Search results for: natural bottled water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13147

Search results for: natural bottled water

11377 Decision Support System for a Pilot Flash Flood Early Warning System in Central Chile

Authors: D. Pinto, L. Castro, M. L. Cruzat, S. Barros, J. Gironás, C. Oberli, M. Torres, C. Escauriaza, A. Cipriano

Abstract:

Flash floods, together with landslides, are a common natural threat for people living in mountainous regions and foothills. One way to deal with this constant menace is the use of Early Warning Systems, which have become a very important mitigation strategy for natural disasters. In this work, we present our proposal for a pilot Flash Flood Early Warning System for Santiago, Chile, the first stage of a more ambitious project that in a future stage shall also include early warning of landslides. To give a context for our approach, we first analyze three existing Flash Flood Early Warning Systems, focusing on their general architectures. We then present our proposed system, with main focus on the decision support system, a system that integrates empirical models and fuzzy expert systems to achieve reliable risk estimations.

Keywords: decision support systems, early warning systems, flash flood, natural hazard

Procedia PDF Downloads 373
11376 Optimization of Operational Parameters and Design of an Electrochlorination System to Produce Naclo

Authors: Pablo Ignacio Hernández Arango, Niels Lindemeyer

Abstract:

Chlorine, as Sodium Hypochlorite (NaClO) solution in water, is an effective, worldwide spread, and economical substance to eliminate germs in the water. The disinfection potential of chlorine lies in its ability to degrade the outer surfaces of bacterial cells and viruses. This contribution reports the main parameters of the brine electrolysis for the production of NaClO, which is afterward used for the disinfection of water either for drinking or recreative uses. Herein, the system design was simulated, optimized, build, and tested based on titanium electrodes. The process optimization considers the whole process, from the salt (NaCl) dilution tank in order to maximize its operation time util the electrolysis itself in order to maximize the chlorine production reducing the energy and raw material (salt and water) consumption. One novel idea behind this optimization process is the modification of the flow pattern inside the electrochemical reactors. The increasing turbulence and residence time impact positively the operations figures. The operational parameters, which are defined in this study were compared and benchmarked with the parameters of actual commercial systems in order to validate the pertinency of those results.

Keywords: electrolysis, water disinfection, sodium hypochlorite, process optimization

Procedia PDF Downloads 128
11375 Microgravity, Hydrological and Metrological Monitoring of Shallow Ground Water Aquifer in Al-Ain, UAE

Authors: Serin Darwish, Hakim Saibi, Amir Gabr

Abstract:

The United Arab Emirates (UAE) is situated within an arid zone where the climate is arid and the recharge of the groundwater is very low. Groundwater is the primary source of water in the United Arab Emirates. However, rapid expansion, population growth, agriculture, and industrial activities have negatively affected these limited water resources. The shortage of water resources has become a serious concern due to the over-pumping of groundwater to meet demand. In addition to the deficit of groundwater, the UAE has one of the highest per capita water consumption rates in the world. In this study, a combination of time-lapse measurements of microgravity and depth to groundwater level in selected wells in Al Ain city was used to estimate the variations in groundwater storage. Al-Ain is the second largest city in Abu Dhabi Emirates and the third largest city in the UAE. The groundwater in this region has been overexploited. Relative gravity measurements were acquired using the Scintrex CG-6 Autograv. This latest generation gravimeter from Scintrex Ltd provides fast, precise gravity measurements and automated corrections for temperature, tide, instrument tilt and rejection of data noise. The CG-6 gravimeter has a resolution of 0.1μGal. The purpose of this study is to measure the groundwater storage changes in the shallow aquifers based on the application of microgravity method. The gravity method is a nondestructive technique that allows collection of data at almost any location over the aquifer. Preliminary results indicate a possible relationship between microgravity and water levels, but more work needs to be done to confirm this. The results will help to develop the relationship between monthly microgravity changes with hydrological and hydrogeological changes of shallow phreatic. The study will be useful in water management considerations and additional future investigations.

Keywords: Al-Ain, arid region, groundwater, microgravity

Procedia PDF Downloads 152
11374 EIS Study of the Corrosion Behavior of an Organic Coating Applied on Algerian Oil Tanker in Sea Water

Authors: Nadia Hammouda, Kamel Belmokre

Abstract:

Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in sea water by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness.

Keywords: epoxy paints, carbon steel, electrochemical impedance spectroscopy, corrosion mechanisms, sea water

Procedia PDF Downloads 374
11373 How Natural Environments Are Being Used by Teachers to Improve Student Learning and Wellbeing in Australia

Authors: Jade Fersterer, Tristan Snell, Mark Rickinson

Abstract:

This paper is designed to provide a review of the literature concerning the impact of natural environments on student learning and wellbeing in Australia. Specific areas of interest include how child-led and teacher-led pedagogies differ in outdoor learning settings, and the impact of each approach on children’s well-being, behavior, relationships with others as well as educational outcomes. The review will include links to possibilities for future research, including a Ph.D. currently being undertaken in Australia, which aims to fulfill a considerable gap in psychological, educational and outdoor learning research, regarding how natural environments are being used by teachers to improve learning and wellbeing among primary school students. The proposed study aims to understand if children’s experience of learning, 1. in a natural environment, and 2. in a child-led way, can support and strengthen their skills across several areas of development, including those required for positive educational outcomes. Data will be collected from a sample of primary school students and teachers via both quantitative and qualitative methods, including a pre- and post-questionnaire, direct observation, and semi-structured interviews. The study will have valuable implications for the provision of quality education as well as the promotion of good health and wellbeing. The implications of the research will be useful not only for teachers and parents but also for Psychologists working with children and young people in both a school and clinical setting. Understanding the impacts and implications of child-led learning and exposure to natural environments provides the opportunity to build on the current school curriculum. The inclusion of child-led experiences in nature may provide a simple way to build enthusiasm for school and learning, cultivating skills for life and relationships as well as meeting current curriculum requirements and building capacity for ongoing academic pursuits. In addition, understanding the impact of learning in a natural environment on wellbeing will assist in the development and dissemination of an educational model that could help mitigate the negative health outcomes associated with reduced physical activity and decreasing contact with nature among children.

