Search results for: measurement models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9178

Search results for: measurement models

7408 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils

Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul

Abstract:

In this study, an application was carried out to determine the Volcanic Soils by using remote sensing.  The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.

Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils

Procedia PDF Downloads 306
7407 Spatial Econometric Approaches for Count Data: An Overview and New Directions

Authors: Paula Simões, Isabel Natário

Abstract:

This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.

Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data

Procedia PDF Downloads 594
7406 Evaluation of E-Government Service Quality

Authors: Nguyen Manh Hien

Abstract:

Service quality is the highest requirement from users, especially for the service in electronic government. During the past decades, it has become a major area of academic investigation. Considering this issue, there are many researches that evaluated the dimensions and e-service contexts. This study also identified the dimensions of service quality but focused on a new conceptual and provides a new methodological in developing measurement scales of e-service quality such as information quality, service quality and organization quality. Finally, the study will suggest a key factor to evaluate e-government service quality better.

Keywords: dimensionality, e-government, e-service, e-service quality

Procedia PDF Downloads 541
7405 Performance and Limitations of Likelihood Based Information Criteria and Leave-One-Out Cross-Validation Approximation Methods

Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer

Abstract:

Model assessment, in the Bayesian context, involves evaluation of the goodness-of-fit and the comparison of several alternative candidate models for predictive accuracy and improvements. In posterior predictive checks, the data simulated under the fitted model is compared with the actual data. Predictive model accuracy is estimated using information criteria such as the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the Deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC). The goal of an information criterion is to obtain an unbiased measure of out-of-sample prediction error. Since posterior checks use the data twice; once for model estimation and once for testing, a bias correction which penalises the model complexity is incorporated in these criteria. Cross-validation (CV) is another method used for examining out-of-sample prediction accuracy. Leave-one-out cross-validation (LOO-CV) is the most computationally expensive variant among the other CV methods, as it fits as many models as the number of observations. Importance sampling (IS), truncated importance sampling (TIS) and Pareto-smoothed importance sampling (PSIS) are generally used as approximations to the exact LOO-CV and utilise the existing MCMC results avoiding expensive computational issues. The reciprocals of the predictive densities calculated over posterior draws for each observation are treated as the raw importance weights. These are in turn used to calculate the approximate LOO-CV of the observation as a weighted average of posterior densities. In IS-LOO, the raw weights are directly used. In contrast, the larger weights are replaced by their modified truncated weights in calculating TIS-LOO and PSIS-LOO. Although, information criteria and LOO-CV are unable to reflect the goodness-of-fit in absolute sense, the differences can be used to measure the relative performance of the models of interest. However, the use of these measures is only valid under specific circumstances. This study has developed 11 models using normal, log-normal, gamma, and student’s t distributions to improve the PCR stutter prediction with forensic data. These models are comprised of four with profile-wide variances, four with locus specific variances, and three which are two-component mixture models. The mean stutter ratio in each model is modeled as a locus specific simple linear regression against a feature of the alleles under study known as the longest uninterrupted sequence (LUS). The use of AIC, BIC, DIC, and WAIC in model comparison has some practical limitations. Even though, IS-LOO, TIS-LOO, and PSIS-LOO are considered to be approximations of the exact LOO-CV, the study observed some drastic deviations in the results. However, there are some interesting relationships among the logarithms of pointwise predictive densities (lppd) calculated under WAIC and the LOO approximation methods. The estimated overall lppd is a relative measure that reflects the overall goodness-of-fit of the model. Parallel log-likelihood profiles for the models conditional on equal posterior variances in lppds were observed. This study illustrates the limitations of the information criteria in practical model comparison problems. In addition, the relationships among LOO-CV approximation methods and WAIC with their limitations are discussed. Finally, useful recommendations that may help in practical model comparisons with these methods are provided.

Keywords: cross-validation, importance sampling, information criteria, predictive accuracy

Procedia PDF Downloads 392
7404 Secondary Charged Fragments Tracking for On-Line Beam Range Monitoring in Particle Therapy

Authors: G. Traini, G. Battistoni, F. Collamati, E. De Lucia, R. Faccini, C. Mancini-Terracciano, M. Marafini, I. Mattei, S. Muraro, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, S. M. Valle, C. Voena, V. Patera

Abstract:

In Particle Therapy (PT) treatments a large amount of secondary particles, whose emission point is correlated to the dose released in the crossed tissues, is produced. The measurement of the secondary charged fragments component could represent a valid technique to monitor the beam range during the PT treatments, that is a still missing item in the clinical practice. A sub-millimetrical precision on the beam range measurement is required to significantly optimise the technique and to improve the treatment quality. In this contribution, a detector, named Dose Profiler (DP), is presented. It is specifically planned to monitor on-line the beam range exploiting the secondary charged particles produced in PT Carbon ions treatment. In particular, the DP is designed to track the secondary fragments emitted at large angles with respect to the beam direction (mainly protons), with the aim to reconstruct the spatial coordinates of the fragment emission point extrapolating the measured track toward the beam axis. The DP is currently under development within of the INSIDE collaboration (Innovative Solutions for In-beam Dosimetry in hadrontherapy). The tracker is made by six layers (20 × 20 cm²) of BCF-12 square scintillating fibres (500 μm) coupled to Silicon Photo-Multipliers, followed by two plastic scintillator layers of 6 mm thickness. A system of front-end boards based on FPGAs arranged around the detector provides the data acquisition. The detector characterization with cosmic rays is currently undergoing, and a data taking campaign with protons will take place in May 2017. The DP design and the performances measured with using MIPs and protons beam will be reviewed.

Keywords: fragmentation, monitoring, particle therapy, tracking

Procedia PDF Downloads 233
7403 Building a Blockchain-based Internet of Things

Authors: Rob van den Dam

Abstract:

Today’s Internet of Things (IoT) comprises more than a billion intelligent devices, connected via wired/wireless communications. The expected proliferation of hundreds of billions more places us at the threshold of a transformation sweeping across the communications industry. Yet, we found that the IoT architecture and solutions that currently work for billions of devices won’t necessarily scale to tomorrow’s hundreds of billions of devices because of high cost, lack of privacy, not future-proof, lack of functional value and broken business models. As the IoT scales exponentially, decentralized networks have the potential to reduce infrastructure and maintenance costs to manufacturers. Decentralization also promises increased robustness by removing single points of failure that could exist in traditional centralized networks. By shifting the power in the network from the center to the edges, devices gain greater autonomy and can become points of transactions and economic value creation for owners and users. To validate the underlying technology vision, IBM jointly developed with Samsung Electronics the autonomous decentralized peer-to- peer proof-of-concept (PoC). The primary objective of this PoC was to establish a foundation on which to demonstrate several capabilities that are fundamental to building a decentralized IoT. Though many commercial systems in the future will exist as hybrid centralized-decentralized models, the PoC demonstrated a fully distributed proof. The PoC (a) validated the future vision for decentralized systems to extensively augment today’s centralized solutions, (b) demonstrated foundational IoT tasks without the use of centralized control, (c) proved that empowered devices can engage autonomously in marketplace transactions. The PoC opens the door for the communications and electronics industry to further explore the challenges and opportunities of potential hybrid models that can address the complexity and variety of requirements posed by the internet that continues to scale. Contents: (a) The new approach for an IoT that will be secure and scalable, (b) The three foundational technologies that are key for the future IoT, (c) The related business models and user experiences, (d) How such an IoT will create an 'Economy of Things', (e) The role of users, devices, and industries in the IoT future, (f) The winners in the IoT economy.

Keywords: IoT, internet, wired, wireless

Procedia PDF Downloads 336
7402 Groundwater Investigation Using Resistivity Method and Drilling for Irrigation during the Dry Season in Lwantonde District, Uganda

Authors: Tamale Vincent

Abstract:

Groundwater investigation is the investigation of underground formations to understand the hydrologic cycle, known groundwater occurrences, and identify the nature and types of aquifers. There are different groundwater investigation methods and surface geophysical method is one of the groundwater investigation more especially the Geoelectrical resistivity Schlumberger configuration method which provides valuable information regarding the lateral and vertical successions of subsurface geomaterials in terms of their individual thickness and corresponding resistivity values besides using surface geophysical method, hydrogeological and geological investigation methods are also incorporated to aid in preliminary groundwater investigation. Investigation for groundwater in lwantonde district has been implemented. The area project is located cattle corridor and the dry seasonal troubles the communities in lwantonde district of which 99% of people living there are farmers, thus making agriculture difficult and local government to provide social services to its people. The investigation was done using the Geoelectrical resistivity Schlumberger configuration method. The measurement point is located in the three sub-counties, with a total of 17 measurement points. The study location is at 0025S, 3110E, and covers an area of 160 square kilometers. Based on the results of the Geoelectrical information data, it was found two types of aquifers, which are open aquifers in depth ranging from six meters to twenty-two meters and a confined aquifer in depth ranging from forty-five meters to eighty meters. In addition to the Geoelectrical information data, drilling was done at an accessible point by heavy equipment in the Lwakagura village, Kabura sub-county. At the drilling point, artesian wells were obtained at a depth of eighty meters and can rise to two meters above the soil surface. The discovery of artesian well is then used by residents to meet the needs of clean water and for irrigation considering that in this area most wells contain iron content.

