canine OS and could represent a good therapeutic target in OS.

Keywords: dog, expression, osteosarcoma, parathyroid hormone receptor 1 (PTHR1), parathyroid hormone-related protein (PTHrP), survival

Procedia PDF Downloads 276
17556 Experiences of Timing Analysis of Parallel Embedded Software

Authors: Muhammad Waqar Aziz, Syed Abdul Baqi Shah

Abstract:

The execution time analysis is fundamental to the successful design and execution of real-time embedded software. In such analysis, the Worst-Case Execution Time (WCET) of a program is a key measure, on the basis of which system tasks are scheduled. The WCET analysis of embedded software is also needed for system understanding and to guarantee its behavior. WCET analysis can be performed statically (without executing the program) or dynamically (through measurement). Traditionally, research on the WCET analysis assumes sequential code running on single-core platforms. However, as computation is steadily moving towards using a combination of parallel programs and multi-core hardware, new challenges in WCET analysis need to be addressed. In this article, we report our experiences of performing the WCET analysis of Parallel Embedded Software (PES) running on multi-core platform. The primary purpose was to investigate how WCET estimates of PES can be computed statically, and how they can be derived dynamically. Our experiences, as reported in this article, include the challenges we faced, possible suggestions to these challenges and the workarounds that were developed. This article also provides observations on the benefits and drawbacks of deriving the WCET estimates using the said methods and provides useful recommendations for further research in this area.

Keywords: embedded software, worst-case execution-time analysis, static flow analysis, measurement-based analysis, parallel computing

Procedia PDF Downloads 324
17555 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks

Authors: Danilo López, Edwin Rivas, Leyla López

Abstract:

This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.

Keywords: cognitive radio, base station, best effort, MLPNN, prediction, real time

Procedia PDF Downloads 330
17554 COVID-19 Pandemic Influence on Toddlers and Preschoolers’ Screen Time

Authors: Juliana da Silva Cardoso, Cláudia Correia, Rita Gomes, Carolina Fraga, Inês Cascais, Sara Monteiro, Beatriz Teixeira, Sandra Ribeiro, Carolina Andrade, Cláudia Oliveira, Diana Gonzaga, Catarina Prior, Inês Vaz Matos

Abstract:

The average daily screen time (ST) has been increasing in children, even at young ages. This seems to be associated with a higher incidence of neurodevelopmental disorders, and as the time of exposure increases, the greater is the functional impact. This study aims to compare the daily ST of toddlers and preschoolers previously and during the COVID-19 pandemic. A questionnaire was applied by telephone to parents/caregivers of children between 1 and 5 years old, followed up at 4 primary care units belonging to the Group of Primary Health Care Centers of Western Porto, Portugal. 520 children were included: 52.9% male, mean age 39.4 ± 13.9 months. The mean age of first exposure to screens was 13.9 ± 8.0 months, and most of the children were exposed to more than one screen daily. Considering the WHO recommendations, before the COVID-19 pandemic, 385 (74.0%) and 408 (78.5%) children had excessive ST during the week and the weekend, respectively; during the lockdown, these values increased to 495 (95.2%) and 482 (92.7%). Maternal education and both the child's median age and the median age of first exposure to screens had a statistically significant association with excessive ST, with OR 0.2 (p = 0.03, CI 95% 0.07-0.86), OR 1.1 (p = 0.01, 95% CI 1.05-1.14) and OR 0.9 (p = 0.05, 95% CI 0. 87-0.98), respectively. Most children in this sample had a higher than recommended ST, which increased with the onset of the COVID-19 pandemic. These results are worrisome and point to the need for urgent intervention.

Keywords: COVID-19 pandemic, preschoolers, screen time, toddlers

Procedia PDF Downloads 216
17553 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System

Authors: Qian Liu, Steve Furber

Abstract:

To explore how the brain may recognize objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor~(DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network~(SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modeled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study's largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognize the postures with an accuracy of around 86.4% -only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much-improved cost to performance trade-off in its approach.

