Search results for: distribution network reconfiguration
7623 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modelling and Solving
Authors: Yasin Tadayonrad
Abstract:
Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading /unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is loading/unloading capacity in each source/ destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.Keywords: supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming
Procedia PDF Downloads 987622 Neural Adaptive Controller for a Class of Nonlinear Pendulum Dynamical System
Authors: Mohammad Reza Rahimi Khoygani, Reza Ghasemi
Abstract:
In this paper, designing direct adaptive neural controller is applied for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) is used for the Neural network (NN). The adaptive neural controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are the merits of this paper. The promising performance of the proposed controllers investigates in simulation results.Keywords: adaptive control, pendulum dynamical system, nonlinear control, adaptive neural controller, nonlinear dynamical, neural network, RBF, driven pendulum, position control
Procedia PDF Downloads 6747621 Convolutional Neural Network and LSTM Applied to Abnormal Behaviour Detection from Highway Footage
Authors: Rafael Marinho de Andrade, Elcio Hideti Shiguemori, Rafael Duarte Coelho dos Santos
Abstract:
Relying on computer vision, many clever things are possible in order to make the world safer and optimized on resource management, especially considering time and attention as manageable resources, once the modern world is very abundant in cameras from inside our pockets to above our heads while crossing the streets. Thus, automated solutions based on computer vision techniques to detect, react, or even prevent relevant events such as robbery, car crashes and traffic jams can be accomplished and implemented for the sake of both logistical and surveillance improvements. In this paper, we present an approach for vehicles’ abnormal behaviors detection from highway footages, in which the vectorial data of the vehicles’ displacement are extracted directly from surveillance cameras footage through object detection and tracking with a deep convolutional neural network and inserted into a long-short term memory neural network for behavior classification. The results show that the classifications of behaviors are consistent and the same principles may be applied to other trackable objects and scenarios as well.Keywords: artificial intelligence, behavior detection, computer vision, convolutional neural networks, LSTM, highway footage
Procedia PDF Downloads 1717620 Pose Normalization Network for Object Classification
Authors: Bingquan Shen
Abstract:
Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.Keywords: convolutional neural networks, object classification, pose normalization, viewpoint invariant
Procedia PDF Downloads 3617619 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems
Authors: Hala Zaghloul, Taymoor Nazmy
Abstract:
One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.Keywords: cognitive system, image processing, segmentation, PCNN kernels
Procedia PDF Downloads 2837618 Energy Efficient Clustering with Adaptive Particle Swarm Optimization
Authors: KumarShashvat, ArshpreetKaur, RajeshKumar, Raman Chadha
Abstract:
Wireless sensor networks have principal characteristic of having restricted energy and with limitation that energy of the nodes cannot be replenished. To increase the lifetime in this scenario WSN route for data transmission is opted such that utilization of energy along the selected route is negligible. For this energy efficient network, dandy infrastructure is needed because it impinges the network lifespan. Clustering is a technique in which nodes are grouped into disjoints and non–overlapping sets. In this technique data is collected at the cluster head. In this paper, Adaptive-PSO algorithm is proposed which forms energy aware clusters by minimizing the cost of locating the cluster head. The main concern is of the suitability of the swarms by adjusting the learning parameters of PSO. Particle Swarm Optimization converges quickly at the beginning stage of the search but during the course of time, it becomes stable and may be trapped in local optima. In suggested network model swarms are given the intelligence of the spiders which makes them capable enough to avoid earlier convergence and also help them to escape from the local optima. Comparison analysis with traditional PSO shows that new algorithm considerably enhances the performance where multi-dimensional functions are taken into consideration.Keywords: Particle Swarm Optimization, adaptive – PSO, comparison between PSO and A-PSO, energy efficient clustering
