Search results for: nonlinear phenomena
607 Assessing Significance of Correlation with Binomial Distribution
Authors: Vijay Kumar Singh, Pooja Kushwaha, Prabhat Ranjan, Krishna Kumar Ojha, Jitendra Kumar
Abstract:
Present day high-throughput genomic technologies, NGS/microarrays, are producing large volume of data that require improved analysis methods to make sense of the data. The correlation between genes and samples has been regularly used to gain insight into many biological phenomena including, but not limited to, co-expression/co-regulation, gene regulatory networks, clustering and pattern identification. However, presence of outliers and violation of assumptions underlying Pearson correlation is frequent and may distort the actual correlation between the genes and lead to spurious conclusions. Here, we report a method to measure the strength of association between genes. The method assumes that the expression values of a gene are Bernoulli random variables whose outcome depends on the sample being probed. The method considers the two genes as uncorrelated if the number of sample with same outcome for both the genes (Ns) is equal to certainly expected number (Es). The extent of correlation depends on how far Ns can deviate from the Es. The method does not assume normality for the parent population, fairly unaffected by the presence of outliers, can be applied to qualitative data and it uses the binomial distribution to assess the significance of association. At this stage, we would not claim about the superiority of the method over other existing correlation methods, but our method could be another way of calculating correlation in addition to existing methods. The method uses binomial distribution, which has not been used until yet, to assess the significance of association between two variables. We are evaluating the performance of our method on NGS/microarray data, which is noisy and pierce by the outliers, to see if our method can differentiate between spurious and actual correlation. While working with the method, it has not escaped our notice that the method could also be generalized to measure the association of more than two variables which has been proven difficult with the existing methods.Keywords: binomial distribution, correlation, microarray, outliers, transcriptome
Procedia PDF Downloads 414606 West African Insurgents and Religious Conflict(s), Causes, Crimes and Control: An Evaluation of the Role of Economics Community of West African States
Authors: Ehosa Peter Ogbeni
Abstract:
Religious conflict and insurgency are staying as growing phenomena globally especially within the West African region: this 'new wars’ in this part of the globe has brought many of its economies to the brink of collapse, creating humanitarian casualties and concerns for the visitors and international community. This ‘ugly’ trend has also affected the social, economic and political life of the West African region. Over the years, various religious and insurgency groups have raised arms against civilians and the government, the most recent extremist group, Boko Haram continues to expand and commit violent acts, such as sporadic suicide bombings and killing of innocent citizens and foreigners within the West African region especially in countries like Nigeria, Cameroon and Chad etc. It would have been expected that academic research focus on investigating the West African region; this is not the situation as most of the research on religious conflict and insurgencies have focused more on other parts of the World. Insurgencies and Religious Conflict studies in West Africa have fallen short of literature and very limited literature covers the activities of Boko Haram arm struggle. This research therefore, aims to fill the gap by investigating the role of Economic Community of West African States (ECOWAS) in managing the growing trend of religious conflicts and insurgency in West African States, by using Boko Haram as a case to review. This research adopted the critical theory paradigm using aspects of qualitative research techniques in carrying out its investigation. The findings of this research will help develop a framework that will aid the (ECOWAS) amongst other stakeholders in managing religious and insurgency motivated conflict.Keywords: religious conflict, insurgencies, Boko haram, ECOWAS (economics community of West African states), peace building, conflict resolution
Procedia PDF Downloads 335605 Tokyo Skyscrapers: Technologically Advanced Structures in Seismic Areas
Authors: J. Szolomicki, H. Golasz-Szolomicka
Abstract:
The architectural and structural analysis of selected high-rise buildings in Tokyo is presented in this paper. The capital of Japan is the most densely populated city in the world and moreover is located in one of the most active seismic zones. The combination of these factors has resulted in the creation of sophisticated designs and innovative engineering solutions, especially in the field of design and construction of high-rise buildings. The foreign architectural studios (as, for Jean Nouvel, Kohn Pedesen Associates, Skidmore, Owings & Merill) which specialize in the designing of skyscrapers, played a major role in the development of technological ideas and architectural forms for such extraordinary engineering structures. Among the projects completed by them, there are examples of high-rise buildings that set precedents for future development. An essential aspect which influences the design of high-rise buildings is the necessity to take into consideration their dynamic reaction to earthquakes and counteracting wind vortices. The need to control motions of these buildings, induced by the force coming from earthquakes and wind, led to the development of various methods and devices for dissipating energy which occur during such phenomena. Currently, Japan is a global leader in seismic technologies which safeguard seismic influence on high-rise structures. Due to these achievements the most modern skyscrapers in Tokyo are able to withstand earthquakes with a magnitude of over seven degrees at the Richter scale. Damping devices applied are of a passive, which do not require additional power supply or active one which suppresses the reaction with the input of extra energy. In recent years also hybrid dampers were used, with an additional active element to improve the efficiency of passive damping.Keywords: core structures, damping system, high-rise building, seismic zone