Keywords: spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system

Procedia PDF Downloads 472
17552 Determination of Optimal Stress Locations in 2D–9 Noded Element in Finite Element Technique

Authors: Nishant Shrivastava, D. K. Sehgal

Abstract:

In Finite Element Technique nodal stresses are calculated through displacement as nodes. In this process, the displacement calculated at nodes is sufficiently good enough but stresses calculated at nodes are not sufficiently accurate. Therefore, the accuracy in the stress computation in FEM models based on the displacement technique is obviously matter of concern for computational time in shape optimization of engineering problems. In the present work same is focused to find out unique points within the element as well as the boundary of the element so, that good accuracy in stress computation can be achieved. Generally, major optimal stress points are located in domain of the element some points have been also located at boundary of the element where stresses are fairly accurate as compared to nodal values. Then, it is subsequently concluded that there is an existence of unique points within the element, where stresses have higher accuracy than other points in the elements. Therefore, it is main aim is to evolve a generalized procedure for the determination of the optimal stress location inside the element as well as at the boundaries of the element and verify the same with results from numerical experimentation. The results of quadratic 9 noded serendipity elements are presented and the location of distinct optimal stress points is determined inside the element, as well as at the boundaries. The theoretical results indicate various optimal stress locations are in local coordinates at origin and at a distance of 0.577 in both directions from origin. Also, at the boundaries optimal stress locations are at the midpoints of the element boundary and the locations are at a distance of 0.577 from the origin in both directions. The above findings were verified through experimentation and findings were authenticated. For numerical experimentation five engineering problems were identified and the numerical results of 9-noded element were compared to those obtained by using the same order of 25-noded quadratic Lagrangian elements, which are considered as standard. Then root mean square errors are plotted with respect to various locations within the elements as well as the boundaries and conclusions were drawn. After numerical verification it is noted that in a 9-noded element, origin and locations at a distance of 0.577 from origin in both directions are the best sampling points for the stresses. It was also noted that stresses calculated within line at boundary enclosed by 0.577 midpoints are also very good and the error found is very less. When sampling points move away from these points, then it causes line zone error to increase rapidly. Thus, it is established that there are unique points at boundary of element where stresses are accurate, which can be utilized in solving various engineering problems and are also useful in shape optimizations.

Keywords: finite elements, Lagrangian, optimal stress location, serendipity

Procedia PDF Downloads 105
17551 Improvement of Transient Voltage Response Using PSS-SVC Coordination Based on ANFIS-Algorithm in a Three-Bus Power System

Authors: I Made Ginarsa, Agung Budi Muljono, I Made Ari Nrartha

Abstract:

Transient voltage response appears in power system operation when an additional loading is forced to load bus of power systems. In this research, improvement of transient voltage response is done by using power system stabilizer-static var compensator (PSS-SVC) based on adaptive neuro-fuzzy inference system (ANFIS)-algorithm. The main function of the PSS is to add damping component to damp rotor oscillation through automatic voltage regulator (AVR) and excitation system. Learning process of the ANFIS is done by using off-line method where data learning that is used to train the ANFIS model are obtained by simulating the PSS-SVC conventional. The ANFIS model uses 7 Gaussian membership functions at two inputs and 49 rules at an output. Then, the ANFIS-PSS and ANFIS-SVC models are applied to power systems. Simulation result shows that the response of transient voltage is improved with settling time at the time of 4.25 s.

Keywords: improvement, transient voltage, PSS-SVC, ANFIS, settling time

Procedia PDF Downloads 577
17550 Formulation and Evaluation of Mouth Dissolving Tablet of Ketorolac Tromethamine by Using Natural Superdisintegrants

Authors: J. P. Lavande, A. V.Chandewar

Abstract:

Mouth dissolving tablet is the speedily growing and highly accepted drug delivery system. This study was aimed at development of Ketorolac Tromethamine mouth dissolving tablet (MDTs), which can disintegrate or dissolve rapidly once placed in the mouth. Conventional Ketorolac tromethamine tablet requires water to swallow it and has limitation like low disintegration rate, low solubility etc. Ketorolac Tromethamine mouth dissolving tablets (formulation) consist of super-disintegrate like Heat Modified Karaya Gum, Co-treated Heat Modified Agar & Filler microcrystalline cellulose (MCC). The tablets were evaluated for weight variation, friability, hardness, in vitro disintegration time, wetting time, in vitro drug release profile, content uniformity. The obtained results showed that low weight variation, good hardness, acceptable friability, fast wetting time. Tablets in all batches disintegrated within 15-50 sec. The formulation containing superdisintegrants namely heat modified karaya gum and heat modified agar showed better performance in disintegration and drug release profile.

