Search results for: violation data discovery
25650 Value Index, a Novel Decision Making Approach for Waste Load Allocation
Authors: E. Feizi Ashtiani, S. Jamshidi, M.H Niksokhan, A. Feizi Ashtiani
Abstract:
Waste load allocation (WLA) policies may use multi-objective optimization methods to find the most appropriate and sustainable solutions. These usually intend to simultaneously minimize two criteria, total abatement costs (TC) and environmental violations (EV). If other criteria, such as inequity, need for minimization as well, it requires introducing more binary optimizations through different scenarios. In order to reduce the calculation steps, this study presents value index as an innovative decision making approach. Since the value index contains both the environmental violation and treatment costs, it can be maximized simultaneously with the equity index. It implies that the definition of different scenarios for environmental violations is no longer required. Furthermore, the solution is not necessarily the point with minimized total costs or environmental violations. This idea is testified for Haraz River, in north of Iran. Here, the dissolved oxygen (DO) level of river is simulated by Streeter-Phelps equation in MATLAB software. The WLA is determined for fish farms using multi-objective particle swarm optimization (MOPSO) in two scenarios. At first, the trade-off curves of TC-EV and TC-Inequity are plotted separately as the conventional approach. In the second, the Value-Equity curve is derived. The comparative results show that the solutions are in a similar range of inequity with lower total costs. This is due to the freedom of environmental violation attained in value index. As a result, the conventional approach can well be replaced by the value index particularly for problems optimizing these objectives. This reduces the process to achieve the best solutions and may find better classification for scenario definition. It is also concluded that decision makers are better to focus on value index and weighting its contents to find the most sustainable alternatives based on their requirements.Keywords: waste load allocation (WLA), value index, multi objective particle swarm optimization (MOPSO), Haraz River, equity
Procedia PDF Downloads 42425649 Developing Research Involving Different Species: Opportunities and Empirical Foundations
Authors: A. V. Varfolomeeva, N. S. Tkachenko, A. G. Tishchenko
Abstract:
The problem of violation of internal validity in studies of psychological structures is considered. The role of epistemological attitudes of researchers in the planning of research within the methodology of the system-evolutionary approach is assessed. Alternative programs of psychological research involving representatives of different biological species are presented. On the example of the results of two research series the variants of solving the problem are discussed.Keywords: epistemological attitudes, experimental design, validity, psychological structure, learning
Procedia PDF Downloads 11625648 DPAGT1 Inhibitors: Discovery of Anti-Metastatic Drugs
Authors: Michio Kurosu
Abstract:
Alterations in glycosylation not only directly impact cell growth and survival but also facilitate tumor-induced immunomodulation and eventual metastasis. Identification of cell type-specific glycoconjugates (tumor markers) has led to the discovery of new assay systems for certain cancers via immunodetection reagents. N- and O-linked glycans are the most abundant forms of glycoproteins. Recent studies of cancer immunotherapy are based on the immunogenicity of truncated O-glycan chains (e.g., Tn, sTn, T, and sLea/x). The prevalence of N-linked glycan changes in the development of tumor cells is known; however, therapeutic antibodies against N-glycans have not yet been developed. This is due to the lack of specificity of N-linked glycans between normal/healthy and cancer cells. Abnormal branching of N-linked glycans has been observed, particularly in solid cancer cells. While the discovery of drug-like glycosyltransferase inhibitors that block the biosynthesis of specific branching has a very low likelihood of success, altered glycosylation levels can be exploited by suppressing N-glycan biosynthesis through the inhibition of dolichyl-phosphate N-acetylglucosaminephosphotransferase1 (DPAGT1) activity. Inhibition of DPAGT1 function leads to changes of O-glycosylation on proteins associated with mitochondria and zinc finger binding proteins (indirect effects). On the basis of dynamic crosstalk between DPAGT1 and Snail/Slung/ZEB1 (a family of transcription factors that promote the repression of the adhesion molecules), we have developed pharmacologically acceptable selective DPAGT1 inhibitors. Tunicamycin kills a wide range of cancer and healthy cells in a non-selective manner. In sharp contrast, our DPAGT1 inhibitors display strong cytostatic effects against 16 solid cancers, which require the overexpression of DPAGT1 in their progression but do not affect the cell viability of healthy cells. The identified DPAGT1 inhibitors possess impressive anti-metastatic ability in various solid cancer cell lines and induce their mitochondrial structural changes, resulting in apoptosis. A prototype DPAGT1 inhibitor, APPB has already been proven to shrink solid tumors (e.g., pancreatic cancers, triple-negative breast cancers) in vivo while suppressing metastases and has strong synergistic effects when combined with current cytotoxic drugs (e.g., paclitaxel). At this conference, our discovery of selective DPAGT1 inhibitors with drug-like properties and proof-of-pharmaceutical concept studies of a novel DPAGT1 inhibitor are presented.Keywords: DPAGT1 inhibitors, anti-metastatic drugs, natural product based drug designs, cytostatic effects