Procedia PDF Downloads 173604 Optimized Real Ground Motion Scaling for Vulnerability Assessment of Building Considering the Spectral Uncertainty and Shape
Authors: Chen Bo, Wen Zengping
Abstract:
Based on the results of previous studies, we focus on the research of real ground motion selection and scaling method for structural performance-based seismic evaluation using nonlinear dynamic analysis. The input of earthquake ground motion should be determined appropriately to make them compatible with the site-specific hazard level considered. Thus, an optimized selection and scaling method are established including the use of not only Monte Carlo simulation method to create the stochastic simulation spectrum considering the multivariate lognormal distribution of target spectrum, but also a spectral shape parameter. Its applications in structural fragility analysis are demonstrated through case studies. Compared to the previous scheme with no consideration of the uncertainty of target spectrum, the method shown here can make sure that the selected records are in good agreement with the median value, standard deviation and spectral correction of the target spectrum, and greatly reveal the uncertainty feature of site-specific hazard level. Meanwhile, it can help improve computational efficiency and matching accuracy. Given the important infection of target spectrum’s uncertainty on structural seismic fragility analysis, this work can provide the reasonable and reliable basis for structural seismic evaluation under scenario earthquake environment.Keywords: ground motion selection, scaling method, seismic fragility analysis, spectral shape
Procedia PDF Downloads 291603 Consequences of Some Remediative Techniques Used in Sewaged Soil Bioremediation on Indigenous Microbial Activity
Authors: E. M. Hoballah, M. Saber, A. Turky, N. Awad, A. M. Zaghloul
Abstract:
Remediation of cultivated sewage soils in Egypt become an important aspect in last decade for having healthy crops and saving the human health. In this respect, a greenhouse experiment was conducted where contaminated sewage soil was treated with modified forms of 2% bentonite (T1), 2% kaolinite (T2), 1% bentonite+1% kaolinite (T3), 2% probentonite (T4), 2% prokaolinite (T5), 1% bentonite + 0.5% kaolinite + 0.5% rock phosphate (RP) (T6), 2% iron oxide (T7) and 1% iron oxide + 1% RP (T8). These materials were applied as remediative materials. Untreated soil was also used as a control. All soil samples were incubated for 2 months at 25°C at field capacity throughout the whole experiment. Carbon dioxide (CO2) efflux from both treated and untreated soils as a biomass indicator was measured through the incubation time and kinetic parameters of the best fitted models used to describe the phenomena were taken to evaluate the succession of sewaged soils remediation. The obtained results indicated that according to the kinetic parameters of used models, CO2 effluxes from remediated soils was significantly decreased compared to control treatment with variation in rate values according to type of remediation material applied. In addition, analyzed microbial biomass parameter showed that Ni and Zn were the most potential toxic elements (PTEs) that influenced the decreasing order of microbial activity in untreated soil. Meanwhile, Ni was the only influenced pollutant in treated soils. Although all applied materials significantly decreased the hazards of PTEs in treated soil, modified bentonite was the best treatment compared to other used materials. This work discussed different mechanisms taking place between applied materials and PTEs founded in the studied sewage soil.Keywords: remediation, potential toxic elements, soil biomass, sewage
Procedia PDF Downloads 227602 Requests and Responses to Requests in Jordanian Arabic
Authors: Raghad Abu Salma, Beatrice Szczepek Reed
Abstract:
Politeness is one of the most researched areas in pragmatics as it is key to interpersonal interactional phenomena. Many studies, particularly in linguistics, have focused on developing politeness theories and exploring linguistic devices used in communication to construct and establish social norms. However, the question of what constitutes polite language remains a point of ongoing debate. Prior research primarily examined politeness in English and its native speaking communities, oversimplifying the notion of politeness and associating it with surface-level language use. There is also a dearth of literature on politeness in Arabic, particularly in the context of Jordanian Arabic. Prior research investigating politeness in Arabic make generalized claims about politeness in Arabic without taking the linguistic variations into account or providing empirical evidence. This proposed research aims to explore how Jordanian Arabic influences its first language users in making and responding to requests, exploring participants' perceptions of politeness and the linguistic choices they make in their interactions. The study focuses on Jordanian expats living in London, UK providing an intercultural perspective that prior research does not consider. This study employs a mixed-methods approach combining discourse completion tasks (DCTs) with semi-structured interviews. While DCTs provide insight into participants’ linguistic choices, semi-structured interviews glean insight into participants' perceptions of politeness and their linguistic choices impacted by cultural norms and diverse experiences. This paper discusses previous research on politeness in Arabic, identifies research gaps, and discusses different methods for data collection. This paper also presents preliminary findings from the ongoing study.Keywords: politeness, pragmatics, jordanian arabic, intercultural politeness
Procedia PDF Downloads 77601 Investigation of Flexural – Torsion Instability of Struts Using Modified Newmark Method
Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi
Abstract:
Differential equations are of fundamental importance in engineering and applied mathematics, since many physical laws and relations appear mathematically in the form of such equations. The equilibrium state of structures consisting of one-dimensional elements can be described by an ordinary differential equation. The response of these kinds of structures under the loading, namely relationship between the displacement field and loading field, can be predicted by the solution of these differential equations and on satisfying the given boundary conditions. When the effect of change of geometry under loading is taken into account in modeling of equilibrium state, then these differential equations are partially integrable in quartered. They also exhibit instability characteristics when the structures are loaded compressively. The purpose of this paper is to represent the ability of the Modified Newmark Method in analyzing flexural-torsional instability of struts for both bifurcation and non-bifurcation structural systems. The results are shown to be very accurate with only a small number of iterations. The method is easily programmed, and has the advantages of simplicity and speeds of convergence and easily is extended to treat material and geometric nonlinearity including no prismatic members and linear and nonlinear spring restraints that would be encountered in frames. In this paper, these abilities of the method will be extended to the system of linear differential equations that govern strut flexural torsional stability.Keywords: instability, torsion, flexural, buckling, modified newmark method stability
Procedia PDF Downloads 357600 Seismic Assessment of an Existing Dual System RC Buildings in Madinah City
Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail
Abstract:
A 15-storey RC building, studied in this paper, is representative of modern building type constructed in Madina City in Saudi Arabia before 10 years ago. These buildings are almost consisting of reinforced concrete skeleton, i. e. columns, beams and flat slab as well as shear walls in the stairs and elevator areas arranged in the way to have a resistance system for lateral loads (wind–earthquake loads). In this study, the dynamic properties of the 15-storey RC building were identified using ambient motions recorded at several spatially-distributed locations within each building. After updating the mathematical models for this building with the experimental results, three dimensional pushover analysis (nonlinear static analysis) was carried out using SAP2000 software incorporating inelastic material properties for concrete, infill and steel. The effect of modeling the building with and without infill walls on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madina area has been investigated. The response modification factor (R) for the 15 storey RC building is evaluated from capacity and demand spectra (ATC-40). The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results are summarized and discussed.Keywords: seismic assessment, pushover analysis, ambient vibration, modal update
Procedia PDF Downloads 389599 Finite Element Simulation of RC Exterior Beam-Column Joints Using Damage Plasticity Model
Authors: A. M. Halahla, M. H. Baluch, M. K. Rahman, A. H. Al-Gadhib, M. N. Akhtar
Abstract:
In the present study, 3D simulation of a typical exterior (RC) beam–column joint (BCJ) strengthened with carbon fiber-reinforced plastic (CFRP) sheet are carried out. Numerical investigations are performed using a nonlinear finite element ( FE) analysis by incorporating damage plasticity model (CDP), for material behaviour the concrete response in compression, tension softening were used, linear plastic with isotropic hardening for reinforcing steel, and linear elastic lamina material model for CFRP sheets using the commercial FE software ABAQUS. The numerical models developed in the present study are validated with the results obtained from the experiment under monotonic loading using the hydraulic Jack in displacement control mode. The experimental program includes casting of deficient BCJ loaded to failure load for both un-strengthened and strengthened BCJ. The failure mode, and deformation response of CFRP strengthened and un-strengthened joints and propagation of damage in the components of BCJ are discussed. Finite element simulations are compared with the experimental result and are noted to yield reasonable comparisons. The damage plasticity model was able to capture with good accuracy of the ultimate load and the mode of failure in the beam column joint.Keywords: reinforced concrete, exterior beam-column joints, concrete damage plasticity model, computational simulation, 3-D finite element model
Procedia PDF Downloads 382598 Enhancing Wire Electric Discharge Machining Efficiency through ANOVA-Based Process Optimization
Authors: Rahul R. Gurpude, Pallvita Yadav, Amrut Mulay
Abstract:
In recent years, there has been a growing focus on advanced manufacturing processes, and one such emerging process is wire electric discharge machining (WEDM). WEDM is a precision machining process specifically designed for cutting electrically conductive materials with exceptional accuracy. It achieves material removal from the workpiece metal through spark erosion facilitated by electricity. Initially developed as a method for precision machining of hard materials, WEDM has witnessed significant advancements in recent times, with numerous studies and techniques based on electrical discharge phenomena being proposed. These research efforts and methods in the field of ED encompass a wide range of applications, including mirror-like finish machining, surface modification of mold dies, machining of insulating materials, and manufacturing of micro products. WEDM has particularly found extensive usage in the high-precision machining of complex workpieces that possess varying hardness and intricate shapes. During the cutting process, a wire with a diameter ranging from 0.18mm is employed. The evaluation of EDM performance typically revolves around two critical factors: material removal rate (MRR) and surface roughness (SR). To comprehensively assess the impact of machining parameters on the quality characteristics of EDM, an Analysis of Variance (ANOVA) was conducted. This statistical analysis aimed to determine the significance of various machining parameters and their relative contributions in controlling the response of the EDM process. By undertaking this analysis, optimal levels of machining parameters were identified to achieve desirable material removal rates and surface roughness.Keywords: WEDM, MRR, optimization, surface roughness
Procedia PDF Downloads 74597 Hot Deformability of Si-Steel Strips Containing Al
Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar
Abstract:
The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.Keywords: si- steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.
