Search results for: steel sheet pile
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2335

Search results for: steel sheet pile

565 Study on Two Way Reinforced Concrete Slab Using ANSYS with Different Boundary Conditions and Loading

Authors: A. Gherbi, L. Dahmani, A. Boudjemia

Abstract:

This paper presents the Finite Element Method (FEM) for analyzing the failure pattern of rectangular slab with various edge conditions. Non-Linear static analysis is carried out using ANSYS 15 Software. Using SOLID65 solid elements, the compressive crushing of concrete is facilitated using plasticity algorithm, while the concrete cracking in tension zone is accommodated by the nonlinear material model. Smeared reinforcement is used and introduced as a percentage of steel embedded in concrete slab. The behavior of the analyzed concrete slab has been observed in terms of the crack pattern and displacement for various loading and boundary conditions. The finite element results are also compared with the experimental data. One of the other objectives of the present study is to show how similar the crack path found by ANSYS program to those observed for the yield line analysis. The smeared reinforcement method is found to be more practical especially for the layered elements like concrete slabs. The value of this method is that it does not require explicit modeling of the rebar, and thus a much coarser mesh can be defined.

Keywords: ANSYS, cracking pattern, displacements, reinforced concrete slab, smeared reinforcements

Procedia PDF Downloads 199
564 Life Cycle Cost Evaluation of Structures with Hysteretic Dampers

Authors: Jinkoo Kim, Hyungoo Kang, Hyungjun Shin

Abstract:

In this study, a hybrid energy dissipation device is developed by combining a steel slit plate and friction pads to be used for seismic retrofit of structures, and its effectiveness is investigated by comparing the life cycle costs of the structure before and after the retrofit. The seismic energy dissipation capability of the dampers is confirmed by cyclic loading tests. The probabilities of reaching various damage states are obtained by fragility analysis, and the life cycle costs of the model structures are computed using the PACT (Performance Assessment Calculation Tool) program based on FEMA P-58 methodology. The fragility analysis shows that the probabilities of reaching limit states are minimized by the seismic retrofit with hybrid dampers and increasing column size. The seismic retrofit with increasing column size and hybrid dampers results in the lowest repair cost and shortest repair time.

Keywords: slit dampers, friction dampers, seismic retrofit, life cycle cost, FEMA P-58, PACT

Procedia PDF Downloads 326
563 Finite Element Modelling of Log Wall Corner Joints

Authors: Reza Kalantari, Ghazanfarah Hafeez

Abstract:

The paper presents outcomes of the numerical research performed on standard and dovetail corner joints under lateral loads. An overview of the past research on log shear walls is also presented. To the authors’ best knowledge, currently, there are no specific design guidelines available in the code for the design of log shear walls, implying the need to investigate the performance of log shear walls. This research explores the performance of the log shear wall corner joint system of standard joint and dovetail types using numerical methods based on research available in the literature. A parametric study is performed to study the effect of gap size provided between two orthogonal logs and the presence of wood and steel dowels provided as joinery between log courses on the performance of such a structural system. The research outcomes are the force-displacement curves. 8% variability is seen in the reaction forces with the change of gap size for the case of the standard joint, while a variation of 10% is observed in the reaction forces for the dovetail joint system.

Keywords: dovetail joint, finite element modelling, log shear walls, standard joint

Procedia PDF Downloads 216
562 Performance of Flat Plate Loop Heat Pipe for Thermal Management of Lithium-Ion Battery in Electric Vehicle Application

Authors: Bambang Ariantara, Nandy Putra, Rangga Aji Pamungkas

Abstract:

The development of electric vehicle batteries has resulted in very high energy density lithium-ion batteries. However, this progress is accompanied by the risk of thermal runaway, which can result in serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight, compact size and do not require external power supply. This paper aims to examine experimentally a flat plate loop heat pipe (FPLHP) performance as a heat exchanger in the thermal management system of the lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gives the best performance that produces the thermal resistance of 0.22 W/°C with 50 °C evaporator temperature at heat flux load of 1.61 W/cm2.

Keywords: electric vehicle, flat-plate loop heat pipe, lithium-ion battery, thermal management system

Procedia PDF Downloads 352
561 Classroom Interaction Patterns as Correlates of Senior Secondary School Achievement in Chemistry in Awka Education Zone

Authors: Emmanuel Nkemakolam Okwuduba, Fransica Chinelo Offiah

Abstract:

The technique of teaching chemistry to students is one of the determining factors towards their achievement. Thus, the study investigated the relationship between classroom interaction patterns and students’ achievement in Chemistry. The purpose of this study was to identify patterns of interaction in an observed chemistry classroom, determine the amount of teacher talk, student talk and period of silence and to find out the relationship between them and the mean achievement scores of students. Five research questions and three hypotheses guided the study. The study was a correlational survey. The sample consisted of 450 (212males and 238 females) senior secondary one students and 12 (5males and 7 females) chemistry teachers drawn from 12 selected secondary schools in Awka Education Zone of Anambra state. In each of the 12 selected schools, an intact class was used. Science Interaction Category (SIC) and Chemistry Achievement Test (CAT) were developed, validated and used for data collection. Each teacher was observed three times and the interaction patterns coded using a coding sheet containing the Science Interaction Category. At the end of the observational period, the Chemistry Achievement Test (for collection of data on students’ achievement in chemistry) was administered on the students. Frequencies, percentage, mean, standard deviation and Pearson product moment correlation were used for data analysis. The result showed that the percentages of teacher talk, student talk and silence were 59.6%, 37.6% and 2.8% respectively. The Pearson correlation coefficient(r) for teacher talk, student talk and silence were -0.61, 0.76 and-0.18 respectively. The result showed negative and significant relationship between teacher talk and mean achievement scores of students; positive and significant relationship between student talk and mean achievement scores of students but there is no relationship between period of silence and mean achievement scores of students at 0.05 significant levels. The following recommendations were made based on the findings: teachers should establish high level of student talk through initiation and response as it promotes involvement and enhances achievement.

Keywords: academic achievement, chemistry, classroom, interactions patterns

Procedia PDF Downloads 309
560 Self-Weight Reduction of Tall Structures by Taper Cladding System

Authors: Divya Dharshini Omprakash, Anjali Subramani

Abstract:

Most of the tall structures are constructed using shear walls and tube systems in the recent decades. This makes the structure heavy and less resistant to lateral effects as the height of the structure goes up. This paper aims in the reduction of self-weight in tall structures by the use of Taper Cladding System (TCS) and also enumerates the construction techniques used in TCS. TCS has a tapering clad either fixed at the top or bottom of the structural core at the tapered end. This system eliminates the use of RC structural elements on the exterior of the structure and uses fewer columns only on the interior part to take up the gravity loads in order to reduce the self-weight of the structure. The self-weight reduction by TCS is 50% more compared to the present structural systems. The lateral loads on the hull will be taken care of by the tapered steel frame. Analysis were done to study the structural behaviour of taper cladded buildings subjected to lateral loads. TCS has a great impact in the construction of tall structures in seismic and dense urban areas. An effective construction management can be done by the use of Taper Cladding System. In this paper, sustainability, design considerations and implications of the system has also been discussed.

Keywords: Lateral Loads Resistance, reduction of self-weight, sustainable, taper clads

Procedia PDF Downloads 289
559 Empirical Analytical Modelling of Average Bond Stress and Anchorage of Tensile Bars in Reinforced Concrete

Authors: Maruful H. Mazumder, Raymond I. Gilbert

Abstract:

The design specifications for calculating development and lapped splice lengths of reinforcement in concrete are derived from a conventional empirical modelling approach that correlates experimental test data using a single mathematical equation. This paper describes part of a recently completed experimental research program to assess the effects of different structural parameters on the development length requirements of modern high strength steel reinforcing bars, including the case of lapped splices in large-scale reinforced concrete members. The normalized average bond stresses for the different variations of anchorage lengths are assessed according to the general form of a typical empirical analytical model of bond and anchorage. Improved analytical modelling equations are developed in the paper that better correlate the normalized bond strength parameters with the structural parameters of an empirical model of bond and anchorage.

Keywords: bond stress, development length, lapped splice length, reinforced concrete

Procedia PDF Downloads 438
558 Structural Monitoring of Externally Confined RC Columns with Inadequate Lap-Splices, Using Fibre-Bragg-Grating Sensors

Authors: Petros M. Chronopoulos, Evangelos Z. Astreinidis

Abstract:

A major issue of the structural assessment and rehabilitation of existing RC structures is the inadequate lap-splicing of the longitudinal reinforcement. Although prohibited by modern Design Codes, the practice of arranging lap-splices inside the critical regions of RC elements was commonly applied in the past. Today this practice is still the rule, at least for conventional new buildings. Therefore, a lot of relevant research is ongoing in many earthquake prone countries. The rehabilitation of deficient lap-splices of RC elements by means of external confinement is widely accepted as the most efficient technique. If correctly applied, this versatile technique offers a limited increase of flexural capacity and a considerable increase of local ductility and of axial and shear capacities. Moreover, this intervention does not affect the stiffness of the elements and does not affect the dynamic characteristics of the structure. This technique has been extensively discussed and researched contributing to vast accumulation of technical and scientific knowledge that has been reported in relevant books, reports and papers, and included in recent Design Codes and Guides. These references are mostly dealing with modeling and redesign, covering both the enhanced (axial and) shear capacity (due to the additional external closed hoops or jackets) and the increased ductility (due to the confining action, preventing the unzipping of lap-splices and the buckling of continuous reinforcement). An analytical and experimental program devoted to RC members with lap-splices is completed in the Lab. of RC/NTU of Athens/GR. This program aims at the proposal of a rational and safe theoretical model and the calibration of the relevant Design Codes’ provisions. Tests, on forty two (42) full scale specimens, covering mostly beams and columns (not walls), strengthened or not, with adequate or inadequate lap-splices, have been already performed and evaluated. In this paper, the results of twelve (12) specimens under fully reversed cyclic actions are presented and discussed. In eight (8) specimens the lap-splices were inadequate (splicing length of 20 or 30 bar diameters) and they were retrofitted before testing by means of additional external confinement. The two (2) most commonly applied confining materials were used in this study, namely steel and FRPs. More specifically, jackets made of CFRP wraps or light cages made of mild steel were applied. The main parameters of these tests were (i) the degree of confinement (internal and external), and (ii) the length of lap-splices, equal to 20, 30 or 45 bar diameters. These tests were thoroughly instrumented and monitored, by means of conventional (LVDTs, strain gages, etc.) and innovative (optic fibre-Bragg-grating) sensors. This allowed for a thorough investigation of the most influencing design parameter, namely the hoop-stress developed in the confining material. Based on these test results and on comparisons with the provisions of modern Design Codes, it could be argued that shorter (than the normative) lap-splices, commonly found in old structures, could still be effective and safe (at least for lengths more than an absolute minimum), depending on the required ductility, if a properly arranged and adequately detailed external confinement is applied.