Procedia PDF Downloads 2537617 Recovery of Helicobacter Pylori from Stagnant and Moving Water Biofilms
Authors: Maryam Zafar, Sajida Rasheed, Imran Hashmi
Abstract:
Water as an environmental reservoir is reported to act as a habitat and transmission route to microaerophilic bacteria such as Heliobacter pylori. It has been studied that in biofilms are the predominant dwellings for the bacteria to grow in water and protective reservoir for numerous pathogens by protecting them against harsh conditions, such as shear stress, low carbon concentration and less than optimal temperature. In this study, influence of these and many other parameters was studied on H. pylori in stagnant and moving water biofilms both in surface and underground aquatic reservoirs. H. pylori were recovered from pipe of different materials such as Polyvinyl Chloride, Polypropylene and Galvanized iron pipe cross sections from an urban water distribution network. Biofilm swabbed from inner cross section was examined by molecular biology methods coupled with gene sequencing and H. pylori 16S rRNA peptide nucleic acid probe showing positive results for H. pylori presence. Studies showed that pipe material affect growth of biofilm which in turn provide additional survival mechanism for pathogens like H. pylori causing public health concerns.Keywords: biofilm, gene sequencing, heliobacter pylori, pipe materials
Procedia PDF Downloads 3647616 Building Energy Modeling for Networks of Data Centers
Authors: Eric Kumar, Erica Cochran, Zhiang Zhang, Wei Liang, Ronak Mody
Abstract:
The objective of this article was to create a modelling framework that exposes the marginal costs of shifting workloads across geographically distributed data-centers. Geographical distribution of internet services helps to optimize their performance for localized end users with lowered communications times and increased availability. However, due to the geographical and temporal effects, the physical embodiments of a service's data center infrastructure can vary greatly. In this work, we first identify that the sources of variances in the physical infrastructure primarily stem from local weather conditions, specific user traffic profiles, energy sources, and the types of IT hardware available at the time of deployment. Second, we create a traffic simulator that indicates the IT load at each data-center in the set as an approximator for user traffic profiles. Third, we implement a framework that quantifies the global level energy demands using building energy models and the traffic profiles. The results of the model provide a time series of energy demands that can be used for further life cycle analysis of internet services.Keywords: data-centers, energy, life cycle, network simulation
Procedia PDF Downloads 1507615 Comparative Study of Scheduling Algorithms for LTE Networks
Authors: Samia Dardouri, Ridha Bouallegue
Abstract:
Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency.Keywords: LTE, multimedia flows, scheduling algorithms, mobile computing
Procedia PDF Downloads 3897614 Diversity and Taxonomy: Malaysian Marine Algae Genus Halimeda (Halimedaceae, Chlorophyta)
Authors: Nur Farah Ain Zainee, Ahmad Ismail, Nazlina Ibrahim, Asmida Ismail
Abstract:
The study of genus Halimeda in Malaysia is in the early stage due to less specific study on its taxonomy. Most of the previous research tend to choose other genus such as Caulerpa and Gracilaria because of the potential of being utilized. The identification of Halimeda is complex by the high morphological variation within individual species due to different types of habitat and the changes in composition of seawater. The study was completed to study the diversity and distribution of Halimeda in Malaysia and to identify the morphological and anatomical differences between Halimeda species. The methods which have been used for this study are collection of Halimeda and seawater, preservation of specimen, identification of the specimen including the preparation of the temporary slide and decalcification of the calcium layer by using diluted hydrochloric acid. The specimen were processed in laboratory and kept as herbarium specimen in Algae Herbarium, Universiti Kebangsaan Malaysia. Environmental parameters were tested by using YSI multiparameter probe and the recorded data were temperature, salinity, pH and dissolved oxygen. The nutrient content of seawater such as nitrate and phosphate were analysed by using Hach kit model DR 2000. In the present study, out of 330 herbarium specimen, ten species were identified as Halimeda cuneata, H. discoidea, H. macroloba, H. macrophysa, H. opuntia, H. simulans, H. stuposa, H. taenicola, H. tuna and H. velasquezii. Of these, five species were new record to Malaysia. They are Halimeda cuneata, H. macrophysa, H. stuposa, H. taenicola and H. velasquezii. H. opuntia was found as the most abundance species with wide distribution in Malaysia coastal area. Meanwhile, from the study of their distribution, two localities in which Pulau Balak Balak, Kudat and Pulau Langkawi, Kedah, were noted having high number of Halimeda species. As a conclusion, this study has successfully identified ten species of Halimeda of Malaysia with full description of morphological characteristics that may assist further researcher to differentiate and identify Halimeda.Keywords: Distribution, diversity, Halimeda, morphological, taxonomy