Procedia PDF Downloads 244596 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model
Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu
Abstract:
The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.Keywords: subcooled boiling flow, computational fluid dynamics (CFD), mechanistic approach, two-fluid model
Procedia PDF Downloads 317595 Multi-Objective Multi-Period Allocation of Temporary Earthquake Disaster Response Facilities with Multi-Commodities
Authors: Abolghasem Yousefi-Babadi, Ali Bozorgi-Amiri, Aida Kazempour, Reza Tavakkoli-Moghaddam, Maryam Irani
Abstract:
All over the world, natural disasters (e.g., earthquakes, floods, volcanoes and hurricanes) causes a lot of deaths. Earthquakes are introduced as catastrophic events, which is accident by unusual phenomena leading to much loss around the world. Such could be replaced by disasters or any other synonyms strongly demand great long-term help and relief, which can be hard to be managed. Supplies and facilities are very important challenges after any earthquake which should be prepared for the disaster regions to satisfy the people's demands who are suffering from earthquake. This paper proposed disaster response facility allocation problem for disaster relief operations as a mathematical programming model. Not only damaged people in the earthquake victims, need the consumable commodities (e.g., food and water), but also they need non-consumable commodities (e.g., clothes) to protect themselves. Therefore, it is concluded that paying attention to disaster points and people's demands are very necessary. To deal with this objective, both commodities including consumable and need non-consumable commodities are considered in the presented model. This paper presented the multi-objective multi-period mathematical programming model regarding the minimizing the average of the weighted response times and minimizing the total operational cost and penalty costs of unmet demand and unused commodities simultaneously. Furthermore, a Chebycheff multi-objective solution procedure as a powerful solution algorithm is applied to solve the proposed model. Finally, to illustrate the model applicability, a case study of the Tehran earthquake is studied, also to show model validation a sensitivity analysis is carried out.Keywords: facility location, multi-objective model, disaster response, commodity
Procedia PDF Downloads 257594 Non-Convex Multi Objective Economic Dispatch Using Ramp Rate Biogeography Based Optimization
Authors: Susanta Kumar Gachhayat, S. K. Dash
Abstract:
Multi objective non-convex economic dispatch problems of a thermal power plant are of grave concern for deciding the cost of generation and reduction of emission level for diminishing the global warming level for improving green-house effect. This paper deals with ramp rate constraints for achieving better inequality constraints so as to incorporate valve point loading for cost of generation in thermal power plant through ramp rate biogeography based optimization involving mutation and migration. Through 50 out of 100 trials, the cost function and emission objective function were found to have outperformed other classical methods such as lambda iteration method, quadratic programming method and many heuristic methods like particle swarm optimization method, weight improved particle swarm optimization method, constriction factor based particle swarm optimization method, moderate random particle swarm optimization method etc. Ramp rate biogeography based optimization applications prove quite advantageous in solving non convex multi objective economic dispatch problems subjected to nonlinear loads that pollute the source giving rise to third harmonic distortions and other such disturbances.Keywords: economic load dispatch, ELD, biogeography-based optimization, BBO, ramp rate biogeography-based optimization, RRBBO, valve-point loading, VPL
Procedia PDF Downloads 377593 Antecedents of MNE Performance and Managing Firm-Specific and Country-Specific Advantages: An Empirical Study of Optoelectronics Industry in Taiwan
Authors: Jyh-Yi Shih, Chie-Bein Chen, Kuang-Yi Lin, Yu-Wei Huang
Abstract:
Because of the trend toward globalization, Taiwanese companies have gradually focused more on overseas market operations. Overseas market performance has gradually increased as a proportion of Taiwanese companies’ total business revenues. Existing international investment theories cannot explain numerous new phenomena in this domain. Opinions are inconsistent, and contradictory positions exist regarding the antecedents of multinational enterprise (MNE) performance. This study applied contemporary internalization theory to establish and extend approaches adopted by previous relevant studies. In the context of the overseas market, the influence that MNE investment in research and development (R&D) and marketing has on enterprise performance was investigated from the firm-specific advantages (FSAs) and country-specific advantages (CSAs) perspectives. CSAs and internationalization speed were addressed as moderators, and hypotheses regarding how internationalization and performance were achieved through MNE overseas market operation were explored to ensure the completeness of the investigation. The list of enterprises was sourced from the Taiwan Economic Journal. After examining the relevant data, the following conclusions were obtained: (a) The relationship between the level of FSAs in R&D and enterprise performance exhibited an S-shaped curve. (b) The relationship between the level of FSAs in marketing and enterprise performance displayed a U-shaped curve. (c) The extent to which potential CFAs were obtained positively moderated the relationship between enterprise investment in R&D to gain FSAs and MNE performance. (d) Internationalization speed positively moderated the relationship between MNEs and enterprise investment in R&D and marketing to gain FSAs.Keywords: multinational corporation, firm-specific advantages, country-specific advantages, international speed
Procedia PDF Downloads 393592 A Study of a Plaque Inhibition Through Stenosed Bifurcation Artery considering a Biomagnetic Blood Flow and Elastic Walls
Authors: M. A. Anwar, K. Iqbal, M. Razzaq
Abstract:
Background and Objectives: This numerical study reflects the magnetic field's effect on the reduction of plaque formation due to stenosis in a stenosed bifurcated artery. The entire arterythe wall is assumed as linearly elastic, and blood flow is modeled as a Newtonian, viscous, steady, incompressible, laminar, biomagnetic fluid. Methods: An Arbitrary Lagrangian-Eulerian (ALE) technique is employed to formulate the hemodynamic flow in a bifurcated artery under the effect of the asymmetric magnetic field by two-way Fluid-structure interaction coupling. A stable P2P1 finite element pair is used to discretize thenonlinear system of partial differential equations. The resulting nonlinear system of algebraic equations is solved by the Newton Raphson method. Results: The numerical results for displacement, velocity magnitude, pressure, and wall shear stresses for Reynolds numbers, Re = 500, 1000, 1500, 2000, in the presence of magnetic fields are presented graphically. Conclusions: The numerical results show that the presence of the magnetic field influences the displacement and flows velocity magnitude considerably. The magnetic field reduces the flow separation, recirculation area adjacent to stenosis and gives rise to wall shear stress.Keywords: bifurcation, elastic walls, finite element, wall shear stress,
