Search results for: data center
24667 Data Security and Privacy Challenges in Cloud Computing
Authors: Amir Rashid
Abstract:
Cloud Computing frameworks empower organizations to cut expenses by outsourcing computation resources on-request. As of now, customers of Cloud service providers have no methods for confirming the privacy and ownership of their information and data. To address this issue we propose the platform of a trusted cloud computing program (TCCP). TCCP empowers Infrastructure as a Service (IaaS) suppliers, for example, Amazon EC2 to give a shout box execution condition that ensures secret execution of visitor virtual machines. Also, it permits clients to bear witness to the IaaS supplier and decide if the administration is secure before they dispatch their virtual machines. This paper proposes a Trusted Cloud Computing Platform (TCCP) for guaranteeing the privacy and trustworthiness of computed data that are outsourced to IaaS service providers. The TCCP gives the deliberation of a shut box execution condition for a client's VM, ensuring that no cloud supplier's authorized manager can examine or mess up with its data. Furthermore, before launching the VM, the TCCP permits a client to dependably and remotely acknowledge that the provider at backend is running a confided in TCCP. This capacity extends the verification of whole administration, and hence permits a client to confirm the data operation in secure mode.Keywords: cloud security, IaaS, cloud data privacy and integrity, hybrid cloud
Procedia PDF Downloads 29924666 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record
Authors: Raghavi C. Janaswamy
Abstract:
In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.Keywords: electronic health record, graph neural network, heterogeneous data, prediction
Procedia PDF Downloads 8624665 A Proposal to Tackle Security Challenges of Distributed Systems in the Healthcare Sector
Authors: Ang Chia Hong, Julian Khoo Xubin, Burra Venkata Durga Kumar
Abstract:
Distributed systems offer many benefits to the healthcare industry. From big data analysis to business intelligence, the increased computational power and efficiency from distributed systems serve as an invaluable resource in the healthcare sector to utilize. However, as the usage of these distributed systems increases, many issues arise. The main focus of this paper will be on security issues. Many security issues stem from distributed systems in the healthcare industry, particularly information security. The data of people is especially sensitive in the healthcare industry. If important information gets leaked (Eg. IC, credit card number, address, etc.), a person’s identity, financial status, and safety might get compromised. This results in the responsible organization losing a lot of money in compensating these people and even more resources expended trying to fix the fault. Therefore, a framework for a blockchain-based healthcare data management system for healthcare was proposed. In this framework, the usage of a blockchain network is explored to store the encryption key of the patient’s data. As for the actual data, it is encrypted and its encrypted data, called ciphertext, is stored in a cloud storage platform. Furthermore, there are some issues that have to be emphasized and tackled for future improvements, such as a multi-user scheme that could be proposed, authentication issues that have to be tackled or migrating the backend processes into the blockchain network. Due to the nature of blockchain technology, the data will be tamper-proof, and its read-only function can only be accessed by authorized users such as doctors and nurses. This guarantees the confidentiality and immutability of the patient’s data.Keywords: distributed, healthcare, efficiency, security, blockchain, confidentiality and immutability
Procedia PDF Downloads 18424664 The Role of Artificial Intelligence Algorithms in Decision-Making Policies
Authors: Marisa Almeida AraúJo
Abstract:
Artificial intelligence (AI) tools are being used (including in the criminal justice system) and becomingincreasingly popular. The many questions that these (future) super-beings pose the neuralgic center is rooted in the (old) problematic between rationality and morality. For instance, if we follow a Kantian perspective in which morality derives from AI, rationality will also surpass man in ethical and moral standards, questioning the nature of mind, the conscience of self and others, and moral. The recognition of superior intelligence in a non-human being puts us in the contingency of having to recognize a pair in a form of new coexistence and social relationship. Just think of the humanoid robot Sophia, capable of reasoning and conversation (and who has been recognized for Saudi citizenship; a fact that symbolically demonstrates our empathy with the being). Machines having a more intelligent mind, and even, eventually, with higher ethical standards to which, in the alluded categorical imperative, we would have to subject ourselves under penalty of contradiction with the universal Kantian law. Recognizing the complex ethical and legal issues and the significant impact on human rights and democratic functioning itself is the goal of our work.Keywords: ethics, artificial intelligence, legal rules, principles, philosophy