Keywords: concrete, fibre-Bragg-grating sensors, lap-splices, retrofitting / rehabilitation

Procedia PDF Downloads 250
557 Comparative Study of Arch Bridges with Varying Rise to Span Ratio

Authors: Tauhidur Rahman, Arnab Kumar Sinha

Abstract:

This paper presents a comparative study of Arch bridges based on their varying rise to span ratio. The comparison is done between different steel Arch bridges which have variable span length and rise to span ratio keeping the same support condition. The aim of our present study is to select the optimum value of rise to span ratio of Arch bridge as the cost of the Arch bridge increases with the increasing of the rise. In order to fulfill the objective, several rise to span ratio have been considered for same span of Arch bridge and various structural parameters such as Bending moment, shear force etc have been calculated for different model. A comparative study has been done for several Arch bridges finally to select the optimum rise to span ratio of the Arch bridges. In the present study, Finite Element model for medium to long span, with different rise to span ratio have been modeled and are analyzed with the help of a Computational Software named MIDAS Civil to evaluate the results such as Bending moments, Shear force, displacements, Stresses, influence line diagrams, critical loads. In the present study, 60 models of Arch bridges for 80 to 120 m span with different rise to span ratio has been thoroughly investigated.

Keywords: arch bridge, analysis, comparative study, rise to span ratio

Procedia PDF Downloads 530
556 Bending the Consciousnesses: Uncovering Environmental Issues Through Circuit Bending

Authors: Enrico Dorigatti

Abstract:

The growing pile of hazardous e-waste produced especially by those developed and wealthy countries gets relentlessly bigger, composed of the EEDs (Electric and Electronic Device) that are often thrown away although still well functioning, mainly due to (programmed) obsolescence. As a consequence, e-waste has taken, over the last years, the shape of a frightful, uncontrollable, and unstoppable phenomenon, mainly fuelled by market policies aiming to maximize sales—and thus profits—at any cost. Against it, governments and organizations put some efforts in developing ambitious frameworks and policies aiming to regulate, in some cases, the whole lifecycle of EEDs—from the design to the recycling. Incidentally, however, such regulations sometimes make the disposal of the devices economically unprofitable, which often translates into growing illegal e-waste trafficking—an activity usually undertaken by criminal organizations. It seems that nothing, at least in the near future, can stop the phenomenon of e-waste production and accumulation. But while, from a practical standpoint, a solution seems hard to find, much can be done regarding people's education, which translates into informing and promoting good practices such as reusing and repurposing. This research argues that circuit bending—an activity rooted in neo-materialist philosophy and post-digital aesthetic, and based on repurposing EEDs into novel music instruments and sound generators—could have a great potential in this. In particular, it asserts that circuit bending could expose ecological, environmental, and social criticalities related to the current market policies and economic model. Not only thanks to its practical side (e.g., sourcing and repurposing devices) but also to the artistic one (e.g., employing bent instruments for ecological-aware installations, performances). Currently, relevant literature and debate lack interest and information about the ecological aspects and implications of the practical and artistic sides of circuit bending. This research, therefore, although still at an early stage, aims to fill in this gap by investigating, on the one side, the ecologic potential of circuit bending and, on the other side, its capacity of sensitizing people, through artistic practice, about e-waste-related issues. The methodology will articulate in three main steps. Firstly, field research will be undertaken—with the purpose of understanding where and how to source, in an ecologic and sustainable way, (discarded) EEDs for circuit bending. Secondly, artistic installations and performances will be organized—to sensitize the audience about environmental concerns through sound art and music derived from bent instruments. Data, such as audiences' feedback, will be collected at this stage. The last step will consist in realising workshops to spread an ecologically-aware circuit bending practice. Additionally, all the data and findings collected will be made available and disseminated as resources.