Keywords: child-led learning, educational outcomes, natural environments, wellbeing

Procedia PDF Downloads 125
11372 Dilution of Saline Irrigation Based on Plant's Physiological Responses to Salt Stress Following by Re-Watering

Authors: Qaiser Javed, Ahmad Azeem

Abstract:

Salinity and water scarcity are major environmental problems which are limiting the agricultural production. This research was conducted to construct a model to find out appropriate regime to dilute saline water based on physiological and electrophysiological properties of Brassica napus L., and Orychophragmus violaceus (L.). Plants were treated under salt-stressed concentrations of NaCl (NL₁: 2.5, NL₂: 5, NL₃: 10; gL⁻¹), Na₂SO₄ (NO₁: 2.5, NO₂: 5, NO₃: 10; gL⁻¹), and mixed salt concentration (MX₁: NL₁+ NO₃; MX₂: NL₃+ NO₁; MX₃: NL₂+ NO₂; gL⁻¹) and 0 as control, followed by re-watering. Growth, physiological and electrophysiology traits were highly restricted under high salt concentration levels at NL₃, NO₃, MX₁, and MX₂, respectively. However, during the rewatering phase, growth, electrophysiological, and physiological parameters were recovered well. Consequently, the increase in net photosynthetic rate was noted under moderate stress condition which was 44.13, 37.07, and 43.01%, respectively in Orychophragmus violaceus (L.) and 44.94%, 53.45%, and 63.04%, respectively were found in Brassica napus L. According to the results, the best dilution point was 5–2.5% for NaCl and Na₂SO₄ alternatively, whereas it was 10–0.0% for the mixture of salts. Therefore, the effect of salinity in O. violaceus and B. napus may also be reduced effectively by dilution of saline irrigation. It would be a better approach to utilize dilute saline water for irrigation instead of applies direct saline water to plant. This study provides new insight in the field of agricultural engineering to plan irrigation scheduling considering the crop ability to salt tolerance and irrigation water use efficiency by apply specific quantity of irrigation calculated based on the salt dilution point. It would be helpful to balance between irrigation amount and optimum crop water consumption in salt-affected regions and to utilize saline water in order to safe freshwater resources.

Keywords: dilution model, plant growth traits, re-watering, salt stress

Procedia PDF Downloads 159
11371 Photocatalytic Degradation of Lead from Aqueous Solution Using TiO2 as Adsorbent

Authors: Navven Desai, Veena Soraganvi

Abstract:

Heavy metals such as lead, cadmium and mercury do not have biological significance hence they are known to be extremely toxic heavy metals. Water contains various heavy metals like Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Arsenic (As), Lead (Pb), and Zinc (Zn) etc., when it gets polluted with industrial waste water. These heavy metals cause various health effects even at low concentration when consumed by humans. Most of the heavy metals are poisonous to living organisms. Heavy metals are non-degradable and are preserved in the environment through bioaccumulation. Therefore removal of heavy metals from water is necessary. In recent years, a great deal of attentions has been focused on to the application of nanosized metal oxides to treat heavy metals, especially titanium oxides, ferric oxides, manganese oxides, aluminium oxides and magnesium oxides as adsorbent and photocatalyst. TiO2 based photocatalysts have attracted continuously increasing attention because of the excellent properties such as high light -conversion efficiency, chemical stability, nontoxic nature, low cost. The catalyst displays high photocatalytic activity because of its large surface area. In this study, the photocatalytic degradation of Lead (Pb) from aqueous solution was investigated in natural sunlight by using TiO2 as Nanomaterial. This study was performed at laboratory scale. All the experiments were carried out in the batch process. The concentration of lead was constant (25mg/lit) in the experiment and effect of titanium dioxide dose and pH were varied to study the removal efficiency of the lead by adsorption. Further study was performed on the dependence of photocatalytic reaction on the reaction temperature. The aqueous solution was prepared by Lead metal powder. TiO2 photo catalyst nanopowder used was Sisco-74629 grade. The heavy metal is analyzed with VARIAN AA 240 atomic adsorption spectrophotometer. The study shows, with increasing TiO2 dose and pH the lead removal increases. According to study, it can be concluded that the utilization of titanium dioxide accounted for higher efficiency in the removal of lead from aqueous solution.

Keywords: adsorption, heavy metals, nanomaterial, photocatalysis

Procedia PDF Downloads 297
11370 Experimental Determination of Water Productivity of Improved Cassava Varieties Propagation under Rain-Fed Condition in Tropical Environment

Authors: Temitayo Abayomi Ewemoje, Isaac Olugbemiga Afolayan, Badmus Alao Tayo

Abstract:

Researchers in developing countries have worked on improving cassava resistance to diseases and pests, high yielding and early maturity However, water management has received little or no attention as cassava cultivation in Sub-Saharan Africa depended on available precipitation (rain-fed condition). Therefore the need for water management in Agricultural crop production cannot be overemphasized. As other sectors compete with agricultural sector for fresh water (which is not readily available), there is need to increase water productivity in agricultural production. Experimentation was conducted to examine water use, growth and yield of improved cassava varieties under rain fed condition using Latin- square design with four replications. Four improved disease free stem cassava varieties TMS (30572, 980505, 920326 and 090581) were planted and growth parameters of the varieties were monitored for 90 and 120 days after planting (DAP). Effective rainfall useful for the plant growth was calculated using CROPWAT8 for Windows. Results indicated TMS090581 was having the highest tuber yield and plant height while TMS30572 had highest number of nodes. Tuber stem and leaf water productivities at 90 and 120 DAP of TMS (30572, 980505, 920326 and 090581) are (1.27 and 3.58, 1.44 and 2.35, 0.89 and 1.86, 1.64 and 3.77) kg/m3 (1.56 and 2.59, 1.95 and 2.02, 1.98 and 2.05, 1.95 and 2.18) kg/m3, and (1.34 and 2.32, 1.94 and 2.16, 1.57 and 1.40, 1.27 and 1.80) kg/m3 respectively. Based on tuber water productivity TMS090581 are recommended while TMS30572 are recommended based on leaf and stem productivity in water scarce regions.Experimentation was conducted to examine water use, growth and yield of improved cassava varieties under rain fed condition using Latin- square design with four replications. Four improved disease free stem cassava varieties TMS (30572, 980505, 920326 and 090581) were planted and growth parameters of the varieties were monitored for 90 and 120 days after planting (DAP). Effective rainfall useful for the plant growth was calculated using CROPWAT8 for Windows. Results indicated TMS090581 was having the highest tuber yield and plant height while TMS30572 had the highest number of nodes. Tuber, stem and leaf water productivities at 90 and 120 DAP of TMS (30572, 980505, 920326 and 090581) are (1.27 and 3.58, 1.44 and 2.35, 0.89 and 1.86, 1.64 and 3.77) kg/m3 (1.56 and 2.59, 1.95 and 2.02, 1.98 and 2.05, 1.95 and 2.18) kg/m3, and (1.34 and 2.32, 1.94 and 2.16, 1.57 and 1.40, 1.27 and 1.80) kg/m3 respectively. Based on tuber water productivity TMS090581 are recommended while TMS30572 are recommended based on leaf and stem productivity in water scarce regions