Keywords: mouth dissolving tablet, Ketorolac tromethamine, disintegration time, heat modified karaya gum, co-treated heat modified agar

Procedia PDF Downloads 281
17549 Large Neural Networks Learning From Scratch With Very Few Data and Without Explicit Regularization

Authors: Christoph Linse, Thomas Martinetz

Abstract:

Recent findings have shown that Neural Networks generalize also in over-parametrized regimes with zero training error. This is surprising, since it is completely against traditional machine learning wisdom. In our empirical study we fortify these findings in the domain of fine-grained image classification. We show that very large Convolutional Neural Networks with millions of weights do learn with only a handful of training samples and without image augmentation, explicit regularization or pretraining. We train the architectures ResNet018, ResNet101 and VGG19 on subsets of the difficult benchmark datasets Caltech101, CUB_200_2011, FGVCAircraft, Flowers102 and StanfordCars with 100 classes and more, perform a comprehensive comparative study and draw implications for the practical application of CNNs. Finally, we show that VGG19 with 140 million weights learns to distinguish airplanes and motorbikes with up to 95% accuracy using only 20 training samples per class.

Keywords: convolutional neural networks, fine-grained image classification, generalization, image recognition, over-parameterized, small data sets

Procedia PDF Downloads 88
17548 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction

Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba

Abstract:

Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.

Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform

Procedia PDF Downloads 50
17547 Identification of Crimean-Congo Hemorrhagic Fever Virus in Patients Referred to Ahvaz and Gilan Hospitals in Iran by real-time PCR Technique

Authors: Najmeh Jafari, Sona Rostampour Yasouri

Abstract:

Crimean-Congo hemorrhagic fever (CCHF) is an acute hemorrhagic disease. This disease is one of the common diseases between humans and animals, transmitted through tick bites or contact with the blood and secretions or carcasses of infected animals and humans. CCHF is more common in people who work with livestock, such as ranchers, butchers, farmers, slaughterhouse workers, healthcare workers, etc. Its hospital prevalence is also very high. Considering that CCHF can be transmitted through the consumption of food such as beef and sheep meat, this study aims to quickly identify and diagnose the Crimean-Congo fever virus in suspected patients through real-time PCR technique. In the summer of 1402, 20 blood samples were collected separately from Ahvaz and Gilan hospitals. An extraction kit was used to extract the virus RNA. Primers and probes were designed based on the S genomic region, the conserved region in CCHFV. Then, a real-time PCR technique was performed with specific primers and probes. It should be noted that the mentioned technique was repeated several times. The number of 4 samples from the examined samples was determined positive by real-time PCR. This technique has high sensitivity and specificity and the possibility of rapid detection of CCHFV. Therefore, the above method is a good candidate for quick disease diagnosis. By diagnosing the disease, the treatment process can be done faster, and the best prevention methods can be used to control the disease and prevent the death of patients.

Keywords: ahvaz, crimean-congo hemorrhagic fever, gilan, real time PCR

Procedia PDF Downloads 73
17546 Myeloid Zinc Finger 1/Ets-Like Protein-1/Protein Kinase C Alpha Associated with Poor Prognosis in Patients with Hepatocellular Carcinoma

Authors: Jer-Yuh Liu, Je-Chiuan Ye, Jin-Ming Hwang

Abstract:

Protein kinase C alpha (PKCα) is a key signaling molecule in human cancer development. As a therapeutic strategy, targeting PKCα is difficult because the molecule is ubiquitously expressed in non-malignant cells. PKCα is regulated by the cooperative interaction of the transcription factors myeloid zinc finger 1 (MZF-1) and Ets-like protein-1 (Elk-1) in human cancer cells. By conducting tissue array analysis, herein, we determined the protein expression of MZF-1/Elk-1/PKCα in various cancers. The data show that the expression of MZF-1/Elk-1 is correlated with that of PKCα in hepatocellular carcinoma (HCC), but not in bladder and lung cancers. In addition, the PKCα down-regulation by shRNA Elk-1 was only observed in the HCC SK-Hep-1 cells. Blocking the interaction between MZF-1 and Elk-1 through the transfection of their binding domain MZF-160–72 decreased PKCα expression. This step ultimately depressed the epithelial-mesenchymal transition potential of the HCC cells. These findings could be used to develop an alternative therapeutic strategy for patients with the PKCα-derived HCC.