Keywords: circuit bending, ecology, sound art, sustainability

Procedia PDF Downloads 171
555 Concepts of Technologies Based on Smart Materials to Improve Aircraft Aerodynamic Performance

Authors: Krzysztof Skiba, Zbigniew Czyz, Ksenia Siadkowska, Piotr Borowiec

Abstract:

The article presents selected concepts of technologies that use intelligent materials in aircraft in order to improve their performance. Most of the research focuses on solutions that improve the performance of fixed wing aircraft due to related to their previously dominant market share. Recently, the development of the rotorcraft has been intensive, so there are not only helicopters but also gyroplanes and unmanned aerial vehicles using rotors and vertical take-off and landing. There are many different technologies to change a shape of the aircraft or its elements. Piezoelectric, deformable actuator systems can be applied in the system of an active control of vibration dampening in the aircraft tail structure. Wires made of shape memory alloys (SMA) could be used instead of hydraulic cylinders in the rear part of the aircraft flap. The aircraft made of intelligent materials (piezoelectrics and SMA) is one of the NASA projects which provide the possibility of changing a wing shape coefficient by 200%, a wing surface by 50%, and wing deflections by 20 degrees. Active surfaces made of shape memory alloys could be used to control swirls in the flowing stream. An intelligent control system for helicopter blades is a method for the active adaptation of blades to flight conditions and the reduction of vibrations caused by the rotor. Shape memory alloys are capable of recovering their pre-programmed shapes. They are divided into three groups: nickel-titanium-based, copper-based, and ferromagnetic. Due to the strongest shape memory effect and the best vibration damping ability, a Ni-Ti alloy is the most commercially important. The subject of this work was to prepare a conceptual design of a rotor blade with SMA actuators. The scope of work included 3D design of the supporting rotor blade, 3D design of beams enabling to change the geometry by changing the angle of rotation and FEM (Finite Element Method) analysis. The FEM analysis was performed using NX 12 software in the Pre/Post module, which includes extended finite element modeling tools and visualizations of the obtained results. Calculations are presented for two versions of the blade girders. For FEM analysis, three types of materials were used for comparison purposes (ABS, aluminium alloy 7057, steel C45). The analysis of internal stresses and extreme displacements of crossbars edges was carried out. The internal stresses in all materials were close to the yield point in the solution of girder no. 1. For girder no. 2 solution, the value of stresses decreased by about 45%. As a result of the displacement analysis, it was found that the best solution was the ABS girder no. 1. The displacement of about 0.5 mm was obtained, which resulted in turning the crossbars (upper and lower) by an angle equal to 3.59 degrees. This is the largest deviation of all the tests. The smallest deviation was obtained for beam no. 2 made of steel. The displacement value of the second girder solution was approximately 30% lower than the first solution. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018.

Keywords: aircraft, helicopters, shape memory alloy, SMA, smart material, unmanned aerial vehicle, UAV

Procedia PDF Downloads 138
554 Experimental Modeling of Spray and Water Sheet Formation Due to Wave Interactions with Vertical and Slant Bow-Shaped Model

Authors: Armin Bodaghkhani, Bruce Colbourne, Yuri S. Muzychka

Abstract:

The process of spray-cloud formation and flow kinematics produced from breaking wave impact on vertical and slant lab-scale bow-shaped models were experimentally investigated. Bubble Image Velocimetry (BIV) and Image Processing (IP) techniques were applied to study the various types of wave-model impacts. Different wave characteristics were generated in a tow tank to investigate the effects of wave characteristics, such as wave phase velocity, wave steepness on droplet velocities, and behavior of the process of spray cloud formation. The phase ensemble-averaged vertical velocity and turbulent intensity were computed. A high-speed camera and diffused LED backlights were utilized to capture images for further post processing. Various pressure sensors and capacitive wave probes were used to measure the wave impact pressure and the free surface profile at different locations of the model and wave-tank, respectively. Droplet sizes and velocities were measured using BIV and IP techniques to trace bubbles and droplets in order to measure their velocities and sizes by correlating the texture in these images. The impact pressure and droplet size distributions were compared to several previously experimental models, and satisfactory agreements were achieved. The distribution of droplets in front of both models are demonstrated. Due to the highly transient process of spray formation, the drag coefficient for several stages of this transient displacement for various droplet size ranges and different Reynolds number were calculated based on the ensemble average method. From the experimental results, the slant model produces less spray in comparison with the vertical model, and the droplet velocities generated from the wave impact with the slant model have a lower velocity as compared with the vertical model.

Keywords: spray charachteristics, droplet size and velocity, wave-body interactions, bubble image velocimetry, image processing

Procedia PDF Downloads 300
553 Behaviour and Design of the Candle-Loc Inter-Module Connection in High-Rise Modular Buildings under Seismic Action

Authors: Alessandro Marzucchini, Yie Sue Chua, Andrew Lian, Richard Shonn Mills

Abstract:

A unique, fast and easy installed inter-module connection named Candle-Loc was developed and applied in several high-rise steel and reinforced concrete modular buildings in Singapore and Hong Kong, China. However, its effect on the global behaviour of modular buildings in high seismic zones was not studied. Therefore, the design concept and the structural performance of each component in this connection was investigated through analytical approach. Response spectrum, linear time-history, and nonlinear time-history analyses were conducted to investigate the effects of the different joint models of the Candle-Loc in the global analysis of high-rise buildings under high seismic loads. It is found that it is important to assess the level of plasticity developed in the inter-module connection under high seismic loads. The ductility of the lateral force resisting system influences the amount of load taken by the inter-module connections.