Procedia PDF Downloads 178591 Translating Silence: An Analysis of Dhofar University Student Translations of Elliptical Structures from English into Arabic
Authors: Ali Algryani
Abstract:
Ellipsis involves the omission of an item or items that can be recovered from the preceding clause. Ellipsis is used as a cohesion marker; it enhances the cohesiveness of a text/discourse as a clause is interpretable only through making reference to an antecedent clause. The present study attempts to investigate the linguistic phenomenon of ellipsis from a translation perspective. It is mainly concerned with how ellipsis is translated from English into Arabic. The study covers different forms of ellipsis, such as noun phrase ellipsis, verb phrase ellipsis, gapping, pseudo-gapping, stripping, and sluicing. The primary aim of the study, apart from discussing the use and function of ellipsis, is to find out how such ellipsis phenomena are dealt with in English-Arabic translation and determine the implications of the translations of elliptical structures into Arabic. The study is based on the analysis of Dhofar University (DU) students' translations of sentences containing different forms of ellipsis. The initial findings of the study indicate that due to differences in syntactic structures and stylistic preferences between English and Arabic, Arabic tends to use lexical repetition in the translation of some elliptical structures, thus achieving a higher level of explicitness. This implies that Arabic tends to prefer lexical repetition to create cohesion more than English does. Furthermore, the study also reveals that the improper translation of ellipsis leads to interpretations different from those understood from the source text. Such mistranslations can be attributed to student translators’ lack of awareness of the use and function of ellipsis as well as the stylistic preferences of both languages. This has pedagogical implications on the teaching and training of translation students at DU. Students' linguistic competence needs to be enhanced through teaching linguistics-related issues with reference to translation and both languages, .i.e. source and target languages and with special emphasis on their use, function and stylistic preferences.Keywords: cohesion, ellipsis, explicitness, lexical repetition
Procedia PDF Downloads 122590 Symbolic Morphologies: Built Form and Religion in Sylhet City, Bangladesh
Authors: Sayed Ahmed
Abstract:
Religious activities that have evolved the sacred into a dynamic cultural phenomenon in the public realm of Sylhet, Bangladesh, and the spatiality of sacred sites and everyday practices in certain built forms have framed these phenomena. Religious rituals in Sylhet gave birth to unique practices of their own and have a vast impact even on contemporary spatial practices, while most Western researchers are not hopeful about the future of religion. However, despite extensive research on urban morphology and religion separately, there is limited literature on the relationship between these two topics to capture religious perceptions and experiences in urban spaces. This research will try to fill the existing gap and explain sacred within the range of Western sociological and philosophical tools implemented in third-world contexts, which was never highlighted before. This perspective of research puts forth the argument that urban morphology influences sacred experiences and how consecrated entities and religious activities shape the city's structure in return. The methodology of the research will map key morphological and religious variables. This mapping might include festival trajectories, street life observations, pedestrian densities, religious activities, public and private interface types with religious commodification, and the identification of blurred boundaries between sacred and profane on smaller to broader urban scales. To relate the derived cartography, illustrative (not representative) interviews about religious signs and symbols will be conducted and compared accordingly. The possible findings might reintroduce the diversity of religious practices in urban places and develop a decent concept of how sacred and urban morphology are mutually reinforcing the city, which has remained a vital nutrient for the survival of its inhabitants. Such infrequent conceptualizations of urban morphology and its relationship to symbolic sacralization are truly ‘outside’ to those that exist in the West.Keywords: sylhet, religion, urban morphology, symbolic exchange, Baudrillard
Procedia PDF Downloads 47589 Unified Power Quality Conditioner Presentation and Dimensioning
Authors: Abderrahmane Kechich, Othmane Abdelkhalek
Abstract:
Static converters behave as nonlinear loads that inject harmonic currents into the grid and increase the consumption of the inactive power. On the other hand, the increased use of sensitive equipment requires the application of sinusoidal voltages. As a result, the electrical power quality control has become a major concern in the field of power electronics. In this context, the active power conditioner (UPQC) was developed. It combines both serial and parallel structures; the series filter can protect sensitive loads and compensate for voltage disturbances such as voltage harmonics, voltage dips or flicker when the shunt filter compensates for current disturbances such as current harmonics, reactive currents and imbalance. This double feature is that it is one of the most appropriate devices. Calculating parameters is an important step and in the same time it’s not easy for that reason several researchers based on trial and error method for calculating parameters but this method is not easy for beginners researchers especially what about the controller’s parameters, for that reason this paper gives a mathematical way to calculate of almost all of UPQC parameters away from trial and error method. This paper gives also a new approach for calculating of PI regulators parameters for purpose to have a stable UPQC able to compensate for disturbances acting on the waveform of line voltage and load current in order to improve the electrical power quality.Keywords: UPQC, Shunt active filer, series active filer, PI controller, PWM control, dual-loop control
Procedia PDF Downloads 401588 Modulating Plasmon Induced Transparency in Terahertz Metamaterials
Authors: Gagan Kumar, Koijam M. Devi, Amarendra K. Sarma, Dibakar Roy Chowdhury
Abstract:
Research in metamaterials has been gaining momentum over the past decade owing to its ability in controlling electromagnetic wave properties through careful design at the sub-wavelength scale. The metamaterials have led to several important phenomena which are useful in a variety of applications. One such phenomenon is the electromagnetically induced transparency (EIT) effect in which a narrow transparency region is created in an otherwise absorptive spectrum. In our work, we explore plasmon induced transparency (PIT) in terahertz metamaterials which is analogues to EIT effect. The PIT effect is achieved using the plasmonic metamaterials in which a unit cell is comprised of two C (2C) shaped resonators and a cut-wire (CW). When terahertz wave of a particular polarization is normally incident on the proposed metamaterials geometry, it strongly couples with the cut wire, resulting in the excitation of the bright mode. However due to the specific polarization of the incident beam, the fundamental modes of the C-shaped resonators are not excited by the incident terahertz, hence they are termed as the dark mode. The PIT effect occurs as a result of interference between the bright and the dark mode. In order to observe PIT effect, both the bright and dark modes should have similar resonant frequencies with a little deviation. We further have examined that the PIT window can be modulated by displacing the C-shaped resonators w.r.t. the cut-wire. The numerical observations for different coupling configurations can be explained through an equivalent lumped element circuit model. Moving ahead the PIT effect is further explored in a metamaterial comprising of a cross like structure and four C-shaped resonators. For such configuration, equally strong PIT effect is observed for two orthogonally polarized lights. Therefore, such metamaterials demonstrate a polarization independent PIT response w.r.t the incident terahertz radiation. The proposed study could be significant in the development of slow light devices and polarization independent sensing applications.Keywords: terahertz, metamaterial, split ring resonator, plasmon
Procedia PDF Downloads 211587 Sea Level Characteristics Referenced to Specific Geodetic Datum in Alexandria, Egypt
Authors: Ahmed M. Khedr, Saad M. Abdelrahman, Kareem M. Tonbol
Abstract:
Two geo-referenced sea level datasets (September 2008 – November 2010) and (April 2012 – January 2014) were recorded at Alexandria Western Harbour (AWH). Accurate re-definition of tidal datum, referred to the latest International Terrestrial Reference Frame (ITRF-2014), was discussed and updated to improve our understanding of the old predefined tidal datum at Alexandria. Tidal and non-tidal components of sea level were separated with the use of Delft-3D hydrodynamic model-tide suit (Delft-3D, 2015). Tidal characteristics at AWH were investigated and harmonic analysis showed the most significant 34 constituents with their amplitudes and phases. Tide was identified as semi-diurnal pattern as indicated by a “Form Factor” of 0.24 and 0.25, respectively. Principle tidal datums related to major tidal phenomena were recalculated referred to a meaningful geodetic height datum. The portion of residual energy (surge) out of the total sea level energy was computed for each dataset and found 77% and 72%, respectively. Power spectral density (PSD) showed accurate resolvability in high band (1–6) cycle/days for the nominated independent constituents, except some neighbouring constituents, which are too close in frequency. Wind and atmospheric pressure data, during the recorded sea level time, were analysed and cross-correlated with the surge signals. Moderate association between surge and wind and atmospheric pressure data were obtained. In addition, long-term sea level rise trend at AWH was computed and showed good agreement with earlier estimated rates.Keywords: Alexandria, Delft-3D, Egypt, geodetic reference, harmonic analysis, sea level
Procedia PDF Downloads 164586 The Effect of Mathematical Modeling of Damping on the Seismic Energy Demands
Authors: Selamawit Dires, Solomon Tesfamariam, Thomas Tannert
Abstract:
Modern earthquake engineering and design encompass performance-based design philosophy. The main objective in performance-based design is to achieve a system performing precisely to meet the design objectives so to reduce unintended seismic risks and associated losses. Energy-based earthquake-resistant design is one of the design methodologies that can be implemented in performance-based earthquake engineering. In energy-based design, the seismic demand is usually described as the ratio of the hysteretic to input energy. Once the hysteretic energy is known as a percentage of the input energy, it is distributed among energy-dissipating components of a structure. The hysteretic to input energy ratio is highly dependent on the inherent damping of a structural system. In numerical analysis, damping can be modeled as stiffness-proportional, mass-proportional, or a linear combination of stiffness and mass. In this study, the effect of mathematical modeling of damping on the estimation of seismic energy demands is investigated by considering elastic-perfectly-plastic single-degree-of-freedom systems representing short to long period structures. Furthermore, the seismicity of Vancouver, Canada, is used in the nonlinear time history analysis. According to the preliminary results, the input energy demand is not sensitive to the type of damping models deployed. Hence, consistent results are achieved regardless of the damping models utilized in the numerical analyses. On the other hand, the hysteretic to input energy ratios vary significantly for the different damping models.Keywords: damping, energy-based seismic design, hysteretic energy, input energy
Procedia PDF Downloads 166585 An Assessment of Finite Element Computations in the Structural Analysis of Diverse Coronary Stent Types: Identifying Prerequisites for Advancement
Authors: Amir Reza Heydari, Yaser Jenab
Abstract:
Coronary artery disease, a common cardiovascular disease, is attributed to the accumulation of cholesterol-based plaques in the coronary arteries, leading to atherosclerosis. This disease is associated with risk factors such as smoking, hypertension, diabetes, and elevated cholesterol levels, contributing to severe clinical consequences, including acute coronary syndromes and myocardial infarction. Treatment approaches such as from lifestyle interventions to surgical procedures like percutaneous coronary intervention and coronary artery bypass surgery. These interventions often employ stents, including bare-metal stents (BMS), drug-eluting stents (DES), and bioresorbable vascular scaffolds (BVS), each with its advantages and limitations. Computational tools have emerged as critical in optimizing stent designs and assessing their performance. The aim of this study is to provide an overview of the computational methods of studies based on the finite element (FE) method in the field of coronary stenting and discuss the potential for development and clinical application of stent devices. Additionally, the importance of assessing the ability of computational models is emphasized to represent real-world phenomena, supported by recent guidelines from the American Society of Mechanical Engineers (ASME). Validation processes proposed include comparing model performance with in vivo, ex-vivo, or in vitro data, alongside uncertainty quantification and sensitivity analysis. These methods can enhance the credibility and reliability of in silico simulations, ultimately aiding in the assessment of coronary stent designs in various clinical contexts.Keywords: atherosclerosis, materials, restenosis, review, validation