Keywords: improved TMS varieties, leaf productivity, rain-fed cassava production, stem productivity, tuber productivity

Procedia PDF Downloads 344
11369 Natural Convection in Wavy-Wall Cavities Filled with Power-Law Fluid

Authors: Cha’o-Kuang Chen, Ching-Chang Cho

Abstract:

This paper investigates the natural convection heat transfer performance in a complex-wavy-wall cavity filled with power-law fluid. In performing the simulations, the continuity, Cauchy momentum and energy equations are solved subject to the Boussinesq approximation using a finite volume method. The simulations focus specifically on the effects of the flow behavior index in the power-law model and the Rayleigh number on the flow streamlines, isothermal contours and mean Nusselt number within the cavity. The results show that pseudoplastic fluids have a better heat transfer performance than Newtonian or dilatant fluids. Moreover, it is shown that for Rayleigh numbers greater than Ra=103, the mean Nusselt number has a significantly increase as the flow behavior index is decreased.

Keywords: non-Newtonian fluid, power-law fluid, natural convection, heat transfer enhancement, cavity, wavy wall

Procedia PDF Downloads 266
11368 Deep Reinforcement Learning for Advanced Pressure Management in Water Distribution Networks

Authors: Ahmed Negm, George Aggidis, Xiandong Ma

Abstract:

With the diverse nature of urban cities, customer demand patterns, landscape topologies or even seasonal weather trends; managing our water distribution networks (WDNs) has proved a complex task. These unpredictable circumstances manifest as pipe failures, intermittent supply and burst events thus adding to water loss, energy waste and increased carbon emissions. Whilst these events are unavoidable, advanced pressure management has proved an effective tool to control and mitigate them. Henceforth, water utilities have struggled with developing a real-time control method that is resilient when confronting the challenges of water distribution. In this paper we use deep reinforcement learning (DRL) algorithms as a novel pressure control strategy to minimise pressure violations and leakage under both burst and background leakage conditions. Agents based on asynchronous actor critic (A2C) and recurrent proximal policy optimisation (Recurrent PPO) were trained and compared to benchmarked optimisation algorithms (differential evolution, particle swarm optimisation. A2C manages to minimise leakage by 32.48% under burst conditions and 67.17% under background conditions which was the highest performance in the DRL algorithms. A2C and Recurrent PPO performed well in comparison to the benchmarks with higher processing speed and lower computational effort.

Keywords: deep reinforcement learning, pressure management, water distribution networks, leakage management

Procedia PDF Downloads 91
11367 Numerical Simulation of Urea Water Solution Evaporation Behavior inside the Diesel Selective Catalytic Reduction System

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

Selective catalytic reduction (SCR) converts the nitrogen oxides with the aid of a catalyst by adding aqueous urea into the exhaust stream. In this work, the urea water droplets are sprayed over the exhaust gases by treating with Lagrangian particle tracking. The evaporation of ammonia from a single droplet of urea water solution is investigated computationally by convection-diffusion controlled model. The conversion to ammonia due to thermolysis of urea water droplets is measured downstream at different sections using finite rate/eddy dissipation model. In this paper, the mixer installed at the upstream enhances the distribution of ammonia over the entire domain which is calculated for different time steps. Calculations are made within the respective duration such that the complete decomposition of urea is possible at a much shorter residence time.

Keywords: convection-diffusion controlled model, lagrangian particle tracking, selective catalytic reduction, thermolysis

Procedia PDF Downloads 406
11366 Production of Biogas from Organic Wastes Using Plastic Biodigesternoura

Authors: Oladipo Oluwaseun Peter

Abstract:

Daily consumption of crude oil is alarming as a result of increasing demand for energy. Waste generation tends to rise with the level of economic advancement of a nation. Hence, this project work researches how wastes which could pose toxic if left unattended to can be processed through biodigestion in order to generate biofuel which could serve as a good substitute for petroleum, a non renewable energy source, so as to reduce over-dependence on petroleum and to prevent environmental pollution. Anaerobic digestion was carried out on organic wastes comprising brewery spent grains, rice husks and poultry droppings in a plastic biodigester of 1000 liters volume using the poultry droppings as a natural inoculums source. The feed composition in ratio 5:3:2, spent grain, rice husks and poultry droppings were mixed with water in the ratio 1:6. Thus, 600 Kg of water was used to prepare the slurry with 100 Kg of feed materials. A plastic biodigester was successfully constructed, and the problem of corrosion and rusting were completely overcome as a result of the use of non-corroding materials of construction. A reasonable quantity of biogas, 33.63m3, was generated over a period of 60 days of biodigestion. The bioslurry was processed through two different process routes; evaporation and filteration. Evaporation process of analysis shows high values of 0.64%, 2.11% and 0.034% for nitrogen, phosphorous and potassium respectively, while filteration process gives 00.61%, 1.93% and 0.026% for nitrogen, phosphorous and potassium respectively.