Keywords: high-rise, inter-module connection, nonlinear, seismic, time-history analysis

Procedia PDF Downloads 202
552 Reversible and Irreversible Wrinkling in Tube Hydroforming Process

Authors: Ali Abd El-Aty, Ahmed Tauseef, Ahmad Farooq

Abstract:

This research aims at analyzing and optimizing the hydroforming process parameters to achieve a sound bulged tube without failure. Theoretical constitutive model is formulated to develop a working diagram including process window, which represents the optimize region to carry out the hydroforming process and predict the type of tube failure during the process accurately. The model is applied into different bulging ratios for low carbon steel (C1010). From this study, it is concluded that the tubes with bulging ratios up to 50% and 70% are successfully formed without defects. The tubes with bulging ratio of 90% are successfully formed by hydroforming with optimized the loading path (axial feed versus internal pressure) within the process window. The working diagram is modified due to different types of formation of wrinkling during the hydroforming process. The formation of wrinkles with increasing axial feed can be useful in terms of the achievement of higher bulging ratio and/or less thinning and this type of wrinkles can be overcome through the internal pressure in the later stage of the hydroforming process. On the other hand, the formation of wrinkles may be harmful, if it cannot be reversed.

Keywords: finite element, hydroforming, process window, wrinkling

Procedia PDF Downloads 280
551 Experimental and Simulation Stress Strain Comparison of Hot Single Point Incremental Forming

Authors: Amar Al-Obaidi, Verena Kräusel, Dirk Landgrebe

Abstract:

Induction assisted single point incremental forming (IASPIF) is a flexible method and can be simply utilized to form a high strength alloys. Due to the interaction between the mechanical and thermal properties during IASPIF an evaluation for the process is necessary to be performed analytically. Therefore, a numerical simulation was carried out in this paper. The numerical analysis was operated at both room and elevated temperatures then compared with experimental results. Fully coupled dynamic temperature displacement explicit analysis was used to simulated the hot single point incremental forming. The numerical analysis was indicating that during hot single point incremental forming were a combination between complicated compression, tension and shear stresses. As a result, the equivalent plastic strain was increased excessively by rising both the formed part depth and the heating temperature during forming. Whereas, the forming forces were decreased from 5 kN at room temperature to 0.95 kN at elevated temperature. The simulation shows that the maximum true strain was occurred in the stretching zone which was the same as in experiment.

Keywords: induction heating, single point incremental forming, FE modeling, advanced high strength steel

Procedia PDF Downloads 208
550 Statistical Analysis of Surface Roughness and Tool Life Using (RSM) in Face Milling

Authors: Mohieddine Benghersallah, Lakhdar Boulanouar, Salim Belhadi

Abstract:

Currently, higher production rate with required quality and low cost is the basic principle in the competitive manufacturing industry. This is mainly achieved by using high cutting speed and feed rates. Elevated temperatures in the cutting zone under these conditions shorten tool life and adversely affect the dimensional accuracy and surface integrity of component. Thus it is necessary to find optimum cutting conditions (cutting speed, feed rate, machining environment, tool material and geometry) that can produce components in accordance with the project and having a relatively high production rate. Response surface methodology is a collection of mathematical and statistical techniques that are useful for modelling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. The work presented in this paper examines the effects of cutting parameters (cutting speed, feed rate and depth of cut) on to the surface roughness through the mathematical model developed by using the data gathered from a series of milling experiments performed.

Keywords: Statistical analysis (RSM), Bearing steel, Coating inserts, Tool life, Surface Roughness, End milling.

Procedia PDF Downloads 432
549 Modeling, Analysis and Control of a Smart Composite Structure

Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani

Abstract:

In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.

Keywords: active linear control, lyapunov stability theorem, piezoelectricity, smart structure, static deflection

Procedia PDF Downloads 387
548 Morphology Analysis of Apple-Carrot Juice Treated by Manothermosonication (MTS) and High Temperature Short Time (HTST) Processes

Authors: Ozan Kahraman, Hao Feng

Abstract:

Manothermosonication (MTS), which consists of the simultaneous application of heat and ultrasound under moderate pressure (100-700 kPa), is one of the technologies which destroy microorganisms and inactivates enzymes. Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through an ultra-thin specimen, interacting with the specimen as it passes through it. The environmental scanning electron microscope or ESEM is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are "wet," uncoated. These microscopy techniques allow us to observe the processing effects on the samples. This study was conducted to investigate the effects of MTS and HTST treatments on the morphology of apple-carrot juices by using TEM and ESEM microscopy. Apple-carrot juices treated with HTST (72 0C, 15 s), MTS 50 °C (60 s, 200 kPa), and MTS 60 °C (30 s, 200 kPa) were observed in both ESEM and TEM microscopy. For TEM analysis, a drop of the solution dispersed in fixative solution was put onto a Parafilm ® sheet. The copper coated side of the TEM sample holder grid was gently laid on top of the droplet and incubated for 15 min. A drop of a 7% uranyl acetate solution was added and held for 2 min. The grid was then removed from the droplet and allowed to dry at room temperature and presented into the TEM. For ESEM analysis, a critical point drying of the filters was performed using a critical point dryer (CPD) (Samdri PVT- 3D, Tousimis Research Corp., Rockville, MD, USA). After the CPD, each filter was mounted onto a stub and coated with gold/palladium with a sputter coater (Desk II TSC Denton Vacuum, Moorestown, NJ, USA). E.Coli O157:H7 cells on the filters were observed with an ESEM (Philips XL30 ESEM-FEG, FEI Co., Eindhoven, The Netherland). ESEM (Environmental Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) images showed extensive damage for the samples treated with MTS at 50 and 60 °C such as ruptured cells and breakage on cell membranes. The damage was increasing with increasing exposure time.

Keywords: MTS, HTST, ESEM, TEM, E.COLI O157:H7

Procedia PDF Downloads 285
547 Compact 3-D Co-Planar Waveguide Fed Dual-Port Ultrawideband-Multiple-Input and Multiple-Output Antenna with WLAN Band-Notched Characteristics

Authors: Asim Quddus

Abstract:

A miniaturized three dimensional co-planar waveguide (CPW) two-port MIMO antenna, exhibiting high isolation and WLAN band-notched characteristics is presented in this paper for ultrawideband (UWB) communication applications. The microstrip patch antenna operates as a single UWB antenna element. The proposed design is a cuboid-shaped structure having compact size of 35 x 27 x 45 mm³. Radiating as well as decoupling structure is placed around cuboidal polystyrene sheet. The radiators are 27 mm apart, placed Face-to-Face in vertical direction. Decoupling structure is placed on the side walls of polystyrene. The proposed antenna consists of an oval shaped radiating patch. A rectangular structure with fillet edges is placed on ground plan to enhance the bandwidth. The proposed antenna exhibits a good impedance match (S11 ≤ -10 dB) over frequency band of 2 GHz – 10.6 GHz. A circular slotted structure is employed as a decoupling structure on substrate, and it is placed on the side walls of polystyrene to enhance the isolation between antenna elements. Moreover, to achieve immunity from WLAN band distortion, a modified, inverted crescent shaped slotted structure is etched on radiating patches to achieve band-rejection characteristics at WLAN frequency band 4.8 GHz – 5.2 GHz. The suggested decoupling structure provides isolation better than 15 dB over the desired UWB spectrum. The envelope correlation coefficient (ECC) and gain for the MIMO antenna are analyzed as well. Finite Element Method (FEM) simulations are carried out in Ansys High Frequency Structural Simulator (HFSS) for the proposed design. The antenna is realized on a Rogers RT/duroid 5880 with thickness 1 mm, relative permittivity ɛr = 2.2. The proposed antenna achieves a stable omni-directional radiation patterns as well, while providing rejection at desired WLAN band. The S-parameters as well as MIMO parameters like ECC are analyzed and the results show conclusively that the design is suitable for portable MIMO-UWB applications.

Keywords: 3-D antenna, band-notch, MIMO, UWB

Procedia PDF Downloads 296
546 Optimization of Reinforced Concrete Buildings According to the Algerian Seismic Code

Authors: Nesreddine Djafar Henni, Nassim Djedoui, Rachid Chebili

Abstract:

Recent decades have witnessed significant efforts being made to optimize different types of structures and components. The concept of cost optimization in reinforced concrete structures, which aims at minimizing financial resources while ensuring maximum building safety, comprises multiple materials, and the objective function for their optimal design is derived from the construction cost of the steel as well as concrete that significantly contribute to the overall weight of reinforced concrete (RC) structures. To achieve this objective, this work has been devoted to optimizing the structural design of 3D RC frame buildings which integrates, for the first time, the Algerian regulations. Three different test examples were investigated to assess the efficiency of our work in optimizing RC frame buildings. The hybrid GWOPSO algorithm is used, and 30000 generations are made. The cost of the building is reduced by iteration each time. Concrete and reinforcement bars are used in the building cost. As a result, the cost of a reinforced concrete structure is reduced by 30% compared with the initial design. This result means that the 3D cost-design optimization of the framed structure is successfully achieved.