Procedia PDF Downloads 90584 Next Generation of Tunnel Field Effect Transistor: NCTFET
Authors: Naima Guenifi, Shiromani Balmukund Rahi, Amina Bechka
Abstract:
Tunnel FET is one of the most suitable alternatives FET devices for conventional CMOS technology for low-power electronics and applications. Due to its lower subthreshold swing (SS) value, it is a strong follower of low power applications. It is a quantum FET device that follows the band to band (B2B) tunneling transport phenomena of charge carriers. Due to band to band tunneling, tunnel FET is suffering from a lower switching current than conventional metal-oxide-semiconductor field-effect transistor (MOSFET). For improvement of device features and limitations, the newly invented negative capacitance concept of ferroelectric material is implemented in conventional Tunnel FET structure popularly known as NC TFET. The present research work has implemented the idea of high-k gate dielectric added with ferroelectric material on double gate Tunnel FET for implementation of negative capacitance. It has been observed that the idea of negative capacitance further improves device features like SS value. It helps to reduce power dissipation and switching energy. An extensive investigation for circularity uses for digital, analog/RF and linearity features of double gate NCTFET have been adopted here for research work. Several essential designs paraments for analog/RF and linearity parameters like transconductance(gm), transconductance generation factor (gm/IDS), its high-order derivatives (gm2, gm3), cut-off frequency (fT), gain-bandwidth product (GBW), transconductance generation factor (gm/IDS) has been investigated for low power RF applications. The VIP₂, VIP₃, IMD₃, IIP₃, distortion characteristics (HD2, HD3), 1-dB, the compression point, delay and power delay product performance have also been thoroughly studied.Keywords: analog/digital, ferroelectric, linearity, negative capacitance, Tunnel FET, transconductance
Procedia PDF Downloads 193583 Modelling the Tensile Behavior of Plasma Sprayed Freestanding Yttria Stabilized Zirconia Coatings
Authors: Supriya Patibanda, Xiaopeng Gong, Krishna N. Jonnalagadda, Ralph Abrahams
Abstract:
Yttria stabilized zirconia (YSZ) is used as a top coat in thermal barrier coatings in high-temperature turbine/jet engine applications. The mechanical behaviour of YSZ depends on the microstructural features like crack density and porosity, which are a result of coating method. However, experimentally ascertaining their individual effect is difficult due to the inherent challenges involved like material synthesis and handling. The current work deals with the development of a phenomenological model to replicate the tensile behavior of air plasma sprayed YSZ obtained from experiments. Initially, uniaxial tensile experiments were performed on freestanding YSZ coatings of ~300 µm thick for different crack densities and porosities. The coatings exhibited a nonlinear behavior and also a huge variation in strength values. With the obtained experimental tensile curve as a base and crack density and porosity as prime variables, a phenomenological model was developed using ABAQUS interface with new user material defined employing VUMAT sub routine. The relation between the tensile stress and the crack density was empirically established. Further, a parametric study was carried out to investigate the effect of the individual features on the non-linearity in these coatings. This work enables to generate new coating designs by varying the key parameters and predicting the mechanical properties with the help of a simulation, thereby minimizing experiments.Keywords: crack density, finite element method, plasma sprayed coatings, VUMAT
Procedia PDF Downloads 147582 Performance Based Design of Masonry Infilled Reinforced Concrete Frames for Near-Field Earthquakes Using Energy Methods
Authors: Alok Madan, Arshad K. Hashmi
Abstract:
Performance based design (PBD) is an iterative exercise in which a preliminary trial design of the building structure is selected and if the selected trial design of the building structure does not conform to the desired performance objective, the trial design is revised. In this context, development of a fundamental approach for performance based seismic design of masonry infilled frames with minimum number of trials is an important objective. The paper presents a plastic design procedure based on the energy balance concept for PBD of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames subjected to near-field earthquakes. The proposed energy based plastic design procedure was implemented for trial performance based seismic design of representative masonry infilled reinforced concrete frames with various practically relevant distributions of masonry infill panels over the frame elevation. Non-linear dynamic analyses of the trial PBD of masonry infilled R/C frames was performed under the action of near-field earthquake ground motions. The results of non-linear dynamic analyses demonstrate that the proposed energy method is effective for performance based design of masonry infilled R/C frames under near-field as well as far-field earthquakes.Keywords: masonry infilled frame, energy methods, near-fault ground motions, pushover analysis, nonlinear dynamic analysis, seismic demand
Procedia PDF Downloads 291581 Job in Modern Arabic Poetry: A Semantic and Comparative Approach to Two Poems Referring to the Poet Al-Sayyab
Authors: Jeries Khoury
Abstract:
The use of legendary, folkloric and religious symbols is one of the most important phenomena in modern Arabic poetry. Interestingly enough, most of the modern Arabic poetry’s pioneers were so fascinated by the biblical symbols and they managed to use many modern techniques to make these symbols adequate for their personal life from one side and fit to their Islamic beliefs from the other. One of the most famous poets to do so was al-Sayya:b. The way he employed one of these symbols ‘job’, the new features he adds to this character and the link between this character and his personal life will be discussed in this study. Besides, the study will examine the influence of al-Sayya:b on another modern poet Saadi Yusuf, who, following al-Sayya:b, used the character of Job in a special way, by mixing its features with al-Sayya:b’s personal features and in this way creating a new mixed character. A semantic, cultural and comparative analysis of the poems written by al-Sayya:b himself and the other poets who evoked the mixed image of al-Sayya:b-Job, can reveal the changes Arab poets made to the original biblical figure of Job to bring it closer to Islamic culture. The paper will make an intensive use of intertextuality idioms in order to shed light on the network of relations between three kinds of texts (indeed three ‘palimpsests’: 1- biblical- the primary text; 2- poetic- al-Syya:b’s secondary version; 3- re-poetic- Sa’di Yusuf’s tertiary version). The bottom line in this paper is that that al-Sayya:b was directly influenced by the dramatic biblical story of Job more than the brief Quranic version of the story. In fact, the ‘new’ character of Job designed by al-Sayya:b himself differs from the original one in many aspects that we can safely say it is the Sayyabian-Job that cannot be found in the poems of any other poets, unless they are evoking the own tragedy of al-Sayya:b himself, like what Saadi Yusuf did.Keywords: Arabic poetry, intertextuality, job, meter, modernism, symbolism