Keywords: protein kinase C alpha, myeloid zinc finger 1, ets-like protein-1, hepatocellular carcinoma

Procedia PDF Downloads 227
17545 Genetic Algorithm for In-Theatre Military Logistics Search-and-Delivery Path Planning

Authors: Jean Berger, Mohamed Barkaoui

Abstract:

Discrete search path planning in time-constrained uncertain environment relying upon imperfect sensors is known to be hard, and current problem-solving techniques proposed so far to compute near real-time efficient path plans are mainly bounded to provide a few move solutions. A new information-theoretic –based open-loop decision model explicitly incorporating false alarm sensor readings, to solve a single agent military logistics search-and-delivery path planning problem with anticipated feedback is presented. The decision model consists in minimizing expected entropy considering anticipated possible observation outcomes over a given time horizon. The model captures uncertainty associated with observation events for all possible scenarios. Entropy represents a measure of uncertainty about the searched target location. Feedback information resulting from possible sensor observations outcomes along the projected path plan is exploited to update anticipated unit target occupancy beliefs. For the first time, a compact belief update formulation is generalized to explicitly include false positive observation events that may occur during plan execution. A novel genetic algorithm is then proposed to efficiently solve search path planning, providing near-optimal solutions for practical realistic problem instances. Given the run-time performance of the algorithm, natural extension to a closed-loop environment to progressively integrate real visit outcomes on a rolling time horizon can be easily envisioned. Computational results show the value of the approach in comparison to alternate heuristics.

Keywords: search path planning, false alarm, search-and-delivery, entropy, genetic algorithm

Procedia PDF Downloads 360
17544 Estimating Lost Digital Video Frames Using Unidirectional and Bidirectional Estimation Based on Autoregressive Time Model

Authors: Navid Daryasafar, Nima Farshidfar

Abstract:

In this article, we make attempt to hide error in video with an emphasis on the time-wise use of autoregressive (AR) models. To resolve this problem, we assume that all information in one or more video frames is lost. Then, lost frames are estimated using analogous Pixels time information in successive frames. Accordingly, after presenting autoregressive models and how they are applied to estimate lost frames, two general methods are presented for using these models. The first method which is the same standard method of autoregressive models estimates lost frame in unidirectional form. Usually, in such condition, previous frames information is used for estimating lost frame. Yet, in the second method, information from the previous and next frames is used for estimating the lost frame. As a result, this method is known as bidirectional estimation. Then, carrying out a series of tests, performance of each method is assessed in different modes. And, results are compared.

Keywords: error steganography, unidirectional estimation, bidirectional estimation, AR linear estimation

Procedia PDF Downloads 539
17543 Adaptive E-Learning System Using Fuzzy Logic and Concept Map

Authors: Mesfer Al Duhayyim, Paul Newbury

Abstract:

This paper proposes an effective adaptive e-learning system that uses a coloured concept map to show the learner's knowledge level for each concept in the chosen subject area. A Fuzzy logic system is used to evaluate the learner's knowledge level for each concept in the domain, and produce a ranked concept list of learning materials to address weaknesses in the learner’s understanding. This system obtains information on the learner's understanding of concepts by an initial pre-test before the system is used for learning and a post-test after using the learning system. A Fuzzy logic system is used to produce a weighted concept map during the learning process. The aim of this research is to prove that such a proposed novel adapted e-learning system will enhance learner's performance and understanding. In addition, this research aims to increase participants' overall understanding of their learning level by providing a coloured concept map of understanding followed by a ranked concepts list of learning materials.

Keywords: adaptive e-learning system, coloured concept map, fuzzy logic, ranked concept list

Procedia PDF Downloads 292
17542 Comparison of Two Transcranial Magnetic Stimulation Protocols on Spasticity in Multiple Sclerosis - Pilot Study of a Randomized and Blind Cross-over Clinical Trial

Authors: Amanda Cristina da Silva Reis, Bruno Paulino Venâncio, Cristina Theada Ferreira, Andrea Fialho do Prado, Lucimara Guedes dos Santos, Aline de Souza Gravatá, Larissa Lima Gonçalves, Isabella Aparecida Ferreira Moretto, João Carlos Ferrari Corrêa, Fernanda Ishida Corrêa

Abstract:

Objective: To compare two protocols of Transcranial Magnetic Stimulation (TMS) on quadriceps muscle spasticity in individuals diagnosed with Multiple Sclerosis (MS). Method: Clinical, crossover study, in which six adult individuals diagnosed with MS and spasticity in the lower limbs were randomized to receive one session of high-frequency (≥5Hz) and low-frequency (≤ 1Hz) TMS on motor cortex (M1) hotspot for quadriceps muscle, with a one-week interval between the sessions. To assess the spasticity was applied the Ashworth scale and were analyzed the latency time (ms) of the motor evoked potential (MEP) and the central motor conduction time (CMCT) of the bilateral quadriceps muscle. Assessments were performed before and after each intervention. The difference between groups was analyzed using the Friedman test, with a significance level of 0.05 adopted. Results: All statistical analyzes were performed using the SPSS Statistic version 26 programs, with a significance level established for the analyzes at p<0.05. Shapiro Wilk normality test. Parametric data were represented as mean and standard deviation for non-parametric variables, median and interquartile range, and frequency and percentage for categorical variables. There was no clinical change in quadriceps spasticity assessed using the Ashworth scale for the 1 Hz (p=0.813) and 5 Hz (p= 0.232) protocols for both limbs. Motor Evoked Potential latency time: in the 5hz protocol, there was no significant change for the contralateral side from pre to post-treatment (p>0.05), and for the ipsilateral side, there was a decrease in latency time of 0.07 seconds (p<0.05 ); for the 1Hz protocol there was an increase of 0.04 seconds in the latency time (p<0.05) for the contralateral side to the stimulus, and for the ipsilateral side there was a decrease in the latency time of 0.04 seconds (p=<0.05), with a significant difference between the contralateral (p=0.007) and ipsilateral (p=0.014) groups. Central motor conduction time in the 1Hz protocol, there was no change for the contralateral side (p>0.05) and for the ipsilateral side (p>0.05). In the 5Hz protocol for the contralateral side, there was a small decrease in latency time (p<0.05) and for the ipsilateral side, there was a decrease of 0.6 seconds in the latency time (p<0.05) with a significant difference between groups (p=0.019). Conclusion: A high or low-frequency session does not change spasticity, but it is observed that when the low-frequency protocol was performed, there was an increase in latency time on the stimulated side, and a decrease in latency time on the non-stimulated side, considering then that inhibiting the motor cortex increases cortical excitability on the opposite side.

Keywords: multiple sclerosis, spasticity, motor evoked potential, transcranial magnetic stimulation

Procedia PDF Downloads 89
17541 A Comparative Study of the Effects of Vibratory Stress Relief and Thermal Aging on the Residual Stress of Explosives Materials

Authors: Xuemei Yang, Xin Sun, Cheng Fu, Qiong Lan, Chao Han

Abstract:

Residual stresses, which can be produced during the manufacturing process of plastic bonded explosive (PBX), play an important role in weapon system security and reliability. Residual stresses can and do change in service. This paper mainly studies the influence of vibratory stress relief (VSR) and thermal aging on residual stress of explosives. Firstly, the residual stress relaxation of PBX via different physical condition of VSR, such as vibration time, amplitude and dynamic strain, were studied by drill-hole technique. The result indicated that the vibratory amplitude, time and dynamic strain had a significant influence on the residual stress relief of PBX. The rate of residual stress relief of PBX increases first and then decreases with the increase of dynamic strain, amplitude and time, because the activation energy is too small to make the PBX yield plastic deformation at first. Then the dynamic strain, time and amplitude exceed a certain threshold, the residual stress changes show the same rule and decrease sharply, this sharply drop of residual stress relief rate may have been caused by over vibration. Meanwhile, the comparison between VSR and thermal aging was also studied. The conclusion is that the reduction ratio of residual stress after VSR process with applicable vibratory parameters could be equivalent to 73% of thermal aging with 7 days. In addition, the density attenuation rate, mechanical property, and dimensional stability with 3 months after VSR process was almost the same compared with thermal aging. However, compared with traditional thermal aging, VSR only takes a very short time, which greatly improves the efficiency of aging treatment for explosive materials. Therefore, the VSR could be a potential alternative technique in the industry of residual stress relaxation of PBX explosives.