Keywords: optimization, automation, API, Malab, RC structures

Procedia PDF Downloads 49
545 Microbial Corrosion on Oil and Gas Facilities: A Case Study of Oil and Gas Facilities in the Niger-Delta

Authors: Frederick Otite Ighovojah

Abstract:

Corrosion in the oil and gas industries is one of the most common causes of failure. Such failure includes leaks in above-ground storage tanks (AGST). The involvement of microorganisms in the corrosion process in AGST systems is often ignored, and this outlines the need to investigate the effect of microbial corrosion in oil and gas facilities. This study's methodology comprised gathering generated water samples from a nearby AGST oil facility that was operating, which were then equally divided into two batch reactors, 1 and 2. Each batch reactor was filled with five prepared X60 coupons using sterilized forceps. To provide nutrients for the microorganisms in batch reactor 1 during the test period, 2g of NPK 15- 15-15 fertilizer was added on a weekly basis. To kill the microorganisms and significantly lower their concentration in the generated water, 5ml of dissolved ozone (a biocide) with a 0.5ppm concentration was added to batch reactor 2. The weight loss measurement (WLM) was used to evaluate for corrosion. Coupons were removed from each batch reactor, and weight loss was measured at every interval of 336 hrs for 2016 hrs. The overall results obtained indicated that coupons from the batch 1 reactor showed a higher corrosion rate and higher mass loss, and this was due to the metabolic production of an aggressive compound in the medium.

Keywords: AGST, microbial corrosion, reactor, X60 steel

Procedia PDF Downloads 84
544 A Probabilistic Study on Time to Cover Cracking Due to Corrosion

Authors: Chun-Qing Li, Hassan Baji, Wei Yang

Abstract:

Corrosion of steel in reinforced concrete structures is a major problem worldwide. The volume expansion of corrosion products causes concrete cover cracking, which could lead to delamination of concrete cover. The time to cover cracking plays a key role to the assessment of serviceability of reinforced concrete structures subjected to corrosion. Many analytical, numerical, and empirical models have been developed to predict the time to cracking initiation due to corrosion. In this study, a numerical model based on finite element modeling of corrosion-induced cracking process is used. In order to predict the service life based on time to cover initiation, the numerical approach is coupled with a probabilistic procedure. In this procedure, all the influential factors affecting time to cover cracking are modeled as random variables. The results show that the time to cover cracking is highly variables. It is also shown that rust product expansion ratio and the size of more porous concrete zone around the rebar are the most influential factors in predicting service life of corrosion-affected structures.

Keywords: corrosion, crack width, probabilistic, service life

Procedia PDF Downloads 207
543 Experimental Investigation of Nanofluid Heat Transfer in a Plate Type Heat Exchanger

Authors: Eyuphan Manay

Abstract:

In this study, it was aimed to determine the convective heat transfer characteristics of water-based silicon dioxide nanofluids (SiO₂) with particle volume fractions of 0.2 and 0.4% vol. Nanofluids were tested in a plate type heat exchanger with six plates. Plate type heat exchanger was manufactured from stainless steel. Water was driven in the hot flow side, and nanofluids were driven in the cold flow side. The thermal energy of the hot water was taken by nanofluids. Effect of the inlet temperature of the hot water was investigated on heat transfer performance of the nanofluids while the inlet temperature of the nanofluids was fixed. In addition, the effects of the particle volume fraction and the cold flow rate on the performance of the system were tested. Results showed that increasing inlet temperature of the hot flow caused heat transfer to enhance. The suspended solid particles into the carrier fluid also remarkably enhanced heat transfer, and, an increase in the particle volume fraction resulted in an increase in heat transfer.

Keywords: heat transfer enhancement, SiO₂-water, nanofluid, plate heat exchanger

Procedia PDF Downloads 203
542 Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach

Authors: Siamak Ghorbani, Nikolay Ivanovich Polushin

Abstract:

Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder.

Keywords: ANOVA, damping capacity, surface roughness, Taguchi method, vibration

Procedia PDF Downloads 311
541 A Study on Pattern of Acute Poisoning in Patients Admitted to Emergency Wards in a Tertiary Care Hospital

Authors: Sathvika Reddy, Devi Revathi

Abstract:

Background: In India, deliberate self-harm (DSH) with poisoning agents carries a significant impact on morbidity and mortality. Changes in the patterns of poisoning vary across various geographical locations. It is important to know the patterns in a given region in order to facilitate rapid clinical diagnosis, appropriate treatment to reduce associated morbidity and mortality. Aim and Objective: To study the patterns, treatment outcomes of acute poisoning in patients admitted to emergency wards in a tertiary care hospital and to provide poison information services. Materials and Methods: This study was conducted at M.S Ramaiah Memorial and Teaching Hospital from November 2016 to March 2017. The patient’s data was obtained from patient case sheet, interaction with health care professionals, interviewing patients and their caretakers (if possible), and were documented in a suitably designed form. Results: The study involved 131 patients with a mean age of 27.76 ± 15.5 years. Majority of the patients were in the age group 21-30 years, literates (n=53) dwelling in urban (n=113) areas belonging to upper middle class (n=50). Analgesics and antipyretics were commonly utilized in intentional drug overdosage (n=49). Envenomation constituted n=21(16.03%). Furthermore, a significant relationship was observed between marital status and self-poisoning (n=64) (P < 0.001) which commonly occurred through oral ingestion. The outcomes were correlated with the GCS and PSS system and n=85 recovered, n=17 were discharged against medical advice, and n=4 died, and n=4 were lost to follow up respectively. The poison information queries include drug overdose (n=29) and management related queries (n=22) provided majorly by residents (n=45) to update knowledge (n=11) and for better patient care (n=40). Conclusion: The trend in poisoning is dynamic. Medications were identified as the main cause of poisoning in urban areas of India. Educational programs with more emphasis on preventive measures are necessary to create awareness among the general public.