Keywords: biodigestion, biofuel, digestion, slurry, biogas

Procedia PDF Downloads 376
11365 Variation of Litter Chemistry under Intensified Drought: Consequences on Flammability

Authors: E. Ormeno, C. Gutigny, J. Ruffault, J. Madrigal, M. Guijarro, C. Lecareux, C. Ballini

Abstract:

Mediterranean plant species feature numerous metabolic and morpho-physiological responses crucial to survive under both, typical Mediterranean drought conditions and future aggravated drought expected by climate change. Whether these adaptive responses will, in turn, increase the ecosystem perturbation in terms of fire hazard, is an issue that needs to be addressed. The aim of this study was to test whether recurrent and aggravated drought in the Mediterranean area favors the accumulation of waxes in leaf litter, with an eventual increase of litter flammability. The study was conducted in 2017 in a garrigue in Southern France dominated by Quercus coccifera, where two drought treatments were used: a treatment with recurrent aggravated drought consisting of ten rain exclusion structures which withdraw part of the annual precipitation since January 2012, and a natural drought treatment where Q. coccifera stands are free of such structures and thus grow under natural precipitation. Waxes were extracted with organic solvent and analyzed by GC-MS and litter flammability was assessed through measurements of the ignition delay, flame residence time and flame intensity (flame height) using an epiradiator as well as the heat of combustion using an oxygen bomb calorimeter. Results show that after 5 years of rain restriction, wax content in the cuticle of leaf litter increases significantly compared to shrubs growing under natural precipitation, in accordance with the theoretical knowledge which expects increases of cuticle waxes in green leaves in order to limit water evapotranspiration. Wax concentrations were also linearly and positively correlated to litter flammability, a correlation that lies on the high flammability own to the long-chain alkanes (C25-C31) found in leaf litter waxes. This innovative investigation shows that climate change is likely to favor ecosystem fire hazard through accumulation of highly flammable waxes in litter. It also adds valuable information about the types of metabolites that are associated with increasing litter flammability, since so far, within the leaf metabolic profile, only terpene-like compounds had been related to plant flammability.

Keywords: cuticular waxes, drought, flammability, litter

Procedia PDF Downloads 171
11364 First Systematic Review on Aerosol Bound Water: Exploring the Existing Knowledge Domain Using the CiteSpace Software

Authors: Kamila Widziewicz-Rzonca

Abstract:

The presence of PM bound water as an integral chemical compound of suspended aerosol particles (PM) has become one of the hottest issues in recent years. The UN climate summits on climate change (COP24) indicate that PM of anthropogenic origin (released mostly from coal combustion) is directly responsible for climate change. Chemical changes at the particle-liquid (water) interface determine many phenomena occurring in the atmosphere such as visibility, cloud formation or precipitation intensity. Since water-soluble particles such as nitrates, sulfates, or sea salt easily become cloud condensation nuclei, they affect the climate for example by increasing cloud droplet concentration. Aerosol water is a master component of atmospheric aerosols and a medium that enables all aqueous-phase reactions occurring in the atmosphere. Thanks to a thorough bibliometric analysis conducted using CiteSpace Software, it was possible to identify past trends and possible future directions in measuring aerosol-bound water. This work, in fact, doesn’t aim at reviewing the existing literature in the related topic but is an in-depth bibliometric analysis exploring existing gaps and new frontiers in the topic of PM-bound water. To assess the major scientific areas related to PM-bound water and clearly define which among those are the most active topics we checked Web of Science databases from 1996 till 2018. We give an answer to the questions: which authors, countries, institutions and aerosol journals to the greatest degree influenced PM-bound water research? Obtained results indicate that the paper with the greatest citation burst was Tang In and Munklewitz H.R. 'water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance', 1994. The largest number of articles in this specific field was published in atmospheric chemistry and physics. An absolute leader in the quantity of publications among all research institutions is the National Aeronautics Space Administration (NASA). Meteorology and atmospheric sciences is a category with the most studies in this field. A very small number of studies on PM-bound water conduct a quantitative measurement of its presence in ambient particles or its origin. Most articles rather point PM-bound water as an artifact in organic carbon and ions measurements without any chemical analysis of its contents. This scientometric study presents the current and most actual literature regarding particulate bound water.

Keywords: systematic review, aerosol-bound water, PM-bound water, CiteSpace, knowledge domain

Procedia PDF Downloads 123
11363 The Relationship between Trace Elements in Groundwater Linked to a History of Volcanic Activity in La Pampa and Buenos Aires Provinces, Argentina

Authors: Maisarah Jaafar, Neil I. Ward

Abstract:

Volcanic and geothermal activity can result in the release of arsenic (As), manganese (Mn), iron, selenium (Se), molybdenum (Mo) and uranium (U) into natural waters. Several studies have reported high levels of these elements in surface and groundwater in Argentina. The main focus has been on As associated with volcanic ash deposits. This study reports the trace element levels of groundwater from an agricultural region of south-eastern La Pampa and southern Buenos Aires provinces, Argentina which have reported high levels of human health problems (bone/teeth disorders, depression, arthritis, etc). Fifty-eight groundwater samples were collected from wells adjacent to Ruta 35 and an Agilent 7700x inductively coupled plasma mass spectrometer (ICP-MS) were used for total elemental analysis. Physicochemical analysis confirmed pH range of 7.05-8.84 and variable conductivity (988-3880 µS/cm) with total dissolved solid content of 502-1989 mg/l. The majority water samples are in an oxidizing environment (Eh= 45-146 mV). Total As levels ranged from (µg/l): 13.08 – 319.4 for La Pampa (LP) and 39.6 – 189.4 for Buenos Aires (BA); all above the WHO Guideline for Drinking Water, 10 µg/l As. Interestingly, Mo (LP: 1.85 – 85.39 µg/l; BA: 4.61– 55.55 µg/l;), Se (LP: 1.2 – 16.59 µg/l; BA: 0.3– 6.94 µg/l;) and U (LP: 1.85 – 85.39 µg/l; BA: 4.61– 55.55 µg/l;) levels are lower than reported values for northern La Pampa. Inter-elemental correlation displayed positive statistically significant between As-Mo, A-Se, As-U while negative statistically significant between As-Mn and As-Fe. This confirms that the source of the trace element is similar to that reported for other region of Argentina, namely volcanic ash deposition.