Keywords: artesian well, geoelectrical, lwantonde, Schlumberger

Procedia PDF Downloads 124
7401 Forecasting Container Throughput: Using Aggregate or Terminal-Specific Data?

Authors: Gu Pang, Bartosz Gebka

Abstract:

We forecast the demand of total container throughput at the Indonesia’s largest seaport, Tanjung Priok Port. We propose four univariate forecasting models, including SARIMA, the additive Seasonal Holt-Winters, the multiplicative Seasonal Holt-Winters and the Vector Error Correction Model. Our aim is to provide insights into whether forecasting the total container throughput obtained by historical aggregated port throughput time series is superior to the forecasts of the total throughput obtained by summing up the best individual terminal forecasts. We test the monthly port/individual terminal container throughput time series between 2003 and 2013. The performance of forecasting models is evaluated based on Mean Absolute Error and Root Mean Squared Error. Our results show that the multiplicative Seasonal Holt-Winters model produces the most accurate forecasts of total container throughput, whereas SARIMA generates the worst in-sample model fit. The Vector Error Correction Model provides the best model fits and forecasts for individual terminals. Our results report that the total container throughput forecasts based on modelling the total throughput time series are consistently better than those obtained by combining those forecasts generated by terminal-specific models. The forecasts of total throughput until the end of 2018 provide an essential insight into the strategic decision-making on the expansion of port's capacity and construction of new container terminals at Tanjung Priok Port.

Keywords: SARIMA, Seasonal Holt-Winters, Vector Error Correction Model, container throughput

Procedia PDF Downloads 504
7400 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis

Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga

Abstract:

Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.

Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree

Procedia PDF Downloads 255
7399 Variability Management of Contextual Feature Model in Multi-Software Product Line

Authors: Muhammad Fezan Afzal, Asad Abbas, Imran Khan, Salma Imtiaz

Abstract:

Software Product Line (SPL) paradigm is used for the development of the family of software products that share common and variable features. Feature model is a domain of SPL that consists of common and variable features with predefined relationships and constraints. Multiple SPLs consist of a number of similar common and variable features, such as mobile phones and Tabs. Reusability of common and variable features from the different domains of SPL is a complex task due to the external relationships and constraints of features in the feature model. To increase the reusability of feature model resources from domain engineering, it is required to manage the commonality of features at the level of SPL application development. In this research, we have proposed an approach that combines multiple SPLs into a single domain and converts them to a common feature model. Extracting the common features from different feature models is more effective, less cost and time to market for the application development. For extracting features from multiple SPLs, the proposed framework consists of three steps: 1) find the variation points, 2) find the constraints, and 3) combine the feature models into a single feature model on the basis of variation points and constraints. By using this approach, reusability can increase features from the multiple feature models. The impact of this research is to reduce the development of cost, time to market and increase products of SPL.

Keywords: software product line, feature model, variability management, multi-SPLs

Procedia PDF Downloads 69
7398 Modeling Football Penalty Shootouts: How Improving Individual Performance Affects Team Performance and the Fairness of the ABAB Sequence

Authors: Pablo Enrique Sartor Del Giudice

Abstract:

Penalty shootouts often decide the outcome of important soccer matches. Although usually referred to as ”lotteries”, there is evidence that some national teams and clubs consistently perform better than others. The outcomes are therefore not explained just by mere luck, and therefore there are ways to improve the average performance of players, naturally at the expense of some sort of effort. In this article we study the payoff of player performance improvements in terms of the performance of the team as a whole. To do so we develop an analytical model with static individual performances, as well as Monte Carlo models that take into account the known influence of partial score and round number on individual performances. We find that within a range of usual values, the team performance improves above 70% faster than individual performances do. Using these models, we also estimate that the new ABBA penalty shootout ordering under test reduces almost all the known bias in favor of the first-shooting team under the current ABAB system.