Keywords: poisoning, suicides, clinical pharmacist, envenomation, poison information services

Procedia PDF Downloads 164
540 Design and Development of Ceramics Kiln by Application Burners Use from High Pressure of Household Gas Stove

Authors: Somboon Sarasit

Abstract:

This research aims to develop a model small ceramic kiln using burner from a high-pressure household gas stove. The efficiency of the kiln and community technology transfer. The study of history shows that this area used to be a source of pottery on the old capital of Ayutthaya. There is evidence from pottery kilns unearthed many types of wood kiln since 2535 and was assumed that the production will end when the war with Burma in the Ayutthaya period. The result of the research design and performance testing of ceramic kiln using burners by gas cooker and outside from 200-liter steel drums inside with ceramic fiber. It was found that the Graze Firing of the products to be at a temperature of 1230°C. The duration of the burn approximately 5-6 hours and uses only 3-4 kg of LPG products, a coffee can burn up to 40-50 pieces. It is an energy-efficient Kiln. Use safe and appropriate opportunities for entrepreneurs, small ceramic and entrepreneurs with new investments or those who want to produce ceramic products as a hobby. The community interest in the pottery to create a new one to continue the product development and manufacturing in the harshest existence forever.

Keywords: ceramics kiln design and development, ceramic gas kiln, burners application, high-pressure of household gas stove

Procedia PDF Downloads 549
539 Effect of Particle Size on Sintering Characteristics of Injection Molded 316L Powder

Authors: H. Özkan Gülsoy, Antonyraj Arockiasamy

Abstract:

The application of powder injection molding technology for the fabrication of metallic and non-metallic components is of growing interest as the process considerably saves time and cost. Utilizing this fabrication method, full dense components are being prepared in various sizes. In this work, our effort is focused to study the densification behavior of the parts made using different size 316L stainless steel powders. The metal powders were admixed with an adequate amount of polymeric compounds and molded as standard tensile bars. Solvent and thermal debinding was carried out followed by sintering in ultra pure hydrogen atmosphere based on the differential scanning calorimetry (DSC) cycle. Mechanical property evaluation and microstructural characterization of the sintered specimens was performed using universal Instron tensile testing machine, Vicker’s microhardness tester, optical (OM) and scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction were used. The results are compared and analyzed to predict the strength and weakness of the test conditions.

Keywords: powder injection molding, sintering, particle size, stainless steels

Procedia PDF Downloads 365
538 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation

Authors: Gyo Woo Lee, Man Young Kim

Abstract:

A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.

Keywords: reheating furnace, steel slab, radiative heat transfer, WSGGM, emissivity, residence time

Procedia PDF Downloads 288
537 Obtaining Constants of Johnson-Cook Material Model Using a Combined Experimental, Numerical Simulation and Optimization Method

Authors: F. Rahimi Dehgolan, M. Behzadi, J. Fathi Sola

Abstract:

In this article, the Johnson-Cook material model’s constants for structural steel ST.37 have been determined by a method which integrates experimental tests, numerical simulation, and optimization. In the first step, a quasi-static test was carried out on a plain specimen. Next, the constants were calculated for it by minimizing the difference between the results acquired from the experiment and numerical simulation. Then, a quasi-static tension test was performed on three notched specimens with different notch radii. At last, in order to verify the results, they were used in numerical simulation of notched specimens and it was observed that experimental and simulation results are in good agreement. Changing the diameter size of the plain specimen in the necking area was set as the objective function in the optimization step. For final validation of the proposed method, diameter variation was considered as a parameter and its sensitivity to a change in any of the model constants was examined and the results were completely corroborating.

Keywords: constants, Johnson-Cook material model, notched specimens, quasi-static test, sensitivity

Procedia PDF Downloads 311
536 Reliability Assessment Using Full Probabilistic Modelling for Carbonation and Chloride Exposures, Including Initiation and Propagation Periods

Authors: Frank Papworth, Inam Khan

Abstract:

Fib’s model code 2020 has four approaches for design life verification. Historically ‘deemed to satisfy provisions have been the principal approach, but this has limited options for materials and covers. The use of an equation in fib’s model code for service life design to predict time to corrosion initiation has become increasingly popular to justify further options, but in some cases, the analysis approaches are incorrect. Even when the equations are computed using full probabilistic analysis, there are common mistakes. This paper reviews the work of recent fib commissions on implementing the service life model to assess the reliability of durability designs, including initiation and propagation periods. The paper goes on to consider the assessment of deemed to satisfy requirements in national codes and considers the influence of various options, including different steel types, various cement systems, quality of concrete and cover, on reliability achieved. As modelling is based on achieving agreed target reliability, consideration is given to how a project might determine appropriate target reliability.

Keywords: chlorides, marine, exposure, design life, reliability, modelling

Procedia PDF Downloads 235