Procedia PDF Downloads 19824663 Science of Social Work: Recognizing Its Existence as a Scientific Discipline by a Method Triangulation
Authors: Sandra Mendes
Abstract:
Social Work has encountered over time with multivariate requests in the field of its action, provisioning frameworks of knowledge and praxis. Over the years, we have observed a transformation of society and, consequently, of the public who deals with the social work practitioners. Both, training and profession have had need to adapt and readapt the ways of doing, bailing up theories to action, while action unfolds emancipation of new theories. The theoretical questioning of this subject lies on classical authors from social sciences, and contemporary authors of Social Work. In fact, both enhance, in the design of social work, an integration and social cohesion function, creating a culture of action and theory, attributing to its method a relevant function, which shall be promoter of social changes in various dimensions of both individual and collective life, as well as scientific knowledge. On the other hand, it is assumed that Social Work, through its professionalism and through the academy, is now closer to distinguish itself from other Social Sciences as an autonomous scientific field, being, however, in the center of power struggles. This paper seeks to fill the gap in social work literature about the study of the scientific field of this area of knowledge.Keywords: field theory, knowledge, science, social work
Procedia PDF Downloads 35524662 Activation-TV® to Reduce Elderly Loneliness and Insecurity
Authors: Hannele Laaksonen, Seija Nyqvist, Kari Nurmes
Abstract:
Objectives: In the year 2011 the City of Vaasa started to develop know-how in the technology and the introduction of services for aging people in cooperation with the Polytechnic Novia University of Applied Sciences and VAMK, University of Applied Sciences. The project´s targets included: to help elderly people to maintain their ability to function, to provide them social and physical activities, to prevent their social exclusion, to decrease their feelings of loneliness and insecurity and to develop their technical know-how. Methods: The project was built based on open source code, tailor-made service system and user interface for the elderly living at home and their families, based on the users´ expectations and experiences of services. Activation-TV®-project vas carried out 1.4.2011-31.3.2014. A pilot group of eight elderly persons, who were living at home, were selected to the project. All necessary technical means as well as guidance and teaching equipment were provided to the pilot group. The students of University of Applied Sciences (VAMK, Novia) and employees of Center of Ageing were made all programs to the Activation-TV®. The project group were interviewed after and before intervention. The data were evaluated both qualitatively and quantitatively. Results: The built service includes a video library, a group room for interactive programs and a personal room for bilateral meetings and direct shipment. The program is bilingual and produced in both national languages. The Activation TV® reduced elderly peoples´ (n=8) feelings of emptiness, added mental well-being and quality of life with social contacts. Relatives felt, that they were able to get in to older peoples´ everyday life with Activation TV®. Discussion: The built application was tailored to the model that has not been developed elsewhere in Finland. This model can be copied from one server to another and thus transferred to other municipalities but the program requires its own personnel system management and maintenance as well as program production cooperation between the different actors. This service can be used for the elderly who are living at home without dementia.Keywords: mental well-being, quality of life, elderly people, Finland
Procedia PDF Downloads 34224661 Transformations of Land Uses and Attitudes in Manavgat Region at South Turkey
Authors: Emrah Yildirim, Veli Ortacesme
Abstract:
Manavgat region, located in Antalya province at South Turkey, has hosted many civilizations throughout the centuries. All of these civilizations cultivated the land in their surroundings by engaging in agriculture, livestock production and hunting. In the last 50 years, there have been dramatic changes in the region. The economy of the region switched from the agriculture to tourism. Due to the increase in the irrigable agricultural lands, several dams were built on Manavgat River. Developments in the agricultural mechanization and new product needs have changed the pattern of agriculture and regional landscape. Coastal zone of the region has transformed to tourism areas, Manavgat Town Center has grown up and the urbanization in general has increased. The population and urbanization have increased by 257 % and 276 %, respectively. The tourism and commercial areas cover 561,8 hectares today. All these developments had some negative effects on the environment. In this study, land use/land cover transformations were studied in Manavgat region by using aerial photos. The reasons and consequences of the land use transformations were discussed, and some recommendations regarding the sustainable use of this region’s landscape will be shared.Keywords: land use, Manavgat region, south Turkey, transformation