Procedia PDF Downloads 7625647 Overcoming the Obstacles to Green Campus Implementation in Indonesia
Authors: Mia Wimala, Emma Akmalah, Ira Irawati, M. Rangga Sururi
Abstract:
One way that has been aggressively implemented in creating a sustainable environment nowadays is through the implementation of green building concept. In order to ensure the success of its implementation, the support and initiation from educational institutions, especially higher education institutions are indispensable. This research was conducted to figure out the obstacles restraining the success of green campus implementation in Indonesia, as well as to propose strategies to overcome those obstacles. The data presented in this paper are mainly derived from interview and questionnaire distributed randomly to the staffs and students in 10 (ten) major institutions around Jakarta and West Java area. The data were further analyzed using ANOVA and SWOT analysis. According to 182 respondents, it is found that resistance to change, inadequate knowledge, information and understanding, no penalty for any environmental violation, lack of reward for green campus practices, lack of stringent regulations/laws, lack of management commitment, insufficient funds are the obstacles to the green campus movement in Indonesia. In addition, out of 6 criteria considered in UI GreenMetric World Ranking, education was the only criteria that had no significant difference between public and private universities in generating the green campus performance. The work concludes with recommendation of strategies to improve the implementation of green campus in the future.Keywords: green campus, obstacles, sustainable, higher education institutions
Procedia PDF Downloads 22625646 Emotion Mining and Attribute Selection for Actionable Recommendations to Improve Customer Satisfaction
Authors: Jaishree Ranganathan, Poonam Rajurkar, Angelina A. Tzacheva, Zbigniew W. Ras
Abstract:
In today’s world, business often depends on the customer feedback and reviews. Sentiment analysis helps identify and extract information about the sentiment or emotion of the of the topic or document. Attribute selection is a challenging problem, especially with large datasets in actionable pattern mining algorithms. Action Rule Mining is one of the methods to discover actionable patterns from data. Action Rules are rules that help describe specific actions to be made in the form of conditions that help achieve the desired outcome. The rules help to change from any undesirable or negative state to a more desirable or positive state. In this paper, we present a Lexicon based weighted scheme approach to identify emotions from customer feedback data in the area of manufacturing business. Also, we use Rough sets and explore the attribute selection method for large scale datasets. Then we apply Actionable pattern mining to extract possible emotion change recommendations. This kind of recommendations help business analyst to improve their customer service which leads to customer satisfaction and increase sales revenue.Keywords: actionable pattern discovery, attribute selection, business data, data mining, emotion
Procedia PDF Downloads 20025645 Normative Reflections on the International Court of Justice's Jurisprudence on the Protection of Human Rights in Times of War
Authors: Roger-Claude Liwanga
Abstract:
This article reflects on the normative aspects of the jurisprudence on the protection of human rights in times of war that the International Court of Justice (ICJ) developed in 2005 in the Case Concerning Armed Activities on the Territory of the Congo (Democratic Republic of Congo v. Uganda). The article focuses on theories raised in connection with the Democratic Republic of Congo (DRC)'s claim of the violation of human rights of its populations by Uganda as opposed to the violation of its territorial integrity claims. The article begins with a re-visitation of the doctrine of state extraterritorial responsibility for violations of human rights by suggesting that a state's accountability for the breach of its international obligations is not territorially confined but rather transcends the State's national borders. The article highlights the criteria of assessing the State's extraterritorial responsibility, including the circumstances: (1) where the concerned State has effective control over the territory of another State in the context of