Keywords: football, penalty shootouts, Montecarlo simulation, ABBA

Procedia PDF Downloads 162
7397 Detection of Resistive Faults in Medium Voltage Overhead Feeders

Authors: Mubarak Suliman, Mohamed Hassan

Abstract:

Detection of downed conductors occurring with high fault resistance (reaching kilo-ohms) has always been a challenge, especially in countries like Saudi Arabia, on which earth resistivity is very high in general (reaching more than 1000 Ω-meter). The new approaches for the detection of resistive and high impedance faults are based on the analysis of the fault current waveform. These methods are still under research and development, and they are currently lacking security and dependability. The other approach is communication-based solutions which depends on voltage measurement at the end of overhead line branches and communicate the measured signals to substation feeder relay or a central control center. However, such a detection method is costly and depends on the availability of communication medium and infrastructure. The main objective of this research is to utilize the available standard protection schemes to increase the probability of detection of downed conductors occurring with a low magnitude of fault currents and at the same time avoiding unwanted tripping in healthy conditions and feeders. By specifying the operating region of the faulty feeder, use of tripping curve for discrimination between faulty and healthy feeders, and with proper selection of core balance current transformer (CBCT) and voltage transformers with fewer measurement errors, it is possible to set the pick-up of sensitive earth fault current to minimum values of few amps (i.e., Pick-up Settings = 3 A or 4 A, …) for the detection of earth faults with fault resistance more than (1 - 2 kΩ) for 13.8kV overhead network and more than (3-4) kΩ fault resistance in 33kV overhead network. By implementation of the outcomes of this study, the probability of detection of downed conductors is increased by the utilization of existing schemes (i.e., Directional Sensitive Earth Fault Protection).

Keywords: sensitive earth fault, zero sequence current, grounded system, resistive fault detection, healthy feeder

Procedia PDF Downloads 115
7396 Revolving Ferrofluid Flow in Porous Medium with Rotating Disk

Authors: Paras Ram, Vikas Kumar

Abstract:

The transmission of Malaria with seasonal were studied through the use of mathematical models. The data from the annual number of Malaria cases reported to the Division of Epidemiology, Ministry of Public Health, Thailand during the period 1997-2011 were analyzed. The transmission of Malaria with seasonal was studied by formulating a mathematical model which had been modified to describe different situations encountered in the transmission of Malaria. In our model, the population was separated into two groups: the human and vector groups, and then constructed a system of nonlinear differential equations. Each human group was divided into susceptible, infectious in hot season, infectious in rainy season, infectious in cool season and recovered classes. The vector population was separated into two classes only: susceptible and infectious vectors. The analysis of the models was given by the standard dynamical modeling.

Keywords: ferrofluid, magnetic field, porous medium, rotating disk, Neuringer-Rosensweig Model

Procedia PDF Downloads 421
7395 Contextual Toxicity Detection with Data Augmentation

Authors: Julia Ive, Lucia Specia

Abstract:

Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.

Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing

Procedia PDF Downloads 170
7394 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models

Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu

Abstract:

Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.

Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging

Procedia PDF Downloads 156
7393 Emancipation through the Inclusion of Civil Society in Contemporary Peacebuilding: A Case Study of Peacebuilding Efforts in Colombia

Authors: D. Romero Espitia

Abstract:

Research on peacebuilding has taken a critical turn into examining the neoliberal and hegemonic conception of peace operations. Alternative peacebuilding models have been analyzed, but the scholarly discussion fails to bring them together or form connections between them. The objective of this paper is to rethink peacebuilding by extracting the positive aspects of the various peacebuilding models, connecting them with the local context, and therefore promote emancipation in contemporary peacebuilding efforts. Moreover, local ownership has been widely labelled as one, if not the core principle necessary for a successful peacebuilding project. Yet, definitions of what constitutes the 'local' remain debated. Through a qualitative review of literature, this paper unpacks the contemporary conception of peacebuilding in nexus with 'local ownership' as manifested through civil society. Using Colombia as a case study, this paper argues that a new peacebuilding framework, one that reconsiders the terms of engagement between international and national actors, is needed in order to foster effective peacebuilding efforts in contested transitional states.

Keywords: civil society, Colombia, emancipation, peacebuilding

Procedia PDF Downloads 134
7392 Modeling Waiting and Service Time for Patients: A Case Study of Matawale Health Centre, Zomba, Malawi

Authors: Moses Aron, Elias Mwakilama, Jimmy Namangale

Abstract:

Spending more time on long queues for a basic service remains a common challenge to most developing countries, including Malawi. For health sector in particular, Out-Patient Department (OPD) experiences long queues. This puts the lives of patients at risk. However, using queuing analysis to under the nature of the problems and efficiency of service systems, such problems can be abated. Based on a kind of service, literature proposes different possible queuing models. However, unlike using generalized assumed models proposed by literature, use of real time case study data can help in deeper understanding the particular problem model and how such a model can vary from one day to the other and also from each case to another. As such, this study uses data obtained from one urban HC for BP, Pediatric and General OPD cases to investigate an average queuing time for patients within the system. It seeks to highlight the proper queuing model by investigating the kind of distributions functions over patient’s arrival time, inter-arrival time, waiting time and service time. Comparable with the standard set values by WHO, the study found that patients at this HC spend more waiting times than service times. On model investigation, different days presented different models ranging from an assumed M/M/1, M/M/2 to M/Er/2. As such, through sensitivity analysis, in general, a commonly assumed M/M/1 model failed to fit the data but rather an M/Er/2 demonstrated to fit well. An M/Er/3 model seemed to be good in terms of measuring resource utilization, proposing a need to increase medical personnel at this HC. However, an M/Er/4 showed to cause more idleness of human resources.

Keywords: health care, out-patient department, queuing model, sensitivity analysis

Procedia PDF Downloads 435
7391 Modelling and Simulation Efforts in Scale-Up and Characterization of Semi-Solid Dosage Forms

Authors: Saurav S. Rath, Birendra K. David

Abstract:

Generic pharmaceutical industry has to operate in strict timelines of product development and scale-up from lab to plant. Hence, detailed product & process understanding and implementation of appropriate mechanistic modelling and Quality-by-design (QbD) approaches are imperative in the product life cycle. This work provides example cases of such efforts in topical dosage products. Topical products are typically in the form of emulsions, gels, thick suspensions or even simple solutions. The efficacy of such products is determined by characteristics like rheology and morphology. Defining, and scaling up the right manufacturing process with a given set of ingredients, to achieve the right product characteristics presents as a challenge to the process engineer. For example, the non-Newtonian rheology varies not only with CPPs and CMAs but also is an implicit function of globule size (CQA). Hence, this calls for various mechanistic models, to help predict the product behaviour. This paper focusses on such models obtained from computational fluid dynamics (CFD) coupled with population balance modelling (PBM) and constitutive models (like shear, energy density). In a special case of the use of high shear homogenisers (HSHs) for the manufacture of thick emulsions/gels, this work presents some findings on (i) scale-up algorithm for HSH using shear strain, a novel scale-up parameter for estimating mixing parameters, (ii) non-linear relationship between viscosity and shear imparted into the system, (iii) effect of hold time on rheology of product. Specific examples of how this approach enabled scale-up across 1L, 10L, 200L, 500L and 1000L scales will be discussed.

Keywords: computational fluid dynamics, morphology, quality-by-design, rheology

Procedia PDF Downloads 269
7390 Forecasting Stock Indexes Using Bayesian Additive Regression Tree

Authors: Darren Zou

Abstract:

Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.

Keywords: BART, Bayesian, predict, stock

Procedia PDF Downloads 130
7389 Effect of Realistic Lubricant Properties on Thermal Electrohydrodynamic Lubrication Behavior in Circular Contacts

Authors: Puneet Katyal, Punit Kumar

Abstract:

A great deal of efforts has been done in the field of thermal effects in electrohydrodynamic lubrication (TEHL) during the last five decades. The focus was primarily on the development of an efficient numerical scheme to deal with the computational challenges involved in the solution of TEHL model; however, some important aspects related to the accurate description of lubricant properties such as viscosity, rheology and thermal conductivity in EHL point contact analysis remain largely neglected. A few studies available in this regard are based upon highly complex mathematical models difficult to formulate and execute. Using a simplified thermal EHL model for point contacts, this work sheds some light on the importance of accurate characterization of the lubricant properties and demonstrates that the computed TEHL characteristics are highly sensitive to lubricant properties. It also emphasizes the use of appropriate mathematical models with experimentally determined parameters to account for correct lubricant behaviour.

Keywords: TEHL, shear thinning, rheology, conductivity

Procedia PDF Downloads 200
7388 Orthogonal Metal Cutting Simulation of Steel AISI 1045 via Smoothed Particle Hydrodynamic Method

Authors: Seyed Hamed Hashemi Sohi, Gerald Jo Denoga

Abstract:

Machining or metal cutting is one of the most widely used production processes in industry. The quality of the process and the resulting machined product depends on parameters like tool geometry, material, and cutting conditions. However, the relationships of these parameters to the cutting process are often based mostly on empirical knowledge. In this study, computer modeling and simulation using LS-DYNA software and a Smoothed Particle Hydrodynamic (SPH) methodology, was performed on the orthogonal metal cutting process to analyze three-dimensional deformation of AISI 1045 medium carbon steel during machining. The simulation was performed using the following constitutive models: the Power Law model, the Johnson-Cook model, and the Zerilli-Armstrong models (Z-A). The outcomes were compared against the simulated results obtained by Cenk Kiliçaslan using the Finite Element Method (FEM) and the empirical results of Jaspers and Filice. The analysis shows that the SPH method combined with the Zerilli-Armstrong constitutive model is a viable alternative to simulating the metal cutting process. The tangential force was overestimated by 7%, and the normal force was underestimated by 16% when compared with empirical values. The simulation values for flow stress versus strain at various temperatures were also validated against empirical values. The SPH method using the Z-A model has also proven to be robust against issues of time-scaling. Experimental work was also done to investigate the effects of friction, rake angle and tool tip radius on the simulation.

Keywords: metal cutting, smoothed particle hydrodynamics, constitutive models, experimental, cutting forces analyses

Procedia PDF Downloads 261
7387 Short Life Cycle Time Series Forecasting

Authors: Shalaka Kadam, Dinesh Apte, Sagar Mainkar

Abstract:

The life cycle of products is becoming shorter and shorter due to increased competition in market, shorter product development time and increased product diversity. Short life cycles are normal in retail industry, style business, entertainment media, and telecom and semiconductor industry. The subject of accurate forecasting for demand of short lifecycle products is of special enthusiasm for many researchers and organizations. Due to short life cycle of products the amount of historical data that is available for forecasting is very minimal or even absent when new or modified products are launched in market. The companies dealing with such products want to increase the accuracy in demand forecasting so that they can utilize the full potential of the market at the same time do not oversupply. This provides the challenge to develop a forecasting model that can forecast accurately while handling large variations in data and consider the complex relationships between various parameters of data. Many statistical models have been proposed in literature for forecasting time series data. Traditional time series forecasting models do not work well for short life cycles due to lack of historical data. Also artificial neural networks (ANN) models are very time consuming to perform forecasting. We have studied the existing models that are used for forecasting and their limitations. This work proposes an effective and powerful forecasting approach for short life cycle time series forecasting. We have proposed an approach which takes into consideration different scenarios related to data availability for short lifecycle products. We then suggest a methodology which combines statistical analysis with structured judgement. Also the defined approach can be applied across domains. We then describe the method of creating a profile from analogous products. This profile can then be used for forecasting products with historical data of analogous products. We have designed an application which combines data, analytics and domain knowledge using point-and-click technology. The forecasting results generated are compared using MAPE, MSE and RMSE error scores. Conclusion: Based on the results it is observed that no one approach is sufficient for short life-cycle forecasting and we need to combine two or more approaches for achieving the desired accuracy.

Keywords: forecast, short life cycle product, structured judgement, time series

Procedia PDF Downloads 358
7386 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision

Procedia PDF Downloads 126
7385 Mentoring of Health Professionals to Ensure Better Child-Birth and Newborn Care in Bihar, India: An Intervention Study

Authors: Aboli Gore, Aritra Das, Sunil Sonthalia, Tanmay Mahapatra, Sridhar Srikantiah, Hemant Shah

Abstract:

AMANAT is an initiative, taken in collaboration with the Government of Bihar, aimed at improving the Quality of Maternal and Neonatal care services at Bihar’s public health facilities – those offering either the Basic Emergency Obstetric and Neonatal care (BEmONC) or Comprehensive Emergency Obstetric and Neonatal care (CEmONC) services. The effectiveness of this program is evaluated by conducting cross-sectional assessments at the concerned facilities prior to (baseline) and following completion (endline) of intervention. Direct Observation of Delivery (DOD) methodology is employed for carrying out the baseline and endline assessments – through which key obstetric and neonatal care practices among the Health Care Providers (especially the nurses) are assessed quantitatively by specially trained nursing professionals. Assessment of vitals prior to delivery improved during all three phases of BEmONC and all four phases of CEmONC training with statistically significant improvement noted in: i) pulse measurement in BEmONC phase 2 (9% to 68%), 3 (4% to 57%) & 4 (14% to 59%) and CEmONC phase 2 (7% to 72%) and 3 (0% to 64%); ii) blood pressure measurement in BEmONC phase 2 (27% to 84%), 3 (21% to 76%) & 4 (36% to 71%) and CEmONC phase 2 (23% to 76%) and 3 (2% to 70%); iii) fetal heart rate measurement in BEmONC phase 2 (10% to 72%), 3 (11% to 77%) & 4 (13% to 64%) and CEmONC phase 1 (24% to 38%), 2 (14% to 82%) and 3 (1% to 73%); and iv) abdominal examination in BEmONC phase 2 (14% to 59%), 3 (3% to 59%) & 4 (6% to 56%) and CEmONC phase 1 (0% to 24%), 2 (7% to 62%) & 3 (0% to 62%). Regarding infection control, wearing of apron, mask and cap by the delivery conductors improved significantly in all BEmONC phases. Similarly, the practice of handwashing improved in all BEmONC and CEmONC phases. Even on disaggregation, the handwashing showed significant improvement in all phases but CEmONC phase-4. Not only the positive practices related to handwashing improved but also negative practices such as turning off the tap with bare hands declined significantly in the aforementioned phases. Significant decline was also noted in negative maternal care practices such as application of fundal pressure for hastening the delivery process and administration of oxytocin prior to delivery. One of the notable achievement of AMANAT is an improvement in active management of the third stage of labor (AMTSL). The overall AMTSL (including administration of oxytocin or other uterotonics uterotonic in proper dose, route and time along with controlled cord traction and uterine massage) improved in all phases of BEmONC and CEmONC mentoring. Another key area of improvement, across phases, was in proper cutting/clamping of the umbilical cord. AMANAT mentoring also led to improvement in important immediate newborn care practices such as initiation of skin-to-skin care and timely initiation of breastfeeding. The next phase of the mentoring program seeks to institutionalize mentoring across the state that could potentially perpetuate improvement with minimal external intervention.