Procedia PDF Downloads 39924660 Design and Implementation of a Geodatabase and WebGIS
Authors: Sajid Ali, Dietrich Schröder
Abstract:
The merging of internet and Web has created many disciplines and Web GIS is one these disciplines which is effectively dealing with the geospatial data in a proficient way. Web GIS technologies have provided an easy accessing and sharing of geospatial data over the internet. However, there is a single platform for easy and multiple accesses of the data lacks for the European Caribbean Association (Europaische Karibische Gesselschaft - EKG) to assist their members and other research community. The technique presented in this paper deals with designing of a geodatabase using PostgreSQL/PostGIS as an object oriented relational database management system (ORDBMS) for competent dissemination and management of spatial data and Web GIS by using OpenGeo Suite for the fast sharing and distribution of the data over the internet. The characteristics of the required design for the geodatabase have been studied and a specific methodology is given for the purpose of designing the Web GIS. At the end, validation of this Web based geodatabase has been performed over two Desktop GIS software and a web map application and it is also discussed that the contribution has all the desired modules to expedite further research in the area as per the requirements.Keywords: desktop GISSoftware, European Caribbean association, geodatabase, OpenGeo suite, postgreSQL/PostGIS, webGIS, web map application
Procedia PDF Downloads 34124659 Integration of “FAIR” Data Principles in Longitudinal Mental Health Research in Africa: Lessons from a Landscape Analysis
Authors: Bylhah Mugotitsa, Jim Todd, Agnes Kiragga, Jay Greenfield, Evans Omondi, Lukoye Atwoli, Reinpeter Momanyi
Abstract:
The INSPIRE network aims to build an open, ethical, sustainable, and FAIR (Findable, Accessible, Interoperable, Reusable) data science platform, particularly for longitudinal mental health (MH) data. While studies have been done at the clinical and population level, there still exists limitations in data and research in LMICs, which pose a risk of underrepresentation of mental disorders. It is vital to examine the existing longitudinal MH data, focusing on how FAIR datasets are. This landscape analysis aimed to provide both overall level of evidence of availability of longitudinal datasets and degree of consistency in longitudinal studies conducted. Utilizing prompters proved instrumental in streamlining the analysis process, facilitating access, crafting code snippets, categorization, and analysis of extensive data repositories related to depression, anxiety, and psychosis in Africa. While leveraging artificial intelligence (AI), we filtered through over 18,000 scientific papers spanning from 1970 to 2023. This AI-driven approach enabled the identification of 228 longitudinal research papers meeting inclusion criteria. Quality assurance revealed 10% incorrectly identified articles and 2 duplicates, underscoring the prevalence of longitudinal MH research in South Africa, focusing on depression. From the analysis, evaluating data and metadata adherence to FAIR principles remains crucial for enhancing accessibility and quality of MH research in Africa. While AI has the potential to enhance research processes, challenges such as privacy concerns and data security risks must be addressed. Ethical and equity considerations in data sharing and reuse are also vital. There’s need for collaborative efforts across disciplinary and national boundaries to improve the Findability and Accessibility of data. Current efforts should also focus on creating integrated data resources and tools to improve Interoperability and Reusability of MH data. Practical steps for researchers include careful study planning, data preservation, machine-actionable metadata, and promoting data reuse to advance science and improve equity. Metrics and recognition should be established to incentivize adherence to FAIR principles in MH researchKeywords: longitudinal mental health research, data sharing, fair data principles, Africa, landscape analysis
Procedia PDF Downloads 9024658 Optimizing Data Transfer and Processing in Multi-Cloud Environments for Big Data Workloads
Authors: Gaurav Kumar Sinha
Abstract:
In an era defined by the proliferation of data and the utilization of cloud computing environments, the efficient transfer and processing of big data workloads across multi-cloud platforms have emerged as critical challenges. This research paper embarks on a comprehensive exploration of the complexities associated with managing and optimizing big data in a multi-cloud ecosystem.The foundation of this study is rooted in the recognition that modern enterprises increasingly rely on multiple cloud providers to meet diverse business needs, enhance redundancy, and reduce vendor lock-in. As a consequence, managing data across these heterogeneous cloud environments has become intricate, necessitating innovative approaches to ensure data integrity, security, and performance.The primary objective of this research is to investigate strategies