Procedia PDF Downloads 198580 Resolution of Artificial Intelligence Language Translation Technique Alongside Microsoft Office Presentation during Classroom Teaching: A Case of Kampala International University in Tanzania
Authors: Abigaba Sophia
Abstract:
Artificial intelligence (AI) has transformed the education sector by revolutionizing educational frameworks by providing new opportunities and innovative advanced platforms for language translation during the teaching and learning process. In today's education sector, the primary key to scholarly communication is language; therefore, translation between different languages becomes vital in the process of communication. KIU-T being an International University, admits students from different nations speaking different languages, and English is the official language; some students find it hard to grasp a word during teaching and learning. This paper explores the practical aspect of using artificial intelligence technologies in an advanced language translation manner during teaching and learning. The impact of this technology is reflected in the education strategies to equip students with the necessary knowledge and skills for professional activity in the best way they understand. The researcher evaluated the demand for this practice since students have to apply the knowledge they acquire in their native language to their countries in the best way they understand. The main objective is to improve student's language competence and lay a solid foundation for their future professional development. A descriptive-analytic approach was deemed best for the study to investigate the phenomena of language translation intelligence alongside Microsoft Office during the teaching and learning process. The study analysed the responses of 345 students from different academic programs. Based on the findings, the researcher recommends using the artificial intelligence language translation technique during teaching, and this requires the wisdom of human content designers and educational experts. Lecturers and students will be trained in the basic knowledge of this technique to improve the effectiveness of teaching and learning to meet the student’s needs.Keywords: artificial intelligence, language translation technique, teaching and learning process, Microsoft Office
Procedia PDF Downloads 78579 Structural Analysis and Strengthening of the National Youth Foundation Building in Igoumenitsa, Greece
Authors: Chrysanthos Maraveas, Argiris Plesias, Garyfalia G. Triantafyllou, Konstantinos Petronikolos
Abstract:
The current paper presents a structural assessment and proposals for retrofit of the National Youth Foundation Building, an existing reinforced concrete (RC) building in the city of Igoumenitsa, Greece. The building is scheduled to be renovated in order to create a Municipal Cultural Center. The bearing capacity and structural integrity have been investigated in relation to the provisions and requirements of the Greek Retrofitting Code (KAN.EPE.) and European Standards (Eurocodes). The capacity of the existing concrete structure that makes up the two central buildings in the complex (buildings II and IV) has been evaluated both in its present form and after including several proposed architectural interventions. The structural system consists of spatial frames of columns and beams that have been simulated using beam elements. Some RC elements of the buildings have been strengthened in the past by means of concrete jacketing and have had cracks sealed with epoxy injections. Static-nonlinear analysis (Pushover) has been used to assess the seismic performance of the two structures with regard to performance level B1 from KAN.EPE. Retrofitting scenarios are proposed for the two buildings, including type Λ steel bracings and placement of concrete shear walls in the transverse direction in order to achieve the design-specification deformation in each applicable situation, improve the seismic performance, and reduce the number of interventions required.Keywords: earthquake resistance, pushover analysis, reinforced concrete, retrofit, strengthening
Procedia PDF Downloads 290578 Climate Change and Its Impacts: The Case of Coastal Fishing Communities of the Meghna River in South-Central Bangladesh
Authors: Md. Royhanur Islam, Thomas Cansse, Md. Sahidul Islam, Atiqur Rahman Sunny
Abstract:
The geographical location of Bangladesh makes it one of the most vulnerable countries to climate change. Climate-induced phenomena mainly affect the south-central region of Bangladesh (Laxmipur district) where they have begun to occur more frequently. The aim of the study was to identify the hydro-climatic factors that lead to weather-related disasters in the coastal areas and analyse the consequences of these factors on coastal livelihoods, with possible adaptation options using participatory rural appraisal (PRA) tools. The present study showed several disasters such as land erosion, depressions and cyclones, coastal flooding, storm surge, and precipitation. The frequency of these disasters is of a noticeable rate. Surveys have also discovered that land erosion is ongoing. Tidal water is being introduced directly into the mainland, and as a result of the salt intrusion, production capacity is declining. The coastal belt is an important area for fishing activities, but due to changed fishing times and a lack of Alternative Income Generating Activities (AIGAs), people have been forced to search for alternative livelihood options by taking both short-term and long-term adaptation options. Therefore, in order to increase awareness and minimize the losses, vulnerable communities must be fully incorporated into disaster response strategies. The government as well as national and international donor organizations should come forward and resolve the present situation of these vulnerable groups since otherwise, they will have to endure endless and miserable suffering due to the effects of climate change ahead in their lives.Keywords: adaptation, community, fishery development, livelihood
Procedia PDF Downloads 120