Procedia PDF Downloads 3567613 Voltage and Frequency Regulation Using the Third-Party Mid-Size Battery
Authors: Roghieh A. Biroon, Zoleikha Abdollahi
Abstract:
The recent growth of renewables, e.g., solar panels, batteries, and electric vehicles (EVs) in residential and small commercial sectors, has potential impacts on the stability and operation of power grids. Considering approximately 50 percent share of the residential and the commercial sectors in the electricity demand market, the significance of these impacts, and the necessity of addressing them are more highlighted. Utilities and power system operators should manage the renewable electricity sources integration with power systems in such a way to extract the most possible advantages for the power systems. The most common effect of high penetration level of the renewables is the reverse power flow in the distribution feeders when the customers generate more power than their needs. The reverse power flow causes voltage rise and thermal issues in the power grids. To overcome the voltage rise issues in the distribution system, several techniques have been proposed including reducing transformers short circuit resistance and feeder impedance, installing autotransformers/voltage regulators along the line, absorbing the reactive power by distributed generators (DGs), and limiting the PV and battery sizes. In this study, we consider a medium-scale battery energy storage to manage the power energy and address the aforementioned issues on voltage deviation and power loss increase. We propose an optimization algorithm to find the optimum size and location for the battery. The optimization for the battery location and size is so that the battery maintains the feeder voltage deviation and power loss at a certain desired level. Moreover, the proposed optimization algorithm controls the charging/discharging profile of the battery to absorb the negative power flow from residential and commercial customers in the feeder during the peak time and sell the power back to the system during the off-peak time. The proposed battery regulates the voltage problem in the distribution system while it also can play frequency regulation role in islanded microgrids. This battery can be regulated and controlled by the utilities or a third-party ancillary service provider for the utilities to reduce the power system loss and regulate the distribution feeder voltage and frequency in standard level.Keywords: ancillary services, battery, distribution system and optimization
Procedia PDF Downloads 1357612 Bayesian Analysis of Topp-Leone Generalized Exponential Distribution
Authors: Najrullah Khan, Athar Ali Khan
Abstract:
The Topp-Leone distribution was introduced by Topp- Leone in 1955. In this paper, an attempt has been made to fit Topp-Leone Generalized exponential (TPGE) distribution. A real survival data set is used for illustrations. Implementation is done using R and JAGS and appropriate illustrations are made. R and JAGS codes have been provided to implement censoring mechanism using both optimization and simulation tools. The main aim of this paper is to describe and illustrate the Bayesian modelling approach to the analysis of survival data. Emphasis is placed on the modeling of data and the interpretation of the results. Crucial to this is an understanding of the nature of the incomplete or 'censored' data encountered. Analytic approximation and simulation tools are covered here, but most of the emphasis is on Markov chain based Monte Carlo method including independent Metropolis algorithm, which is currently the most popular technique. For analytic approximation, among various optimization algorithms and trust region method is found to be the best. In this paper, TPGE model is also used to analyze the lifetime data in Bayesian paradigm. Results are evaluated from the above mentioned real survival data set. The analytic approximation and simulation methods are implemented using some software packages. It is clear from our findings that simulation tools provide better results as compared to those obtained by asymptotic approximation.Keywords: Bayesian Inference, JAGS, Laplace Approximation, LaplacesDemon, posterior, R Software, simulation
Procedia PDF Downloads 5387611 Signal Strength Based Multipath Routing for Mobile Ad Hoc Networks