and techniques for enhancing the efficiency of data transfer and processing in multi-cloud scenarios. It recognizes that big data workloads are characterized by their sheer volume, variety, velocity, and complexity, making traditional data management solutions insufficient for harnessing the full potential of multi-cloud architectures.The study commences by elucidating the challenges posed by multi-cloud environments in the context of big data. These challenges encompass data fragmentation, latency, security concerns, and cost optimization. To address these challenges, the research explores a range of methodologies and solutions. One of the key areas of focus is data transfer optimization. The paper delves into techniques for minimizing data movement latency, optimizing bandwidth utilization, and ensuring secure data transmission between different cloud providers. It evaluates the applicability of dedicated data transfer protocols, intelligent data routing algorithms, and edge computing approaches in reducing transfer times.Furthermore, the study examines strategies for efficient data processing across multi-cloud environments. It acknowledges that big data processing requires distributed and parallel computing capabilities that span across cloud boundaries. The research investigates containerization and orchestration technologies, serverless computing models, and interoperability standards that facilitate seamless data processing workflows.Security and data governance are paramount concerns in multi-cloud environments. The paper explores methods for ensuring data security, access control, and compliance with regulatory frameworks. It considers encryption techniques, identity and access management, and auditing mechanisms as essential components of a robust multi-cloud data security strategy.The research also evaluates cost optimization strategies, recognizing that the dynamic nature of multi-cloud pricing models can impact the overall cost of data transfer and processing. It examines approaches for workload placement, resource allocation, and predictive cost modeling to minimize operational expenses while maximizing performance.Moreover, this study provides insights into real-world case studies and best practices adopted by organizations that have successfully navigated the challenges of multi-cloud big data management. It presents a comparative analysis of various multi-cloud management platforms and tools available in the market.Keywords: multi-cloud environments, big data workloads, data transfer optimization, data processing strategies
Procedia PDF Downloads 6824657 Human-Centred Data Analysis Method for Future Design of Residential Spaces: Coliving Case Study
Authors: Alicia Regodon Puyalto, Alfonso Garcia-Santos
Abstract:
This article presents a method to analyze the use of indoor spaces based on data analytics obtained from inbuilt digital devices. The study uses the data generated by the in-place devices, such as smart locks, Wi-Fi routers, and electrical sensors, to gain additional insights on space occupancy, user behaviour, and comfort. Those devices, originally installed to facilitate remote operations, report data through the internet that the research uses to analyze information on human real-time use of spaces. Using an in-place Internet of Things (IoT) network enables a faster, more affordable, seamless, and scalable solution to analyze building interior spaces without incorporating external data collection systems such as sensors. The methodology is applied to a real case study of coliving, a residential building of 3000m², 7 floors, and 80 users in the centre of Madrid. The case study applies the method to classify IoT devices, assess, clean, and analyze collected data based on the analysis framework. The information is collected remotely, through the different platforms devices' platforms; the first step is to curate the data, understand what insights can be provided from each device according to the objectives of the study, this generates an analysis framework to be escalated for future building assessment even beyond the residential sector. The method will adjust the parameters to be analyzed tailored to the dataset available in the IoT of each building. The research demonstrates how human-centered data analytics can improve the future spatial design of indoor spaces.Keywords: in-place devices, IoT, human-centred data-analytics, spatial design
Procedia PDF Downloads 19724656 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce
Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada
Abstract:
With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.Keywords: distributed algorithm, MapReduce, multi-class, support vector machine
Procedia PDF Downloads 40124655 Information Management Approach in the Prediction of Acute Appendicitis
Authors: Ahmad Shahin, Walid Moudani, Ali Bekraki
Abstract:
This research aims at presenting a predictive data mining model to handle an accurate diagnosis of acute appendicitis with patients for the purpose of maximizing the health service quality, minimizing morbidity/mortality, and reducing cost. However, acute appendicitis is the most common disease which requires timely accurate diagnosis and needs surgical intervention. Although the treatment of acute appendicitis is simple and straightforward, its diagnosis is still difficult because no single sign, symptom, laboratory or image examination accurately confirms the diagnosis of acute appendicitis in all cases. This contributes in increasing morbidity and negative appendectomy. In this study, the authors propose to generate an accurate model in prediction of patients with acute appendicitis which is based, firstly, on the segmentation technique associated to ABC algorithm to segment the patients; secondly, on applying fuzzy logic to process the massive volume of heterogeneous and noisy data (age, sex, fever, white blood cell, neutrophilia, CRP, urine, ultrasound, CT, appendectomy, etc.) in order to express knowledge and analyze the relationships among data in a comprehensive manner; and thirdly, on applying dynamic programming technique to reduce the number of data attributes. The proposed model is evaluated based on a set of benchmark techniques and even on a set of benchmark classification problems of osteoporosis, diabetes and heart obtained from the UCI data and other data sources.Keywords: healthcare management, acute appendicitis, data mining, classification, decision tree
Procedia PDF Downloads 35124654 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery
Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene
Abstract:
Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.Keywords: multi-objective, analysis, data flow, freight delivery, methodology
Procedia PDF Downloads 18024653 Minimization of Denial of Services Attacks in Vehicular Adhoc Networking by Applying Different Constraints
Authors: Amjad Khan
Abstract:
The security of Vehicular ad hoc networking is of great importance as it involves serious life threats. Thus to provide secure communication amongst Vehicles on road, the conventional security system is not enough. It is necessary to prevent the network resources from wastage and give them protection against malicious nodes so that to ensure the data bandwidth availability to the legitimate nodes of the network. This work is related to provide a non conventional security system by introducing some constraints to minimize the DoS (Denial of services) especially data and bandwidth. The data packets received by a node in the network will pass through a number of tests and if any of the test fails, the node will drop those data packets and will not forward it anymore. Also if a node claims to be the nearest node for forwarding emergency messages then the sender can effectively identify the true or false status of the claim by using these constraints. Consequently the DoS(Denial of Services) attack is minimized by the instant availability of data without wasting the network resources.Keywords: black hole attack, grey hole attack, intransient traffic tempering, networking
Procedia PDF Downloads 28424652 Traffic Prediction with Raw Data Utilization and Context Building
Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao
Abstract:
Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.Keywords: traffic prediction, raw data utilization, context building, data reduction
Procedia PDF Downloads 12824651 Seismic Interpretation and Petrophysical Evaluation of SM Field, Libya
Authors: Abdalla Abdelnabi, Yousf Abushalah
Abstract:
The G Formation is a major gas producing reservoir in the SM Field, eastern, Libya. It is called G limestone because it consists of shallow marine limestone. Well data and 3D-Seismic in conjunction with the results of a previous study were used to delineate the hydrocarbon reservoir of Middle Eocene G-Formation of SM Field area. The data include three-dimensional seismic data acquired in 2009. It covers approximately an area of 75 mi² and with more than 9 wells penetrating the reservoir. Seismic data are used to identify any stratigraphic and structural and features such as channels and faults and which may play a significant role in hydrocarbon traps. The well data are used to calculation petrophysical analysis of S field. The average porosity of the Middle Eocene G Formation is very good with porosity reaching 24% especially around well W 6. Average water saturation was calculated for each well from porosity and resistivity logs using Archie’s formula. The average water saturation for the whole well is 25%. Structural mapping of top and bottom of Middle Eocene G formation revealed the highest area in the SM field is at 4800 ft subsea around wells W4, W5, W6, and W7 and the deepest point is at 4950 ft subsea. Correlation between wells using well data and structural maps created from seismic data revealed that net thickness of G Formation range from 0 ft in the north part of the field to 235 ft in southwest and south part of the field. The gas water contact is found at 4860 ft using the resistivity log. The net isopach map using both the trapezoidal and pyramid rules are used to calculate the total bulk volume. The original gas in place and the recoverable gas were calculated volumetrically to be 890 Billion Standard Cubic Feet (BSCF) and 630 (BSCF) respectively.Keywords: 3D seismic data, well logging, petrel, kingdom suite
Procedia PDF Downloads 15024650 Analysis of Spatial and Temporal Data Using Remote Sensing Technology
Authors: Kapil Pandey, Vishnu Goyal