Keywords: Argentina, groundwater, trace element, volcanic activity

Procedia PDF Downloads 336
11362 Ecophysiological Features of Acanthosicyos horridus (!Nara) to Survive the Namib Desert

Authors: Jacques M. Berner, Monja Gerber, Gillian L. Maggs-Kolling, Stuart J. Piketh

Abstract:

The enigmatic melon species, Acanthosicyos horridus Welw. ex Hook. f., locally known as !nara, is endemic to the hyper-arid Namib Desert, where it thrives in sandy dune areas and dry river banks. The Namib Desert is characterized by extreme weather conditions which include high temperatures, very low rainfall, and extremely dry air. Plant and animals that have made the Namib Dessert their home are dependent on non-rainfall water inputs, like fog, dew and water vapor, for survival. Fog is believed to be the most important non-rainfall water input for most of the coastal Namib Desert and is a life line to many Namib plants and animals. It is commonly assumed that the !nara plant is adapted and dependent upon coastal fog events. The !nara plant shares many comparable adaptive features with other organisms that are known to exploit fog as a source of moisture. These include groove-like structures on the stems and the cone-like structures of thorns. These structures are believed to be the driving forces behind directional water flow that allow plants to take advantage of fog events. The !nara-fog interaction was investigated in this study to determine the dependence of !nara on these fog events, as it would illustrate strategies to benefit from non-rainfall water inputs. The direct water uptake capacity of !nara shoots was investigated through absorption tests. Furthermore, the movement and behavior of fluorescent water droplets on a !nara stem were investigated through time-lapse macrophotography. The shoot water potential was measured to investigate the effect of fog on the water status of !nara stems. These tests were used to determine whether the morphology of !nara has evolved to exploit fog as a non-rainfall water input and whether the !nara plant has adapted physiologically in response to fog. Chlorophyll a fluorescence was used to compare the photochemical efficiency of !nara plants on days with fog events to that on non-foggy days. The results indicate that !nara plants do have the ability to take advantage of fog events as commonly believed. However, the !nara plant did not exhibit visible signs of drought stress and this, together with the strong shoot water potential, indicates that these plants are reliant on permanent underground water sources. Chlorophyll a fluorescence data indicated that temperature stress and wind were some of the main abiotic factors influencing the plants’ overall vitality.

Keywords: Acanthosicyos horridus, chlorophyll a fluorescence, fog, foliar absorption, !nara

Procedia PDF Downloads 158
11361 Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water

Authors: Ahmed A. Alghamdi

Abstract:

Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome.

Keywords: single-walled carbon nanotubes, thin film composite, axially aligned swcnt, temperature induced phase separation technique, reverse osmosis

Procedia PDF Downloads 51
11360 Determining Water Use Efficiency of Mung Bean (Vigna radiata L.) under Arid Climatic Conditions

Authors: Awais Ahmad, Mostafa Muhammad Selim, Ali Abdullah Alderfasi

Abstract:

Water limitation is undoubtedly a critical environmental constraint limiting the crop production under arid and semiarid areas. Mung bean is susceptible to both drought and water logging stresses. Therefore, present study was conducted to assess the water deficit stress consequences of yield components and water use efficiency in Mung bean. A field experiment was conducted at Educational Farm, Crop Production Department, College of Food and Agricultural Sciences, Kind Saud University, Saudi Arabia. Trail comprised of four irrigation levels — total amount of irrigation divided into irrigation intervals — (3, 5, 7 and 9 days interval) and three Mung bean genotypes; Kawmay-1, VC-2010 and King from Egypt, Thailand and China respectively. Experiment was arranged under split plot design having irrigation as main while genotype as subplot treatment, and replicated thrice. Plant height, 100 seed weight, biological yield, seed yield, harvest index and water use efficiency were recorded at harvesting. Results revealed that decrease in irrigation have significantly hampered all the studied parameters. Mung bean genotypes have also shown significant differences for all parameters, whereas irrigation genotype interaction was highly significant for seed yield, harvest index and water use efficiency (WUE) while it was significant for biological yield. Plant height and 100 seed weight were recorded non-significant for irrigation genotype interaction. A statistically highly significant correlation among recorded parameters was observed. Minimum irrigation interval (3 days) significantly produced maximum values while VC-2010 comparatively performed better under low irrigation levels. It was concluded that Mung bean may be successfully adopted under Saudi Arabian climate but it needs high water or frequent irrigation, however, genotypic differences are a hope to develop some improved varieties with high water use efficiency.

Keywords: mung bean, irrigation intervals, water use efficiency, genotypes, yield

Procedia PDF Downloads 274
11359 Assessment of Water Quality of Selected Lakes of Coimbatore District, Tamil Nadu, India

Authors: K. P. Ganesh, T. Gomathi, L. Arul Pragasan

Abstract:

Degradation of lake water quality is one of the serious environmental threats for the last few decades, particularly, the lakes situated in and around urban and industrial areas. The present study aimed to analyze the physicochemical and biological parameters, and metal elements to determine the water quality of Krishnampathi, Ukkadam, Kurichi, Sulur and Singanallur Lakes. Of the 23 physicochemical parameters analyzed in the five lakes, except TDS, Chloride and Total hardness values all the 20 parameters were found within the prescribed limit as recommended by World Health Organization (WHO) and Bureau of Indian Standards (BIS). In case of biological parameter, both Total Coliform and Fecal Coliform bacteria (Escherichia coli) were identified. This indicates the contamination of lakes by fecal matter, and warns of potential of disease causing by viruses, bacteria and other organisms. Among the twelve metal elements (Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Mo, Cd and Pb) determined by inductively coupled plasma-mass spectroscopy, except Cd (for all lakes), and Pb (for Ukkadam, Kurichi, Sulur & Singanallur), all the elements were found above the prescribed limits of BIS. The results of the present study revealed that all the five major lakes of Coimbatore were contaminated. It is recommended that proper implementation of the new wetland waste management system and monitoring of water quality be of the urgent need to sustain the water bodies for future generations.

Keywords: heavy metals, inductively coupled plasma-mass spectroscopy, physicochemical and biological parameters, water quality

Procedia PDF Downloads 179
11358 Integrating Multiple Types of Value in Natural Capital Accounting Systems: Environmental Value Functions

Authors: Pirta Palola, Richard Bailey, Lisa Wedding

Abstract:

Societies and economies worldwide fundamentally depend on natural capital. Alarmingly, natural capital assets are quickly depreciating, posing an existential challenge for humanity. The development of robust natural capital accounting systems is essential for transitioning towards sustainable economic systems and ensuring sound management of capital assets. However, the accurate, equitable and comprehensive estimation of natural capital asset stocks and their accounting values still faces multiple challenges. In particular, the representation of socio-cultural values held by groups or communities has arguably been limited, as to date, the valuation of natural capital assets has primarily been based on monetary valuation methods and assumptions of individual rationality. People relate to and value the natural environment in multiple ways, and no single valuation method can provide a sufficiently comprehensive image of the range of values associated with the environment. Indeed, calls have been made to improve the representation of multiple types of value (instrumental, intrinsic, and relational) and diverse ontological and epistemological perspectives in environmental valuation. This study addresses this need by establishing a novel valuation framework, Environmental Value Functions (EVF), that allows for the integration of multiple types of value in natural capital accounting systems. The EVF framework is based on the estimation and application of value functions, each of which describes the relationship between the value and quantity (or quality) of an ecosystem component of interest. In this framework, values are estimated in terms of change relative to the current level instead of calculating absolute values. Furthermore, EVF was developed to also support non-marginalist conceptualizations of value: it is likely that some environmental values cannot be conceptualized in terms of marginal changes. For example, ecological resilience value may, in some cases, be best understood as a binary: it either exists (1) or is lost (0). In such cases, a logistic value function may be used as the discriminator. Uncertainty in the value function parameterization can be considered through, for example, Monte Carlo sampling analysis. The use of EVF is illustrated with two conceptual examples. For the first time, EVF offers a clear framework and concrete methodology for the representation of multiple types of value in natural capital accounting systems, simultaneously enabling 1) the complementary use and integration of multiple valuation methods (monetary and non-monetary); 2) the synthesis of information from diverse knowledge systems; 3) the recognition of value incommensurability; 4) marginalist and non-marginalist value analysis. Furthermore, with this advancement, the coupling of EVF and ecosystem modeling can offer novel insights to the study of spatial-temporal dynamics in natural capital asset values. For example, value time series can be produced, allowing for the prediction and analysis of volatility, long-term trends, and temporal trade-offs. This approach can provide essential information to help guide the transition to a sustainable economy.

Keywords: economics of biodiversity, environmental valuation, natural capital, value function

Procedia PDF Downloads 194
11357 Enhancement Production and Development of Hot Dry Rock System by Using Supercritical CO2 as Working Fluid Instead of Water to Advance Indonesia's Geothermal Energy

Authors: Dhara Adhnandya Kumara, Novrizal Novrizal

Abstract:

Hot Dry Rock (HDR) is one of geothermal energy which is abundant in many provinces in Indonesia. Heat exploitation from HDR would need a method which injects fluid to subsurface to crack the rock and sweep the heat. Water is commonly used as the working fluid but known to be less effective in some ways. The new research found out that Supercritical CO2 (SCCO2) can be used to replace water as the working fluid. By studying heat transfer efficiency, pumping power, and characteristics of the returning fluid, we might decide how effective SCCO2 to replace water as working fluid. The method used to study those parameters quantitatively could be obtained from pre-existing researches which observe the returning fluids from the same reservoir with same pumping power. The result shows that SCCO2 works better than water. For cold and hot SCCO2 has lower density difference than water, this results in higher buoyancy in the system that allows the fluid to circulate with lower pumping power. Besides, lower viscosity of SCCO2 impacts in higher flow rate in circulation. The interaction between SCCO2 and minerals in reservoir could induce dehydration of the minerals and enhancement of rock porosity and permeability. While the dissolution and transportation of minerals by SCCO2 are unlikely to occur because of the nature of SCCO2 as poor solvent, and this will reduce the mineral scaling in the system. Under those conditions, using SCCO2 as working fluid for HDR extraction would give great advantages to advance geothermal energy in Indonesia.

Keywords: geothermal, supercritical CO2, injection fluid, hot dry rock

Procedia PDF Downloads 217
11356 Approach to Quantify Groundwater Recharge Using GIS Based Water Balance Model

Authors: S. S. Rwanga, J. M. Ndambuki

Abstract:

Groundwater quantification needs a method which is not only flexible but also reliable in order to accurately quantify its spatial and temporal variability. As groundwater is dynamic and interdisciplinary in nature, an integrated approach of remote sensing (RS) and GIS technique is very useful in various groundwater management studies. Thus, the GIS water balance model (WetSpass) together with remote sensing (RS) can be used to quantify groundwater recharge. This paper discusses the concept of WetSpass in combination with GIS on the quantification of recharge with a view to managing water resources in an integrated framework. The paper presents the simulation procedures and expected output after simulation. Preliminary data are presented from GIS output only.

Keywords: groundwater, recharge, GIS, WetSpass

Procedia PDF Downloads 450
11355 A Review of Toxic and Non-Toxic Cyanobacteria Species Occurrence in Water Supplies Destined for Maize Meal Production Process: A Case Study of Vhembe District

Authors: M. Mutoti, J. Gumbo, A. Jideani

Abstract:

Cyanobacteria or blue green algae have been part of the human diet for thousands of years. Cyanobacteria can multiply quickly in surface waters and form blooms when favorable conditions prevail, such as high temperature, intense light, high pH, and increased availability of nutrients, especially phosphorous and nitrogen, artificially released by anthropogenic activities. Consumption of edible cyanotoxins such as Spirulina may reduce risks of cataracts and age related macular degeneration. Sulfate polysaccharides exhibit antitumor, anticoagulant, anti-mutagenic, anti-inflammatory, antimicrobial, and even antiviral activity against HIV, herpes, and hepatitis. In humans, exposure to cyanotoxins can occur in various ways; however, the oral route is the most important. This is mainly through drinking water, or by eating contaminated foods; it may even involve ingesting water during recreational activities. This paper seeks to present a review on cyanobacteria/cyanotoxin contamination of water and food and implications for human health. In particular, examining the water quality used during maize seed that passes through mill grinding processes. In order to fulfil the objective, this paper starts with the theoretical framework on cyanobacteria contamination of food that will guide review of the present paper. A number of methods for decontaminating cyanotoxins in food is currently available. Therefore, physical, chemical, and biological methods for treating cyanotoxins are reviewed and compared. Furthermore, methods that are utilized for detecting and identifying cyanobacteria present in water and food were also informed in this review. This review has indicated various routes through which humans can be exposed to cyanotoxins. Accumulation of cyanotoxins, mainly microcystins, in food has raised an awareness of the importance of food as microcystins exposure route to human body. Therefore, this review demonstrates the importance of expanding research on cyanobacteria/cyanotoxin contamination of water and food for water treatment and water supply management, with focus on examining water for domestic use. This will help providing information regarding the prevention or minimization of contamination of water and food, and also reduction or removal of contamination through treatment processes and prevention of recontamination in the distribution system.