Keywords: capacity building, nurse-mentoring, quality of care, pregnancy, newborn care

Procedia PDF Downloads 162
7384 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines

Authors: Xiaogang Li, Jieqiong Miao

Abstract:

As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square error

Keywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error

Procedia PDF Downloads 461
7383 A Study on the New Weapon Requirements Analytics Using Simulations and Big Data

Authors: Won Il Jung, Gene Lee, Luis Rabelo

Abstract:

Since many weapon systems are getting more complex and diverse, various problems occur in terms of the acquisition cost, time, and performance limitation. As a matter of fact, the experiment execution in real world is costly, dangerous, and time-consuming to obtain Required Operational Characteristics (ROC) for a new weapon acquisition although enhancing the fidelity of experiment results. Also, until presently most of the research contained a large amount of assumptions so therefore a bias is present in the experiment results. At this moment, the new methodology is proposed to solve these problems without a variety of assumptions. ROC of the new weapon system is developed through the new methodology, which is a way to analyze big data generated by simulating various scenarios based on virtual and constructive models which are involving 6 Degrees of Freedom (6DoF). The new methodology enables us to identify unbiased ROC on new weapons by reducing assumptions and provide support in terms of the optimal weapon systems acquisition.

Keywords: big data, required operational characteristics (ROC), virtual and constructive models, weapon acquisition

Procedia PDF Downloads 289
7382 Estimation of Mobility Parameters and Threshold Voltage of an Organic Thin Film Transistor Using an Asymmetric Capacitive Test Structure

Authors: Rajesh Agarwal

Abstract:

Carrier mobility at the organic/insulator interface is essential to the performance of organic thin film transistors (OTFT). The present work describes estimation of field dependent mobility (FDM) parameters and the threshold voltage of an OTFT using a simple, easy to fabricate two terminal asymmetric capacitive test structure using admittance measurements. Conventionally, transfer characteristics are used to estimate the threshold voltage in an OTFT with field independent mobility (FIDM). Yet, this technique breaks down to give accurate results for devices with high contact resistance and having field dependent mobility. In this work, a new technique is presented for characterization of long channel organic capacitor (LCOC). The proposed technique helps in the accurate estimation of mobility enhancement factor (γ), the threshold voltage (V_th) and band mobility (µ₀) using capacitance-voltage (C-V) measurement in OTFT. This technique also helps to get rid of making short channel OTFT or metal-insulator-metal (MIM) structures for making C-V measurements. To understand the behavior of devices and ease of analysis, transmission line compact model is developed. The 2-D numerical simulation was carried out to illustrate the correctness of the model. Results show that proposed technique estimates device parameters accurately even in the presence of contact resistance and field dependent mobility. Pentacene/Poly (4-vinyl phenol) based top contact bottom-gate OTFT’s are fabricated to illustrate the operation and advantages of the proposed technique. Small signal of frequency varying from 1 kHz to 5 kHz and gate potential ranging from +40 V to -40 V have been applied to the devices for measurement.