Abstract:
Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing
Procedia PDF Downloads 43324649 Ontology-Driven Generation of Radiation Protection Procedures
Authors: Chamseddine Barki, Salam Labidi, Hanen Boussi Rahmouni
Abstract:
In this article, we present the principle and suitable methodology for the design of a medical ontology that highlights the radiological and dosimetric knowledge, applied in diagnostic radiology and radiation-therapy. Our ontology, which we named «Onto.Rap», is the subject of radiation protection in medical and radiology centers by providing a standardized regulatory oversight. Thanks to its added values of knowledge-sharing, reuse and the ease of maintenance, this ontology tends to solve many problems. Of which we name the confusion between radiological procedures a practitioner might face while performing a patient radiological exam. Adding to it, the difficulties they might have in interpreting applicable patient radioprotection standards. Here, the ontology, thanks to its concepts simplification and expressiveness capabilities, can ensure an efficient classification of radiological procedures. It also provides an explicit representation of the relations between the different components of the studied concept. In fact, an ontology based-radioprotection expert system, when used in radiological center, could implement systematic radioprotection best practices during patient exam and a regulatory compliance service auditing afterwards.Keywords: knowledge, ontology, radiation protection, radiology
Procedia PDF Downloads 31224648 An Empirical Investigation of the Challenges of Secure Edge Computing Adoption in Organizations
Authors: Hailye Tekleselassie
Abstract:
Edge computing is a spread computing outline that transports initiative applications closer to data sources such as IoT devices or local edge servers, and possible happenstances would skull the action of new technologies. However, this investigation was attained to investigation the consciousness of technology and communications organization workers and computer users who support the service cloud. Surveys were used to achieve these objectives. Surveys were intended to attain these aims, and it is the functional using survey. Enquiries about confidence are also a key question. Problems like data privacy, integrity, and availability are the factors affecting the company’s acceptance of the service cloud.Keywords: IoT, data, security, edge computing
Procedia PDF Downloads 8324647 Research and Application of Consultative Committee for Space Data Systems Wireless Communications Standards for Spacecraft
Authors: Cuitao Zhang, Xiongwen He
Abstract:
According to the new requirements of the future spacecraft, such as networking, modularization and non-cable, this paper studies the CCSDS wireless communications standards, and focuses on the low data-rate wireless communications for spacecraft monitoring and control. The application fields and advantages of wireless communications are analyzed. Wireless communications technology has significant advantages in reducing the weight of the spacecraft, saving time in spacecraft integration, etc. Based on this technology, a scheme for spacecraft data system is put forward. The corresponding block diagram and key wireless interface design of the spacecraft data system are given. The design proposal of the wireless node and information flow of the spacecraft are also analyzed. The results show that the wireless communications scheme is reasonable and feasible. The wireless communications technology can meet the future spacecraft demands in networking, modularization and non-cable.Keywords: Consultative Committee for Space Data Systems (CCSDS) standards, information flow, non-cable, spacecraft, wireless communications
Procedia PDF Downloads 32924646 The Antecedents of Customer-to-Customer Interaction to Brand and Communication Strategy: A Marketer’s Perspective
Authors: Kartina Sury Kariman
Abstract:
Brand-to-customer (B2C) engagement has been well established through the traditional platform such as direct sales, advertising, customer service center, customer hotline as well as brand usage experiences. Increasingly, interest to B2C has evolved to include customer-to-customer (C2C) interaction analysis aligned with the vast growth of web 2.0. Hence, discussion on C2C interaction and brand strategy have captured social media as it enables brands and C2C interaction to be connected in various ways, providing opportunities for marketers to shape their brand engagement strategy while reaching C2C as the targeted outcomes. The objective here is to provide a preliminary review of C2C interaction consisting the antecedents and consequences while highlighting areas of research interest within the context from marketers perspective and the business outcomes. This paper discusses how C2C interaction defines marketers’ brand and communication strategy and how social media trend shapes the strategy when promoting the awareness of life insurance industry and educating the target market.Keywords: social media, brand engagement, customer interaction, customer engagement, brand strategy, life insurance
Procedia PDF Downloads 46024645 Inversion of Electrical Resistivity Data: A Review