Keywords: explosives, residual stresses, thermal aging, vibratory stress relief, VSR

Procedia PDF Downloads 160
17540 Predictive Factors of Nasal Continuous Positive Airway Pressure (NCPAP) Therapy Success in Preterm Neonates with Hyaline Membrane Disease (HMD)

Authors: Novutry Siregar, Afdal, Emilzon Taslim

Abstract:

Hyaline Membrane Disease (HMD) is the main cause of respiratory failure in preterm neonates caused by surfactant deficiency. Nasal Continuous Positive Airway Pressure (NCPAP) is the therapy for HMD. The success of therapy is determined by gestational age, birth weight, HMD grade, time of NCAP administration, and time of breathing frequency recovery. The aim of this research is to identify the predictive factor of NCPAP therapy success in preterm neonates with HMD. This study used a cross-sectional design by using medical records of patients who were treated in the Perinatology of the Pediatric Department of Dr. M. Djamil Padang Central Hospital from January 2015 to December 2017. The samples were eighty-two neonates that were selected by using the total sampling technique. Data analysis was done by using the Chi-Square Test and the Multiple Logistic Regression Prediction Model. The results showed the success rate of NCPAP therapy reached 53.7%. Birth weight (p = 0.048, OR = 3.34 95% CI 1.01-11.07), HMD grade I (p = 0.018, OR = 4.95 CI 95% 1.31-18.68), HMD grade II (p = 0.044, OR = 5.52 95% CI 1.04-29.15), and time of breathing frequency recovery (p = 0,000, OR = 13.50 95% CI 3.58-50, 83) are the predictive factors of NCPAP therapy success in preterm neonates with HMD. The most significant predictive factor is the time of breathing frequency recovery.

Keywords: predictive factors, the success of therapy, NCPAP, preterm neonates, HMD

Procedia PDF Downloads 59
17539 Chassis Level Control Using Proportional Integrated Derivative Control, Fuzzy Logic and Deep Learning

Authors: Atakan Aral Ormancı, Tuğçe Arslantaş, Murat Özcü

Abstract:

This study presents the design and implementation of an experimental chassis-level system for various control applications. Specifically, the height level of the chassis is controlled using proportional integrated derivative, fuzzy logic, and deep learning control methods. Real-time data obtained from height and pressure sensors installed in a 6x2 truck chassis, in combination with pulse-width modulation signal values, are utilized during the tests. A prototype pneumatic system of a 6x2 truck is added to the setup, which enables the Smart Pneumatic Actuators to function as if they were in a real-world setting. To obtain real-time signal data from height sensors, an Arduino Nano is utilized, while a Raspberry Pi processes the data using Matlab/Simulink and provides the correct output signals to control the Smart Pneumatic Actuator in the truck chassis. The objective of this research is to optimize the time it takes for the chassis to level down and up under various loads. To achieve this, proportional integrated derivative control, fuzzy logic control, and deep learning techniques are applied to the system. The results show that the deep learning method is superior in optimizing time for a non-linear system. Fuzzy logic control with a triangular membership function as the rule base achieves better outcomes than proportional integrated derivative control. Traditional proportional integrated derivative control improves the time it takes to level the chassis down and up compared to an uncontrolled system. The findings highlight the superiority of deep learning techniques in optimizing the time for a non-linear system, and the potential of fuzzy logic control. The proposed approach and the experimental results provide a valuable contribution to the field of control, automation, and systems engineering.

Keywords: automotive, chassis level control, control systems, pneumatic system control

Procedia PDF Downloads 81
17538 Large-Scale Simulations of Turbulence Using Discontinuous Spectral Element Method

Authors: A. Peyvan, D. Li, J. Komperda, F. Mashayek

Abstract:

Turbulence can be observed in a variety fluid motions in nature and industrial applications. Recent investment in high-speed aircraft and propulsion systems has revitalized fundamental research on turbulent flows. In these systems, capturing chaotic fluid structures with different length and time scales is accomplished through the Direct Numerical Simulation (DNS) approach since it accurately simulates flows down to smallest dissipative scales, i.e., Kolmogorov’s scales. The discontinuous spectral element method (DSEM) is a high-order technique that uses spectral functions for approximating the solution. The DSEM code has been developed by our research group over the course of more than two decades. Recently, the code has been improved to run large cases in the order of billions of solution points. Running big simulations requires a considerable amount of RAM. Therefore, the DSEM code must be highly parallelized and able to start on multiple computational nodes on an HPC cluster with distributed memory. However, some pre-processing procedures, such as determining global element information, creating a global face list, and assigning global partitioning and element connection information of the domain for communication, must be done sequentially with a single processing core. A separate code has been written to perform the pre-processing procedures on a local machine. It stores the minimum amount of information that is required for the DSEM code to start in parallel, extracted from the mesh file, into text files (pre-files). It packs integer type information with a Stream Binary format in pre-files that are portable between machines. The files are generated to ensure fast read performance on different file-systems, such as Lustre and General Parallel File System (GPFS). A new subroutine has been added to the DSEM code to read the startup files using parallel MPI I/O, for Lustre, in a way that each MPI rank acquires its information from the file in parallel. In case of GPFS, in each computational node, a single MPI rank reads data from the file, which is specifically generated for the computational node, and send them to other ranks on the node using point to point non-blocking MPI communication. This way, communication takes place locally on each node and signals do not cross the switches of the cluster. The read subroutine has been tested on Argonne National Laboratory’s Mira (GPFS), National Center for Supercomputing Application’s Blue Waters (Lustre), San Diego Supercomputer Center’s Comet (Lustre), and UIC’s Extreme (Lustre). The tests showed that one file per node is suited for GPFS and parallel MPI I/O is the best choice for Lustre file system. The DSEM code relies on heavily optimized linear algebra operation such as matrix-matrix and matrix-vector products for calculation of the solution in every time-step. For this, the code can either make use of its matrix math library, BLAS, Intel MKL, or ATLAS. This fact and the discontinuous nature of the method makes the DSEM code run efficiently in parallel. The results of weak scaling tests performed on Blue Waters showed a scalable and efficient performance of the code in parallel computing.

Keywords: computational fluid dynamics, direct numerical simulation, spectral element, turbulent flow

Procedia PDF Downloads 133
17537 Imaginal and in Vivo Exposure Blended with Emdr: Becoming Unstuck, an Integrated Inpatient Treatment for Post-Traumatic Stress Disorder

Authors: Merrylord Harb-Azar

Abstract:

Traditionally, PTSD treatment has involved trauma-focused cognitive behaviour therapy (TF CBT) to consolidate traumatic memories. A piloted integrated treatment of TF CBT and eye movement desensitisation reprocessing therapy (EMDR) of eight phases will fasten the rate memory is being consolidated and enhance cognitive functioning in patients with PTSD. Patients spend a considerable amount of time in treatment managing their traumas experienced firsthand, or from aversive details ranging from war, assaults, accidents, abuse, hostage related, riots, or natural disasters. The time spent in treatment or as inpatient affects overall quality of life, relationships, cognitive functioning, and overall sense of identity. EMDR is being offered twice a week in conjunction with the standard prolonged exposure as an inpatient in a private hospital. Prolonged exposure for up to 5 hours per day elicits the affect response required for EMDR sessions in the afternoon to unlock unprocessed memories and facilitate consolidation in the amygdala and hippocampus. Results are indicating faster consolidation of memories, reduction in symptoms in a shorter period of time, reduction in admission time, which is enhancing the quality of life and relationships, and improved cognition. The impact of events scale (IES) results demonstrate a significant reduction in symptoms, trauma symptoms inventory (TSI), and posttraumatic stressor disorder check list (PCL) that demonstrates large effect sizes to date. An integrated treatment approach for PTSD achieves a faster resolution of memories, improves cognition, and reduces the amount of time spent in therapy.

Keywords: EMDR enhances cognitive functioning, faster consolidation of trauma memory, integrated treatment of TF CBT and EMDR, reduction in inpatient admission time

Procedia PDF Downloads 145
17536 Amharic Text News Classification Using Supervised Learning

Authors: Misrak Assefa

Abstract:

The Amharic language is the second most widely spoken Semitic language in the world. There are several new overloaded on the web. Searching some useful documents from the web on a specific topic, which is written in the Amharic language, is a challenging task. Hence, document categorization is required for managing and filtering important information. In the classification of Amharic text news, there is still a gap in the domain of information that needs to be launch. This study attempts to design an automatic Amharic news classification using a supervised learning mechanism on four un-touch classes. To achieve this research, 4,182 news articles were used. Naive Bayes (NB) and Decision tree (j48) algorithms were used to classify the given Amharic dataset. In this paper, k-fold cross-validation is used to estimate the accuracy of the classifier. As a result, it shows those algorithms can be applicable in Amharic news categorization. The best average accuracy result is achieved by j48 decision tree and naïve Bayes is 95.2345 %, and 94.6245 % respectively using three categories. This research indicated that a typical decision tree algorithm is more applicable to Amharic news categorization.

Keywords: text categorization, supervised machine learning, naive Bayes, decision tree

Procedia PDF Downloads 209