Authors: Chothmal
Abstract:
In this paper, we present a route discovery process which uses the signal strength on a link as a parameter of its inclusion in the route discovery method. The proposed signal-to-interference and noise ratio (SINR) based multipath reactive routing protocol is named as SINR-MP protocol. The proposed SINR-MP routing protocols has two following two features: a) SINR-MP protocol selects routes based on the SINR of the links during the route discovery process therefore it select the routes which has long lifetime and low frame error rate for data transmission, and b) SINR-MP protocols route discovery process is multipath which discovers more than one SINR based route between a given source destination pair. The multiple routes selected by our SINR-MP protocol are node-disjoint in nature which increases their robustness against link failures, as failure of one route will not affect the other route. The secondary route is very useful in situations where the primary route is broken because we can now use the secondary route without causing a new route discovery process. Due to this, the network overhead caused by a route discovery process is avoided. This increases the network performance greatly. The proposed SINR-MP routing protocol is implemented in the trail version of network simulator called Qualnet.Keywords: ad hoc networks, quality of service, video streaming, H.264/SVC, multiple routes, video traces
Procedia PDF Downloads 2547610 Support of Syrian Refugees: The Roles of Descriptive and Injunctive Norms, Perception of Threat, and Negative Emotions
Authors: Senay Yitmen
Abstract:
This research investigated individual’s support and helping intentions towards Syrian refugees in Turkey. This is examined in relation to perceived threat and negative emotions, and also to the perceptions of whether one’s intimate social network (family and friends) considers Syrians a threat (descriptive network norm) and whether this network morally supports Syrian refugees (injunctive norms). A questionnaire study was conducted among Turkish participants (n= 565) and the results showed that perception of threat was associated with negative emotions which, in turn, were related to less support of Syrian refugees. Additionally, descriptive norms moderated the relationship between perceived threat and negative emotions towards Syrian refugees. Furthermore, injunctive norms moderated the relationship between negative emotions and support to Syrian refugees. Specifically, the findings indicate that perceived threat is associated with less support of Syrian refugees through negative emotions when descriptive norms are weak and injunctive norms are strong. Injunctive norms appear to trigger a dilemma over the decision to conform or not to conform: when one has negative emotions as a result of perceived threat, it becomes more difficult to conform to the moral obligation of injunctive norms which is associated with less support of Syrian refugees. Hence, these findings demonstrate that both descriptive and injunctive norms are important and play different roles in individual’s support of Syrian refugees.Keywords: descriptive norms, emotions, injunctive norms, the perception of threat
Procedia PDF Downloads 1947609 Improving Monitoring and Fault Detection of Solar Panels Using Arduino Mega in WSN
Authors: Ali Al-Dahoud, Mohamed Fezari, Thamer Al-Rawashdeh, Ismail Jannoud
Abstract:
Monitoring and detecting faults on a set of Solar panels, using a wireless sensor network (WNS) is our contribution in this paper, This work is part of the project we are working on at Al-Zaytoonah University. The research problem has been exposed by engineers and technicians or operators dealing with PV panels maintenance, in order to monitor and detect faults within solar panels which affect considerably the energy produced by the solar panels. The proposed solution is based on installing WSN nodes with appropriate sensors for more often occurred faults on the 45 solar panels installed on the roof of IT faculty. A simulation has been done on nodes distribution and a study for the design of a node with appropriate sensors taking into account the priorities of the processing faults. Finally, a graphic user interface is designed and adapted to telemonitoring panels using WSN. The primary tests of hardware implementation gave interesting results, the sensors calibration and interference transmission problem have been solved. A friendly GUI using high level language Visial Basic was developed to carry out the monitoring process and to save data on Exel File.Keywords: Arduino Mega microcnotroller, solar panels, fault-detection, simulation, node design
Procedia PDF Downloads 4687608 TNFRSF11B Gene Polymorphisms A163G and G11811C in Prediction of Osteoporosis Risk