Keywords: biofilm, cyanobacteria, cyanotoxin, food contamination

Procedia PDF Downloads 160
11354 Assessment of Groundwater Aquifer Impact from Artificial Lagoons and the Reuse of Wastewater in Qatar

Authors: H. Aljabiry, L. Bailey, S. Young

Abstract:

Qatar is a desert with an average temperature 37⁰C, reaching over 40⁰C during summer. Precipitation is uncommon and mostly in winter. Qatar depends on desalination for drinking water and on groundwater and recycled water for irrigation. Water consumption and network leakage per capita in Qatar are amongst the highest in the world; re-use of treated wastewater is extremely limited with only 14% of treated wastewater being used for irrigation. This has led to the country disposing of unwanted water from various sources in lagoons situated around the country, causing concern over the possibility of environmental pollution. Accordingly, our hypothesis underpinning this research is that the quality and quantity of water in lagoons is having an impact on the groundwater reservoirs in Qatar. Lagoons (n = 14) and wells (n = 55) were sampled for both summer and winter in 2018 (summer and winter). Water, adjoining soil and plant samples were analysed for multiple elements by Inductively Coupled Plasma Mass Spectrometry. Organic and inorganic carbon were measured (CN analyser) and the major anions were determined by ion chromatography. Salinization in both the lagoon and the wells was seen with good correlations between Cl⁻, Na⁺, Li, SO₄, S, Sr, Ca, Ti (p-value < 0.05). Association of heavy metals was observed of Ni, Cu, Ag, and V, Cr, Mo, Cd which is due to contamination from anthropological activities such as wastewater disposal or spread of contaminated dust. However, looking at each elements none of them exceeds the Qatari regulation. Moreover, gypsum saturation in the system was observed in both the lagoon and wells water samples. Lagoons and the water of the well are found to be of a saline type as well as Ca²⁺, Cl⁻, SO₄²⁻ type evidencing both gypsum dissolution and salinization in the system. Moreover, Maps produced by Inverse distance weighting showed an increasing level of Nitrate in the groundwater in winter, and decrease chloride and sulphate level, indicating recharge effect after winter rain events. While E. coli and faecal bacteria were found in most of the lagoons, biological analysis for wells needs to be conducted to understand the biological contamination from lagoon water infiltration. As a conclusion, while both the lagoon and the well showed the same results, more sampling is needed to understand the impact of the lagoons on the groundwater.

Keywords: groundwater quality, lagoon, treated wastewater, water management, wastewater treatment, wetlands

Procedia PDF Downloads 135
11353 Chronic Renal Failure Associated with Heavy Metal Contamination of Drinking Water in Hail, Kingdom of Saudi Arabia

Authors: Elsayed A. M. Shokr, A. Alhazemi, T. Naser, Talal A. Zuhair, Adel A. Zuhair, Ahmed N. Alshamary, Thamer A. Alanazi, Hosam A. Alanazi

Abstract:

The main threats to human health from heavy metals are associated with exposure to Pb, Cd, Cu, Mo, Zn, Ni, Mn Co and Cr. is mainly via intake of drinking water being the most important source in most populations. These metals have been extensively studied and their effects on human health regularly reviewed by international bodies such as the WHO. Heavy metals have been used by humans for thousands of years. Although several adverse health effects of heavy metals have been known for a long time, exposure to heavy metals continues, and is even increasing in some parts of the world, in particular in less developed countries, though emissions have declined in most developed countries over the last 100 years. A strong relationship between contaminated drinking water with heavy metals from some of the stations of water shopping in Hail, KSA and chronic diseases such as renal failure, liver cirrhosis, and chronic anemia has been identified in this study. These diseases are apparently related to contaminant drinking water with heavy metals such as Pb, Cd, Cu, Mo, Zn, Ni, Mn Co and Cr. Renal failure is related to contaminate drinking water with lead and cadmium, liver cirrhosis to copper and molybdenum, and chronic anemia to copper and cadmium. Recent data indicate that adverse health effects of cadmium exposure may occur at lower exposure levels than previously anticipated, primarily in the form of kidney damage but possibly also bone effects and fractures. The general population is primarily exposed to mercury via drinking water being a major source of methyl mercury exposure, and dental amalgam. During the last century lead, cadmium, zinc, iron and arsenic is mainly via intake of drinking water being the most important source in most populations. Long-term exposure to lead, cadmium, zinc, iron and arsenic in drinking-water is mainly related to primarily in the form of kidney damage. Studies of these diseases suggest that abnormal incidence in specific areas is related to toxic materials in the groundwater and thereby led to the contamination of drinking water in these areas.

Keywords: heavy metals, liver functions, kidney functions and chronic renal failure, hail, renal, water

Procedia PDF Downloads 320
11352 Experimental Studies on Reactive Powder Concrete Containing Fly Ash and Steel Fibre

Authors: A. J. Shah, Neeraj Kumar Sahu

Abstract:

Reactive powder concrete (RPC) is high performance and high strength concrete which composes of very fine powdered materials like cement, sand, silica fume and quartz powder. It also constitutes steel fibre (optional) and super-plasticizer. The present study investigates the performance of reactive powder concrete with fly ash as a replacement of cement under hot water and normal water curing conditions. The replacement of cement with fly ash is done at 10%, 20%, 30% and 40%. To compare the results of cement replaced RPC and traditional RPC, the performance of various mixes is evaluated by compressive strength, flexural strength, split tensile strength and durability. The results show that with increasing percentage of fly ash, improvement in durability is observed and a slight decrease in compressive strength and flexural strength is also observed. It is observed that specimen under hot water curing showed 15 to 20 % more strength than specimens under normal water curing.

Keywords: high strength concrete, the flexural strength of RPC, compressive strength of RPC, durability

Procedia PDF Downloads 201
11351 Prevalence of Parasitic Diseases in Different Fishes of North-West Himalayan Streams of India

Authors: Feroz A. Shah, M. H. Balkhi

Abstract:

The study was aimed at to record the distribution and prevalence of various metazoan parasites of fish from hill stream/coldwater fishes of various water bodies of northwest Himalayan region of India. Snow trout (Schizoth oracids) from eutrophic lakes and fresh water streams were collected from January to December 2012, to study the impact of environmental factors on the dynamics and distribution of parasitic infection. The prevalence of helminth parasites was correlated with available physico-chemical parameters including water temperature, pH and dissolved oxygen (DO). The most abundant parasitic infection recorded during this study was Adenoscolex sp. (Cestode parasite) which showed positive correlation with pH (significant p≤0.05) negative correlation with temperature. The Bothriocephalus was having positive correlation with water temperature while as negative correlation was observed with pH and DO. The correlation between Diplozoon sp. and Clinostomum sp. with the physiochemical parameters were non-significant.