Authors: Shrey Sharma, Gunjan Kumar Verma
Abstract:
High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.Keywords: inversion, limitations, optimization, resistivity
Procedia PDF Downloads 36524644 Evaluation of the Environmental Risk from the Co-Deposition of Waste Rock Material and Fly Ash
Authors: A. Mavrikos, N. Petsas, E. Kaltsi, D. Kaliampakos
Abstract:
The lignite-fired power plants in the Western Macedonia Lignite Center produce more than 8 106 t of fly ash per year. Approximately 90% of this quantity is used for restoration-reclamation of exhausted open-cast lignite mines and slope stabilization of the overburden. The purpose of this work is to evaluate the environmental behavior of the mixture of waste rock and fly ash that is being used in the external deposition site of the South Field lignite mine. For this reason, a borehole was made within the site and 86 samples were taken and subjected to chemical analyses and leaching tests. The results showed very limited leaching of trace elements and heavy metals from this mixture. Moreover, when compared to the limit values set for waste acceptable in inert waste landfills, only few excesses were observed, indicating only minor risk for groundwater pollution. However, due to the complexity of both the leaching process and the contaminant pathway, more boreholes and analyses should be made in nearby locations and a systematic groundwater monitoring program should be implemented both downstream and within the external deposition site.Keywords: co-deposition, fly ash, leaching tests, lignite, waste rock
Procedia PDF Downloads 23824643 A Proposal of Ontology about Brazilian Government Transparency Portal
Authors: Estela Mayra de Moura Vianna, Thiago José Tavares Ávila, Bruno Morais Silva, Diego Henrique Bezerra, Paulo Henrique Gomes Silva, Alan Pedro da Silva
Abstract:
The Brazilian Federal Constitution defines the access to information as a crucial right of the citizen and the Law on Access to Public Information, which regulates this right. Accordingly, the Fiscal Responsibility Act, 2000, amended in 2009 by the “Law of Transparency”, began demanding a wider disclosure of public accounts for the society, including electronic media for public access. Thus, public entities began to create "Transparency Portals," which aim to gather a diversity of data and information. However, this information, in general, is still published in formats that do not simplify understanding of the data by citizens and that could be better especially available for audit purposes. In this context, a proposal of ontology about Brazilian Transparency Portal can play a key role in how these data will be better available. This study aims to identify and implement in ontology, the data model about Transparency Portal ecosystem, with emphasis in activities that use these data for some applications, like audits, press activities, social government control, and others.Keywords: audit, government transparency, ontology, public sector
Procedia PDF Downloads 50624642 Design and Development of Data Mining Application for Medical Centers in Remote Areas
Authors: Grace Omowunmi Soyebi
Abstract:
Data Mining is the extraction of information from a large database which helps in predicting a trend or behavior, thereby helping management make knowledge-driven decisions. One principal problem of most hospitals in rural areas is making use of the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved; this may cause an unexpected to happen to the patient. This Data Mining application is to be designed using a Structured System Analysis and design method, which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the Design and Implementation of a Computerized medical record system. This Computerized system will replace the file management system and help to easily retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.Keywords: data mining, medical record system, systems programming, computing
Procedia PDF Downloads 20924641 A Comprehensive Framework to Ensure Data Security in Cloud Computing: Analysis, Solutions, and Approaches
Authors: Loh Fu Quan, Fong Zi Heng, Burra Venkata Durga Kumar
Abstract:
Cloud computing has completely transformed the way many businesses operate. Traditionally, confidential data of a business is stored in computers located within the premise of the business. Therefore, a lot of business capital is put towards maintaining computing resources and hiring IT teams to manage them. The advent of cloud computing changes everything. Instead of purchasing and managing their infrastructure, many businesses have started to shift towards working with the cloud with the help of a cloud service provider (CSP), leading to cost savings. However, it also introduces security risks. This research paper focuses on the security risks that arise during data migration and user authentication in cloud computing. To overcome this problem, this paper provides a comprehensive framework that includes Transport Layer Security (TLS), user authentication, security tokens and multi-level data encryption. This framework aims to prevent authorized access to cloud resources and data leakage, ensuring the confidentiality of sensitive information. This framework can be used by cloud service providers to strengthen the security of their cloud and instil confidence in their users.Keywords: Cloud computing, Cloud security, Cloud security issues, Cloud security framework