Authors: I. Boroňová, J.Bernasovská, J. Kľoc, Z. Tomková, E. Petrejčíková, D. Gabriková, S. Mačeková
Abstract:
Osteoporosis is a complex health disease characterized by low bone mineral density, which is determined by an interaction of genetics with metabolic and environmental factors. Current research in genetics of osteoporosis is focused on identification of responsible genes and polymorphisms. TNFRSF11B gene plays a key role in bone remodeling. The aim of this study was to investigate the genotype and allele distribution of A163G (rs3102735) osteoprotegerin gene promoter and G1181C (rs2073618) osteoprotegerin first exon polymorphisms in the group of 180 unrelated postmenopausal women with diagnosed osteoporosis and 180 normal controls. Genomic DNA was isolated from peripheral blood leukocytes using standard methodology. Genotyping for presence of different polymorphisms was performed using the Custom Taqman®SNP Genotyping assays. Hardy-Weinberg equilibrium was tested for each SNP in the groups of participants using the chi-square (χ2) test. The distribution of investigated genotypes in the group of patients with osteoporosis were as follows: AA (66.7%), AG (32.2%), GG (1.1%) for A163G polymorphism; GG (19.4%), CG (44.4%), CC (36.1%) for G1181C polymorphism. The distribution of genotypes in normal controls were follows: AA (71.1%), AG (26.1%), GG (2.8%) for A163G polymorphism; GG (22.2%), CG (48.9%), CC (28.9%) for G1181C polymorphism. In A163G polymorphism the variant G allele was more common among patients with osteoporosis: 17.2% versus 15.8% in normal controls. Also, in G1181C polymorphism the phenomenon of more frequent occurrence of C allele in the group of patients with osteoporosis was observed (58.3% versus 53.3%). Genotype and allele distributions showed no significant differences (A163G: χ2=0.270, p=0.605; χ2=0.250, p=0.616; G1181C: χ2= 1.730, p=0.188; χ2=1.820, p=0.177). Our results represents an initial study, further studies of more numerous file and associations studies will be carried out. Knowing the distribution of genotypes is important for assessing the impact of these polymorphisms on various parameters associated with osteoporosis. Screening for identification of “at-risk” women likely to develop osteoporosis and initiating subsequent early intervention appears to be most effective strategy to substantially reduce the risks of osteoporosis.Keywords: osteoporosis, real-time PCR method, SNP polymorphisms
Procedia PDF Downloads 3377607 Forecasting Performance Comparison of Autoregressive Fractional Integrated Moving Average and Jordan Recurrent Neural Network Models on the Turbidity of Stream Flows
Authors: Daniel Fulus Fom, Gau Patrick Damulak
Abstract:
In this study, the Autoregressive Fractional Integrated Moving Average (ARFIMA) and Jordan Recurrent Neural Network (JRNN) models were employed to model the forecasting performance of the daily turbidity flow of White Clay Creek (WCC). The two methods were applied to the log difference series of the daily turbidity flow series of WCC. The measurements of error employed to investigate the forecasting performance of the ARFIMA and JRNN models are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The outcome of the investigation revealed that the forecasting performance of the JRNN technique is better than the forecasting performance of the ARFIMA technique in the mean square error sense. The results of the ARFIMA and JRNN models were obtained by the simulation of the models using MATLAB version 8.03. The significance of using the log difference series rather than the difference series is that the log difference series stabilizes the turbidity flow series than the difference series on the ARFIMA and JRNN.Keywords: auto regressive, mean absolute error, neural network, root square mean error
Procedia PDF Downloads 2707606 Pion/Muon Identification in a Nuclear Emulsion Cloud Chamber Using Neural Networks
Authors: Kais Manai
Abstract:
The main part of this work focuses on the study of pion/muon separation at low energy using a nuclear Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The work consists of two parts: particle reconstruction algorithm and a Neural Network that assigns to each reconstructed particle the probability to be a muon or a pion. The pion/muon separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data. The algorithm allows to achieve a 60% muon identification efficiency with a pion misidentification smaller than 3%.Keywords: nuclear emulsion, particle identification, tracking, neural network
Procedia PDF Downloads 5147605 Applying Neural Networks for Solving Record Linkage Problem via Fuzzy Description Logics
Authors: Mikheil Kalmakhelidze
Abstract:
Record linkage (RL) problem has become more and more important in recent years due to the growing interest towards big data analysis. The problem can be formulated in a very simple way: Given two entries a and b of a database, decide whether they represent the same object or not. There are two classical deterministic and probabilistic ways of solving the RL problem. Using simple Bayes classifier in many cases produces useful results but sometimes they show to be poor. In recent years several successful approaches have been made towards solving specific RL problems by neural network algorithms including single layer perception, multilayer back propagation network etc. In our work, we model the RL problem for specific dataset of student applications in fuzzy description logic (FDL) where linkage of specific pair (a,b) depends on the truth value of corresponding formula A(a,b) in a canonical FDL model. As a main result, we build neural network for deciding truth value of FDL formulas in a canonical model and thus link RL problem to machine learning. We apply the approach to dataset with 10000 entries and also compare to classical RL solving approaches. The results show to be more accurate than standard probabilistic approach.Keywords: description logic, fuzzy logic, neural networks, record linkage
Procedia PDF Downloads 2757604 Improving Axial-Attention Network via Cross-Channel Weight Sharing
Authors: Nazmul Shahadat, Anthony S. Maida
Abstract:
In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks
Procedia PDF Downloads 907603 A Cognitive Approach to the Optimization of Power Distribution across an Educational Campus
Authors: Mrinmoy Majumder, Apu Kumar Saha
Abstract:
The ever-increasing human population and its demand for energy is placing stress upon conventional energy sources; and as demand for power continues to outstrip supply, the need to optimize energy distribution and utilization is emerging as an important focus for various stakeholders. The distribution of available energy must be achieved in such a way that the needs of the consumer are satisfied. However, if the availability of resources is not sufficient to satisfy consumer demand, it is necessary to find a method to select consumers based on factors such as their socio-economic or environmental impacts. Weighting consumer types in this way can help separate them based on their relative importance, and cognitive optimization of the allocation process can then be carried out so that, even on days of particularly scarce supply, the socio-economic impacts of not satisfying the needs of consumers can be minimized. In this context, the present study utilized fuzzy logic to assign weightage to different types of consumers based at an educational campus in India, and then established optimal allocation by applying the non-linear mapping capability of neuro-genetic algorithms. The outputs of the algorithms were compared with similar outputs from particle swarm optimization and differential evolution algorithms. The results of the study demonstrate an option for the optimal utilization of available energy based on the socio-economic importance of consumers.Keywords: power allocation, optimization problem, neural networks, environmental and ecological engineering
Procedia PDF Downloads 4827602 Multi-Modal Feature Fusion Network for Speaker Recognition Task
Authors: Xiang Shijie, Zhou Dong, Tian Dan
Abstract:
Speaker recognition is a crucial task in the field of speech processing, aimed at identifying individuals based on their vocal characteristics. However, existing speaker recognition methods face numerous challenges. Traditional methods primarily rely on audio signals, which often suffer from limitations in noisy environments, variations in speaking style, and insufficient sample sizes. Additionally, relying solely on audio features can sometimes fail to capture the unique identity of the speaker comprehensively, impacting recognition accuracy. To address these issues, we propose a multi-modal network architecture that simultaneously processes both audio and text signals. By gradually integrating audio and text features, we leverage the strengths of both modalities to enhance the robustness and accuracy of speaker recognition. Our experiments demonstrate significant improvements with this multi-modal approach, particularly in complex environments, where recognition performance has been notably enhanced. Our research not only highlights the limitations of current speaker recognition methods but also showcases the effectiveness of multi-modal fusion techniques in overcoming these limitations, providing valuable insights for future research.Keywords: feature fusion, memory network, multimodal input, speaker recognition
Procedia PDF Downloads 417601 Decoding Digital Culture: A Semiotic Analysis of Social Media Representation in ‘The Social Network'
Authors: Nathan Junell S. Arjona, Al-Noor O. Guinal, Marc Leugin V. Logronio, Jean Clark L. Naga