Keywords: capacitance, mobility, organic, thin film transistor

Procedia PDF Downloads 165
7381 Gravitational Frequency Shifts for Photons and Particles

Authors: Jing-Gang Xie

Abstract:

The research, in this case, considers the integration of the Quantum Field Theory and the General Relativity Theory. As two successful models in explaining behaviors of particles, they are incompatible since they work at different masses and scales of energy, with the evidence that regards the description of black holes and universe formation. It is so considering previous efforts in merging the two theories, including the likes of the String Theory, Quantum Gravity models, and others. In a bid to prove an actionable experiment, the paper’s approach starts with the derivations of the existing theories at present. It goes on to test the derivations by applying the same initial assumptions, coupled with several deviations. The resulting equations get similar results to those of classical Newton model, quantum mechanics, and general relativity as long as conditions are normal. However, outcomes are different when conditions are extreme, specifically with no breakdowns even for less than Schwarzschild radius, or at Planck length cases. Even so, it proves the possibilities of integrating the two theories.

Keywords: general relativity theory, particles, photons, Quantum Gravity Model, gravitational frequency shift

Procedia PDF Downloads 359
7380 Performance Analysis of a Planar Membrane Humidifier for PEM Fuel Cell

Authors: Yu-Hsuan Chang, Jian-Hao Su, Chen-Yu Chen, Wei-Mon Yan

Abstract:

In this work, the experimental measurement was applied to examine the membrane type and flow field design on the performance of a planar membrane humidifier. The performance indexes were used to evaluate the planar membrane humidifier. The performance indexes of the membrane humidifier include the dew point approach temperature (DPAT), water recovery ratio (WRR), water flux (J) and pressure loss (P). The experiments contain mainly three parts. In the first part, a single membrane humidifier was tested using different flow field under different dry-inlet temperatures. The measured results show that the dew point approach temperature decreases with increasing the depth of flow channel at the same width of flow channel. However, the WRR and J reduce with an increase in the dry air-inlet temperature. The pressure loss tests indicate that pressure loss decreases with increasing the hydraulic diameter of flow channel, resulting from an increase in Darcy friction. Owing to the comparison of humidifier performances and pressure losses, the flow channel of width W=1 and height H=1.5 was selected as the channel design of the multi-membrane humidifier in the second part of experiment. In the second part, the multi-membrane humidifier was used to evaluate the humidification performance under different relative humidity and flow rates. The measurement results indicate that the humidifier at both lower temperature and relative humidity of inlet dry air have higher DPAT but lower J and WRR. In addition, the counter flow approach has better mass and heat transfer performance than the parallel flow approach. Moreover, the effects of dry air temperature, relative humidity and humidification approach are not significant to the pressure loss in the planar membrane humidifier. For the third part, different membranes were tested in this work in order to find out which kind membrane is appropriate for humidifier.

Keywords: water management, planar membrane humidifier, heat and mass transfer, pressure loss, PEM fuel cell

Procedia PDF Downloads 206
7379 Developing a Toolkit of Undergraduate Nursing Student’ Desirable Characteristics (TNDC) : An application Item Response Theory

Authors: Parinyaporn Thanaboonpuang, Siridej Sujiva, Shotiga Pasiphul

Abstract:

The higher education reform that integration of nursing programmes into the higher education system. Learning outcomes represent one of the essential building blocks for transparency within higher education systems and qualifications. The purpose of this study is to develop a toolkit of undergraduate nursing student’desirable characteristics assessment on Thai Qualifications Framework for Higher education and to test psychometric property for this instrument. This toolkit seeks to improve on the Computer Multimedia test. There are three skills to be examined: Cognitive skill, Responsibility and Interpersonal Skill, and Information Technology Skill. The study was conduct in 4 phases. In Phase 1. Based on developed a measurement model and Computer Multimedia test. Phase 2 two round focus group were conducted, to determine the content validity of measurement model and the toolkit. In Phase 3, data were collected using a multistage random sampling of 1,156 senior undergraduate nursing student were recruited to test psychometric property. In Phase 4 data analysis was conducted by descriptive statistics, item analysis, inter-rater reliability, exploratory factor analysis and confirmatory factor analysis. The resulting TNDC consists of 74 items across the following four domains: Cognitive skill, Interpersonal Skill, Responsibility and Information Technology Skill. The value of Cronbach’ s alpha for the four domains were .781, 807, .831, and .865, respectively. The final model in confirmatory factor analysis fit quite well with empirical data. The TNDC was found to be appropriate, both theoretically and statistically. Due to these results, it is recommended that the toolkit could be used in future studies for Nursing Program in Thailand.

Keywords: toolkit, nursing student’ desirable characteristics, Thai qualifications framework

Procedia PDF Downloads 535