Procedia PDF Downloads 12124640 Using AI for Analysing Political Leaders
Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu
Abstract:
This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence
Procedia PDF Downloads 8624639 A Post-Occupancy Evaluation of LEED-Certified Residential Communities Using Structural Equation Modeling
Authors: Mohsen Goodarzi, George Berghorn
Abstract:
Despite the rapid growth in the number of green building and community development projects, the long-term performance of these projects has not yet been sufficiently evaluated from the users’ points of view. This is partially due to the lack of post-occupancy evaluation tools available for this type of project. In this study, a post-construction evaluation model is developed to evaluate the relationship between the perceived performance and satisfaction of residents in LEED-certified residential buildings and communities. To develop this evaluation model, a primary five-factor model was developed based on the existing models and residential satisfaction theories. Each factor of the model included several measures that were adopted from LEED certification systems such as LEED-BD+C New Construction, LEED-BD+C Multifamily Midrise, LEED-ND, as well as the UC Berkeley’s Center for the Built Environment survey tool. The model included four predictor variables (factors), including perceived building performance (8 measures), perceived infrastructure performance (9 measures), perceived neighborhood design (6 measures), and perceived economic performance (4 measures), and one dependent variable (factor), which was residential satisfaction (6 measures). An online survey was then conducted to collect the data from the residents of LEED-certified residential communities (n=192) and the validity of the model was tested through Confirmatory Factor Analysis (CFA). After modifying the CFA model, 26 measures, out of the initial 33 measures, were retained to enter into a Structural Equation Model (SEM) and to find the relationships between the perceived buildings performance, infrastructure performance, neighborhood design, economic performance and residential Satisfaction. The results of the SEM showed that the perceived building performance was the most influential factor in determining residential satisfaction in LEED-certified communities, followed by the perceived neighborhood design. On the other hand, perceived infrastructure performance and perceived economic performance did not show any significant relationship with residential satisfaction in these communities. This study can benefit green building researchers by providing a model for the evaluation of the long-term performance of these projects. It can also provide opportunities for green building practitioners to determine priorities for future residential development projects.Keywords: green building, residential satisfaction, perceived performance, confirmatory factor analysis, structural equation modeling
Procedia PDF Downloads 23924638 Data Quality on Regular Immunization Programme at Birkod District: Somali Region, Ethiopia
Authors: Eyob Seife, Tesfalem Teshome, Bereket Seyoum, Behailu Getachew, Yohans Demis
Abstract:
Developing countries continue to face preventable communicable diseases, such as vaccine-preventable diseases. The Expanded Programme on Immunization (EPI) was established by the World Health Organization in 1974 to control these diseases. Health data use is crucial in decision-making, but ensuring data quality remains challenging. The study aimed to assess the accuracy ratio, timeliness, and quality index of regular immunization programme data in the Birkod district of the Somali Region, Ethiopia. For poor data quality, technical, contextual, behavioral, and organizational factors are among contributors. The study used a quantitative cross-sectional design conducted in September 2022GC using WHO-recommended data quality self-assessment tools. The accuracy ratio and timeliness of reports on regular immunization programmes were assessed for two health centers and three health posts in the district for one fiscal year. Moreover, the quality index assessment was conducted at the district level and health facilities by trained assessors. The study found poor data quality in the accuracy ratio and timeliness of reports at all health units, which includes zeros. Overreporting was observed for most facilities, particularly at the health post level. Health centers showed a relatively better accuracy ratio than health posts. The quality index assessment revealed poor quality at all levels. The study recommends that responsible bodies at different levels improve data quality using various approaches, such as the capacitation of health professionals and strengthening the quality index components. The study highlighted the need for attention to data quality in general, specifically at the health post level, and improving the quality index at all levels, which is essential.Keywords: Birkod District, data quality, quality index, regular immunization programme, Somali Region-Ethiopia
Procedia PDF Downloads 90