Abstract:
This study looks at how digital culture is shown in David Fincher's movie "The Social Network." It uses a mix of methods from different theories, including Saussurean semiotics, Castells' Network Society theory, and Jenkins' ideas on digital culture. The research focuses on three important scenes from the film, analyzing them in a clear three-step process. This reveals how movies tell stories about the rise of technology. By using a detailed approach, the study shows that digital platforms connect people but can also create gaps in their experiences. The main findings highlight how the film portrays social networks as important cultural systems. It uncovers the power struggles and identities shaped by technology. The research explains how movies help us understand changes in digital culture, challenging old ways of thinking about technology. This analysis connects film studies, digital sociology, and cultural theory, providing a solid way to understand how technology is represented in modern media. By exploring how technology is turned into cultural stories, the study offers important insights into the changing world of digital culture.Keywords: digital culture, media, social media representation, digital identity
Procedia PDF Downloads 117600 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection
Procedia PDF Downloads 1497599 Surveying Energy Dissipation in Stepped Spillway Using Finite Element Modeling
Authors: Mehdi Fuladipanah
Abstract:
Stepped spillway includes several steps from the crest to the toe. The steps of stepped spillway could cause to decrease the energy with making energy distribution in the longitude mode and also to reduce the outcome speed. The aim of this study was to stimulate the stepped spillway combined with stilling basin-step using Fluent model and the turbulent superficial flow using RNG, K-ε. The free surface of the flow was monitored by VOF model. The velocity and the depth of the flow were measured by tail water depth by the numerical model and then the dissipated energy was calculated along the spillway. The results indicated that the stilling basin-step complex may cause energy dissipation increment in the stepped spillway. Also, the numerical model was suggested as an effective method to predict the circular and complicated flows in the stepped spillways.Keywords: stepped spillway, fluent model, VOF model, K-ε model, energy distribution
Procedia PDF Downloads 3747598 A Verification Intellectual Property for Multi-Flow Rate Control on Any Single Flow Bus Functional Model
Authors: Pawamana Ramachandra, Jitesh Gupta, Saranga P. Pogula
Abstract:
In verification of high volume and complex packet processing IPs, finer control of flow management aspects (for example, rate, bits/sec etc.) per flow class (or a virtual channel or a software thread) is needed. When any Software/Universal Verification Methodology (UVM) thread arbitration is left to the simulator (e.g., Verilog Compiler Simulator (VCS) or Incisive Enterprise Simulator core simulation engine (NCSIM)), it is hard to predict its pattern of resulting distribution of bandwidth by the simulator thread arbitration. In many cases, the patterns desired in a test scenario may not be accomplished as the simulator might give a different distribution than what was required. This can lead to missing multiple traffic scenarios, specifically deadlock and starvation related. We invented a component (namely Flow Manager Verification IP) to be intervening between the application (test case) and the protocol VIP (with UVM sequencer) to control the bandwidth per thread/virtual channel/flow. The Flow Manager has knobs visible to the UVM sequence/test to configure the required distribution of rate per thread/virtual channel/flow. This works seamlessly and produces rate stimuli to further harness the Design Under Test (DUT) with asymmetric inputs compared to the programmed bandwidth/Quality of Service (QoS) distributions in the Design Under Test.Keywords: flow manager, UVM sequencer, rated traffic generation, quality of service
Procedia PDF Downloads 1057597 The Relationship between Metropolitan Space and Spatial Distribution of Main Innovative Actors: The Case of Yangtze Delta Metropolitan in China
Authors: Jun Zhou, Xingping Wang, Paul Milbourne
Abstract:
Evidences in the world shows that the industry and population have being greatly concentrated in metropolitan regions which is getting to be the most important area for the economic power and people living standard in the future. In the meanwhile, the relevant innovation theories of Agglomeration, New Industrial Geography and Modern Evolutionary innovation prove that the reason why the agglomeration in world-class city and metropolitan areas and also verify innovation is the key point for the development of metropolis. The primary purpose of this paper is to analyze the geographical spatial characteristics of innovative subjects which contain firm, university, research institution, government and intermediary organ in metropolis throughout the amount data analysis in Yangtze River Metropolis in China. The results show three main conclusions. The first is different subjects in different regions have different spatial characteristics. The second one is different structure and pattern between the subjects also can produce different innovative effect. The last but not the least is agglomeration of innovative subjects’ is not only influenced by the innovative network or local policies but also affected by the localized industry characteristics and culture which are getting to be the most important crucial factors.Keywords: metropolitan development, innovative subject, spatial, Yangtze River Metropolis, China
Procedia PDF Downloads 3797596 Virtualization and Visualization Based Driver Configuration in Operating System
Authors: Pavan Shah
Abstract:
In an Embedded system, Virtualization and visualization technology can provide us an effective response and measurable work in a software development environment. In addition to work of virtualization and virtualization can be easily deserved to provide the best resource sharing between real-time hardware applications and a healthy environment. However, the virtualization is noticeable work to minimize the I/O work and utilize virtualization & virtualization technology for either a software development environment (SDE) or a runtime environment of real-time embedded systems (RTMES) or real-time operating system (RTOS) eras. In this Paper, we particularly focus on virtualization and visualization overheads data of network which generates the I/O and implementation of standardized I/O (i.e., Virto), which can work as front-end network driver in a real-time operating system (RTOS) hardware module. Even there have been several work studies are available based on the virtualization operating system environment, but for the Virto on a general-purpose OS, my implementation is on the open-source Virto for a real-time operating system (RTOS). In this paper, the measurement results show that implementation which can improve the bandwidth and latency of memory management of the real-time operating system environment (RTMES) for getting more accuracy of the trained model.Keywords: virtualization, visualization, network driver, operating system
Procedia PDF Downloads 1367595 Enhancement of Capacity in a MC-CDMA based Cognitive Radio Network Using Non-Cooperative Game Model
Authors: Kalyani Kulkarni, Bharat Chaudhari
Abstract:
This paper addresses the issue of resource allocation in the emerging cognitive technology. Focusing the quality of service (QoS) of primary users (PU), a novel method is proposed for the resource allocation of secondary users (SU). In this paper, we propose the unique utility function in the game theoretic model of Cognitive Radio which can be maximized to increase the capacity of the cognitive radio network (CRN) and to minimize the interference scenario. The utility function is formulated to cater the need of PUs by observing Signal to Noise ratio. The existence of Nash equilibrium is for the postulated game is established.Keywords: cognitive networks, game theory, Nash equilibrium, resource allocation
Procedia PDF Downloads 4857594 Research on the Evaluation and Delineation of Value Units of New Industrial Parks Based on Implementation-Orientation
Authors: Chengfang Wang, Zichao Wu, Jianying Zhou
Abstract:
At present, much attention is paid to the development of new industrial parks in the era of inventory planning. Generally speaking, there are two types of development models: incremental development models and stock development models. The former relies on key projects to build a value innovation park, and the latter relies on the iterative update of the park to build a value innovation park. Take the Baiyun Western Digital Park as an example, considering the growth model of value units, determine the evaluation target. Based on a GIS platform, comprehensive land-use status, regulatory detailed planning, land use planning, blue-green ecological base, rail transit system, road network system, industrial park distribution, public service facilities, and other factors are used to carry out the land use within the planning multi-factor superimposed comprehensive evaluation, constructing a value unit evaluation system, and delineating value units based on implementation orientation and combining two different development models. The research hopes to provide a reference for the planning and construction of new domestic industrial parks.Keywords: value units, GIS, multi-factor evaluation, implementation orientation
Procedia PDF Downloads 193