Keywords: hill stream fishes, parasites, Western Himalayas, prevelance

Procedia PDF Downloads 392
11350 Halloysite Based Adsorbents for Removing Pollutants from Water Reservoirs

Authors: Agata Chelminska, Joanna Goscianska

Abstract:

The rapid growth of the world’s population and the resulting economic development have had an enormous influence on the environment. Multiple industrial processes generate huge amounts of wastewater containing dangerous substances, most of which are discharged into water bodies. These contaminants include pharmaceuticals and synthetic dyes. Regardless of the presence of wastewater treatment plants, a lot of pollutants cannot be easily eliminated by well-known technologies. Hence, more effective methods of removing resistant chemicals are being developed. Due to cost-effectiveness as well as the availability of a wide range of adsorbents, a large interest in the adsorption process as an alternative way of water purification has been observed. Clay minerals, e.g., halloysite, are one of the most researched natural adsorbents because of their availability, non-toxicity, high specific surface area, porosity, layered structure, and low cost. The negatively charged surface makes them ideal for binding cations and organic compounds. Halloysite can be subjected to modifications which enhance its adsorptive properties. The aim of the presented research was to apply pure and modified halloysite in removing particular pollutants (tetracycline, tartrazine, and phosphates) from aqueous solutions. Halloysite was modified with alcoholic and aqueous solutions of hexadecyltrimethylammonium bromide (CTAB) and urea in different concentrations and subsequently impregnated with lanthanum(III) chloride. Acidic and basic oxygen groups located on the surface of all materials were determined. Moreover, the adsorbents obtained were characterized by X-ray diffraction, low-temperature nitrogen adsorption, scanning, and transmission electron microscopy. The effectiveness of samples in tetracycline, tartrazine, and phosphates adsorption from the liquid phase was then studied in order to determine their potential application in eliminating contaminants from water reservoirs. Modifiers’ employment enabled obtaining materials that possess better adsorption properties, which makes them useful for removing various pollutants from water. Modifying the pure halloysite with CTAB and urea solutions and impregnating LaCl₃ led to the formation of acidic and basic oxygen functional groups on the surface. Their amount increases with an increasing percentage of lanthanum content. The acid-base properties of materials, as well as the type of functional groups that appear on their surface, have a significant influence on their sorption capacities towards antibiotics, dyes, and phosphate(V) anions. The selected contaminants adsorb onto the halloysite studied following the Langmuir type isotherm. The thermodynamic study indicated that the adsorption was a spontaneous and exothermic process. The adsorption equilibrium was rapidly attained after 120 min of contact time. Research showed that synthesized materials based on halloysite may be applied as adsorbents for antibiotics, organic dyes, and PO₄³- ions which are difficult to eliminate.

Keywords: adsorption processes, halloysite, minerals, water reservoirs pollutants

Procedia PDF Downloads 180
11349 Performance of Air Cured Concrete Treated with Waterproofing Admixtures or Surface Treatments

Authors: Sirwan Kamal, Hsein Kew, Hamid Jahromi

Abstract:

This paper reports results of a study conducted to investigate strength, sorptivity, and permeability under pressure of concrete specimens, cured using a water-based curing compound. The specimens are treated with waterproofing admixtures or surface treatments to enhance performance while exposed to water. Four types of concrete specimens were prepared in the laboratory, Portland cement (CEM I), Portland-fly ash (CEM II/A-V), Blast-furnace cement (CEM III) and Portland-silica fume (CEM II/A-D). Concrete cubes were de-molded three hours after casting, and sprayed with a curing compound. Admixtures were added to the mix during batching, whereas surface treatments were applied on concrete after 28 days. Compressive strength test was carried out to assess the efficiency of curing compound to develop required strength. In addition, sorptivity and permeability tests were conducted to evaluate the performance of treated specimens with respect to water ingress. Results show that strength development in specimens cured with curing compound achieved up to 96% and 90% at 7 and 28 days respectively, compared to cubes cured in water. Moreover, specimens treated with waterproofing admixtures or surface treatments materials characterized by hydrophobic impregnation considerably reduced water penetration compared to untreated control cubes. On the other hand, cubes treated with admixtures or surface treatments materials characterized by crystalline effect were ineffective in reducing water penetration.

Keywords: admixtures, concrete, curing compound, surface treatments

Procedia PDF Downloads 131
11348 Development of Coastal Inundation–Inland and River Flow Interface Module Based on 2D Hydrodynamic Model

Authors: Eun-Taek Sin, Hyun-Ju Jang, Chang Geun Song, Yong-Sik Han

Abstract:

Due to the climate change, the coastal urban area repeatedly suffers from the loss of property and life by flooding. There are three main causes of inland submergence. First, when heavy rain with high intensity occurs, the water quantity in inland cannot be drained into rivers by increase in impervious surface of the land development and defect of the pump, storm sewer. Second, river inundation occurs then water surface level surpasses the top of levee. Finally, Coastal inundation occurs due to rising sea water. However, previous studies ignored the complex mechanism of flooding, and showed discrepancy and inadequacy due to linear summation of each analysis result. In this study, inland flooding and river inundation were analyzed together by HDM-2D model. Petrov-Galerkin stabilizing method and flux-blocking algorithm were applied to simulate the inland flooding. In addition, sink/source terms with exponentially growth rate attribute were added to the shallow water equations to include the inland flooding analysis module. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. To consider the coastal surge, another module was developed by adding seawater to the existing Inland Flooding-River Inundation binding module for comprehensive flooding analysis. Based on the combined modules, the Coastal Inundation – Inland & River Flow Interface was simulated by inputting the flow rate and depth data in artificial flume. Accordingly, it was able to analyze the flood patterns of coastal cities over time. This study is expected to help identify the complex causes of flooding in coastal areas where complex flooding occurs, and assist in analyzing damage to coastal cities. Acknowledgements—This research was supported by a grant ‘Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change’ [MPSS-NH-2015-77] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea.

Keywords: flooding analysis, river inundation, inland flooding, 2D hydrodynamic model

Procedia PDF Downloads 362