belligerent occupation, and (2) when the unlawful actions committed by the State's organs on the occupied territory can be attributable to that State. The article also analyzes the ICJ's opinions articulated in DRC v. Uganda with reference to the relationship between human rights law and humanitarian law, and it contends that the ICJ had revised the traditional interaction between these two bodies of law to the extent that human rights law can no longer be excluded from applying in times of war as both branches are complementary rather than exclusive. The article correspondingly looks at the issue of reparations for victims of human rights violations. It posits that reparations for victims of human rights violations should be integral (including restitution, compensation, rehabilitation, satisfaction, and guarantees of non-repetition). Yet, the article concludes by emphasizing that reparations for victims were not integral in DRC v. Uganda because: (1) the ICJ failed to set a reasonable timeframe for the negotiations between the DRC and Uganda on the amount of compensation, resulting in Uganda paying no financial reparation to the DRC since 2005; and (2) the ICJ did not request Uganda to domestically prosecute the perpetrators of human rights abuses.Keywords: human rights law, humanitarian law, civilian protection, extraterritorial responsibility
Procedia PDF Downloads 13725644 E-Hailing Taxi Industry Management Mode Innovation Based on the Credit Evaluation
Authors: Yuan-lin Liu, Ye Li, Tian Xia
Abstract:
There are some shortcomings in Chinese existing taxi management modes. This paper suggests to establish the third-party comprehensive information management platform and put forward an evaluation model based on credit. Four indicators are used to evaluate the drivers’ credit, they are passengers’ evaluation score, driving behavior evaluation, drivers’ average bad record number, and personal credit score. A weighted clustering method is used to achieve credit level evaluation for taxi drivers. The management of taxi industry is based on the credit level, while the grade of the drivers is accorded to their credit rating. Credit rating determines the cost, income levels, the market access, useful period of license and the level of wage and bonus, as well as violation fine. These methods can make the credit evaluation effective. In conclusion, more credit data will help to set up a more accurate and detailed classification standard library.Keywords: credit, mobile internet, e-hailing taxi, management mode, weighted cluster
Procedia PDF Downloads 32625643 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing
Procedia PDF Downloads 18925642 Assessing Significance of Correlation with Binomial Distribution
Authors: Vijay Kumar Singh, Pooja Kushwaha, Prabhat Ranjan, Krishna Kumar Ojha, Jitendra Kumar
Abstract:
Present day high-throughput genomic technologies, NGS/microarrays, are producing large volume of data that require improved analysis methods to make sense of the data. The correlation between genes and samples has been regularly used to gain insight into many biological phenomena including, but not limited to, co-expression/co-regulation, gene regulatory networks, clustering and pattern identification. However, presence of outliers and violation of assumptions underlying Pearson correlation is frequent and may distort the actual correlation between the genes and lead to spurious conclusions. Here, we report a method to measure the strength of association between genes. The method assumes that the expression values of a gene are Bernoulli random variables whose outcome depends on the sample being probed. The method considers the two genes as uncorrelated if the number of sample with same outcome for both the genes (Ns) is equal to certainly expected number (Es). The extent of correlation depends on how far Ns can deviate from the Es. The method does not assume normality for the parent population, fairly unaffected by the presence of outliers, can be applied to qualitative data and it uses the binomial distribution to assess the significance of association. At this stage, we would not claim about the superiority of the method over other existing correlation methods, but our method could be another way of calculating correlation in addition to existing methods. The method uses binomial distribution, which has not been used until yet, to assess the significance of association between two variables. We are evaluating the performance of our method on NGS/microarray data, which is noisy and pierce by the outliers, to see if our method can differentiate between spurious and actual correlation. While working with the method, it has not escaped our notice that the method could also be generalized to measure the association of more than two variables which has been proven difficult with the existing methods.Keywords: binomial distribution, correlation, microarray, outliers, transcriptome
Procedia PDF Downloads 41625641 The Application of Bayesian Heuristic for Scheduling in Real-Time Private Clouds
Authors: Sahar Sohrabi
Abstract:
The emergence of Cloud data centers has revolutionized the IT industry. Private Clouds in specific provide Cloud services for certain group of customers/businesses. In a real-time private Cloud each task that is given to the system has a deadline that desirably should not be violated. Scheduling tasks in a real-time private CLoud determine the way available resources in the system are shared among incoming tasks. The aim of the scheduling policy is to optimize the system outcome which for a real-time private Cloud can include: energy consumption, deadline violation, execution time and the number of host switches. Different scheduling policies can be used for scheduling. Each lead to a sub-optimal outcome in a certain settings of the system. A Bayesian Scheduling strategy is proposed for scheduling to further improve the system outcome. The Bayesian strategy showed to outperform all selected policies. It also has the flexibility in dealing with complex pattern of incoming task and has the ability to adapt.Keywords: cloud computing, scheduling, real-time private cloud, bayesian
Procedia PDF Downloads 35925640 Using Data Mining in Automotive Safety
Authors: Carine Cridelich, Pablo Juesas Cano, Emmanuel Ramasso, Noureddine Zerhouni, Bernd Weiler
Abstract:
Safety is one of the most important considerations when buying a new car. While active safety aims at avoiding accidents, passive safety systems such as airbags and seat belts protect the occupant in case of an accident. In addition to legal regulations, organizations like Euro NCAP provide consumers with an independent assessment of the safety performance of cars and drive the development of safety systems in automobile industry. Those ratings are mainly based on injury assessment reference values derived from physical parameters measured in dummies during a car crash test. The components and sub-systems of a safety system are designed to achieve the required restraint performance. Sled tests and other types of tests are then carried out by car makers and their suppliers to confirm the protection level of the safety system. A Knowledge Discovery in Databases (KDD) process is proposed in order to minimize the number of tests. The KDD process is based on the data emerging from sled tests according to Euro NCAP specifications. About 30 parameters of the passive safety systems from different data sources (crash data, dummy protocol) are first analysed together with experts opinions. A procedure is proposed to manage missing data and validated on real data sets. Finally, a procedure is developed to estimate a set of rough initial parameters of the passive system before testing aiming at reducing the number of tests.Keywords: KDD process, passive safety systems, sled test, dummy injury assessment reference values, frontal impact
Procedia PDF Downloads 38225639 Copper Related Toxicity of 1-Hydroxy-2-Thiopyridines
Authors: Elena G. Salina, Vadim A. Makarov
Abstract:
With the emergence of primary resistance to the current drugs and wide distribution of latent tuberculosis infection, a need for new compounds with a novel mode of action is growing steadily. Copper-mediated innate immunity and antibacterial toxicity propose novel strategies in TB drug discovery and development. Transcriptome of M. tuberculosis was obtained by RNA-seq, intracellular copper content was measured by ISP MS and complexes of 1-hydroxy-2-thiopyridines with copper were detected by HPLC.1-hydroxy-2-thiopyridine derivatives were found to be highly active in vitro against both actively growing and dormant non-culturable M. tuberculosis. Transcriptome response to 1-hydroxy-2-thiopyridines revealed signs of copper toxicity in M. tuberculosis bacilli. Indeed, Cu was found to accumulate inside cells treated with 1-hydroxy-2-thiopyridines. These compounds were found to form stable charged lipophylic complexes with Cu²⁺ ions which transport into mycobacterial cell. Subsequent metabolic destruction of the complex led to transformation of 1-hydroxy-2-thiopyridines into 2-methylmercapto-2-ethoxycarbonylpyridines, which did not possess antitubercular activity and releasing of free Cu²⁺ in the cytoplasm. 1-hydroxy-2-thiopyridines are a potent class of Cu-dependent inhibitors of M. tuberculosis which may control M. tuberculosis infection by impairment of copper homeostasis. Acknowledgment: This work was financially supported by the Ministry of Education and Science of the RussianFederation (Agreement No 14.616.21.0065; unique identifier RFMEFI61616X0065).Keywords: copper toxicity, drug discovery, M. tuberculosis inhibitors, 2-thiopyridines
Procedia PDF Downloads 17025638 Trafficking of Women in Assam: The Untold Violation of Women's Human Rights
Authors: Mridula Devi
Abstract:
Trafficking of women is a slur on human dignity and a shameful act to human civilization and development. Trafficking of women is one of worst brazen abuses which violate the women’s human rights. In India, more particularly in Assam, human trafficking and infringement of human rights of individual includes mainly the women and girl child of the State. Trafficking in North East region of India, more particularly in Assam occurs in two different ways – one is the internal trafficking of women and girl child from conflict affected rural areas of Assam for domestic work and prostitution. Secondly, there is trafficking of women to other south-East Asiatic countries like Bangladesh, Bhutan, Bangkok, Myanmar (Burma) for various purposes such as drug trafficking, labor, bar girl and prostitution.Historically, trafficking in human beings is associated with slavery and bonded or forced labor. Since the period of Roman Civilization, there was the practice of traffic in persons in the form of slave trade among the nations. With the rise of new imperialism, slavery had become an integral part of the colonial system of European Countries. With time, it almost became synonymous with prostitution or commercial sexual exploitation. Finally, the United Nation adopted the Convention for the Suppression of the Traffic in Persons and of the Prostitution of others, 1949 by the G.A.Res.No.-317(iv). The Convention totally denounces the traffic in persons for the purpose of prostitution. However, it is important to note that, now a days trafficking is not confined to commercial sexual exploitation of women and children alone. It has myriad forms and the number of victims has been steadily on the rise over the past few decades. In Assam, it takes place through and for marriage, sexual exploitation, begging, organ trading, militancy conflicts, drug padding and smuggling, labour, adoption, entertainment, and sports. In this paper, empirical methodology has been used. The study is based on primary and secondary sources. Data’s are collected from different books, publications, newspaper, journals etc. For empirical analysis, some random samples are collected and systematized for better result. India suffers from the ignominy of being one of the biggest hubs of women trafficking in the world. Over the years, Assam: the north east part of India has been bearing the brunt of the rapidly rising evil of trafficking of women which threaten the life, dignity and human rights of women. Though different laws are adopted at international and national level to restore trafficking, still the menace of trafficking of women in Assam is not decreased, rather it increased. This causes a serious violation of women’s human right in Assam. Human trafficking or women’s trafficking is a serious crime against society. To curb this in Assam it is required to take some effective and dedicated measure at state level as well as national and international level.Keywords: Assam, human trafficking, sexual exploitation, India
Procedia PDF Downloads 51625637 The Discovery of Competitive Glca Inhibitors That Inhibits the Human Pathogenic Fungi Aspergillus Fumigatus and Candida Albicans
Authors: Reem Al-Shidhani, Isabelle S. R. Storer, Michael J. Bromley, Lydia Tabernero
Abstract:
Invasive fungal diseases are an increasing global health concern that contributes to the high mortality rates in immunocompromised patients. The rising of antifungal resistance severely lowers the efficacy of the limited antifungal agents available. New antifungal drugs that target new mechanisms are necessary to tackle the current shortfalls. Amongst post- modifications, phosphorylation is a predominant and an outstanding protein alteration in all eukaryotes. In fungi, protein phosphorylation plays a vital role in many signal transduction pathways, including cell cycle, cell growth, metabolism, transcription, differentiation, proliferation, and virulence. The investigation of Aspergillus fumigatus phosphatases revealed seven genes essential for viability. Inhibiting one of these phosphatases is a new interesting route to develop novel antifungal drugs. In this study, we carried out an early drug discovery process targeting oneessential phosphatase, GlcA. Here, we report the identification of new GlcA inhibitors that show antifungal activity. These important finding open a new avenue to the development of novel antifungals to expand the current narrow arsenal of clinical candidates.Keywords: invasive fungal diseases, phosphatases, GlcA, competitive inhibitors
Procedia PDF Downloads 12325636 A Semantic Registry to Support Brazilian Aeronautical Web Services Operations
Authors: Luís Antonio de Almeida Rodriguez, José Maria Parente de Oliveira, Ednelson Oliveira
Abstract:
In the last two decades, the world’s aviation authorities have made several attempts to create consensus about a global and accepted approach for applying semantics to web services registry descriptions. This problem has led communities to face a fat and disorganized infrastructure to describe aeronautical web services. It is usual for developers to implement ad-hoc connections among consumers and providers and manually create non-standardized service compositions, which need some particular approach to compose and semantically discover a desired web service. Current practices are not precise and tend to focus on lightweight specifications of some parts of the OWL-S and embed them into syntactic descriptions (SOAP artifacts and OWL language). It is necessary to have the ability to manage the use of both technologies. This paper presents an implementation of the ontology OWL-S that describes a Brazilian Aeronautical Web Service Registry, which makes it able to publish, advertise, make multi-criteria semantic discovery aligned with the ideas of the System Wide Information Management (SWIM) Program, and invoke web services within the Air Traffic Management context. The proposal’s best finding is a generic approach to describe semantic web services. The paper also presents a set of functional requirements to guide the ontology development and to compare them to the results to validate the implementation of the OWL-S Ontology.Keywords: aeronautical web services, OWL-S, semantic web services discovery, ontologies
Procedia PDF Downloads 8725635 MhAGCN: Multi-Head Attention Graph Convolutional Network for Web Services Classification
Authors: Bing Li, Zhi Li, Yilong Yang
Abstract:
Web classification can promote the quality of service discovery and management in the service repository. It is widely used to locate developers desired services. Although traditional classification methods based on supervised learning models can achieve classification tasks, developers need to manually mark web services, and the quality of these tags may not be enough to establish an accurate classifier for service classification. With the doubling of the number of web services, the manual tagging method has become unrealistic. In recent years, the attention mechanism has made remarkable progress in the field of deep learning, and its huge potential has been fully demonstrated in various fields. This paper designs a multi-head attention graph convolutional network (MHAGCN) service classification method, which can assign different weights to the neighborhood nodes without complicated matrix operations or relying on understanding the entire graph structure. The framework combines the advantages of the attention mechanism and graph convolutional neural network. It can classify web services through automatic feature extraction. The comprehensive experimental results on a real dataset not only show the superior performance of the proposed model over the existing models but also demonstrate its potentially good interpretability for graph analysis.Keywords: attention mechanism, graph convolutional network, interpretability, service classification, service discovery
Procedia PDF Downloads 13725634 Revealing of the Wave-Like Process in Kinetics of the Structural Steel Radiation Degradation
Authors: E. A. Krasikov
Abstract:
Dependence of the materials properties on neutron irradiation intensity (flux) is a key problem while usage data of the accelerated materials irradiation in test reactors for forecasting of their capacity for work in realistic (practical) circumstances of operation. Investigations of the reactor pressure vessel steel radiation degradation dependence on fast neutron fluence (embrittlement kinetics) at low flux reveal the instability in the form of the scatter of the experimental data and wave-like sections of embrittlement kinetics appearance. Disclosure of the steel degradation oscillating is a sign of the steel structure cyclic self-recovery transformation as it take place in self-organization processes. This assumption has received support through the discovery of the similar ‘anomalous’ data in scientific publications and by means of own additional experiments. Data obtained stimulate looking-for ways to management of the structural steel radiation stability (for example, by means of nano - structure modification for radiation defects annihilation intensification) for creation of the intelligent self-recovering material. Expected results: - radiation degradation theory and mechanisms development, - more adequate models of the radiation embrittlement elaboration, - surveillance specimen programs improvement, - methods and facility development for usage data of the accelerated materials irradiation for forecasting of their capacity for work in realistic (practical) circumstances of operation, - search of the ways for creating of the radiation stable self-recovery intelligent materials.Keywords: degradation, radiation, steel, wave-like kinetics
Procedia PDF Downloads 30525633 A Web Service-Based Framework for Mining E-Learning Data
Authors: Felermino D. M. A. Ali, S. C. Ng
Abstract:
E-learning is an evolutionary form of distance learning and has become better over time as new technologies emerged. Today, efforts are still being made to embrace E-learning systems with emerging technologies in order to make them better. Among these advancements, Educational Data Mining (EDM) is one that is gaining a huge and increasing popularity due to its wide application for improving the teaching-learning process in online practices. However, even though EDM promises to bring many benefits to educational industry in general and E-learning environments in particular, its principal drawback is the lack of easy to use tools. The current EDM tools usually require users to have some additional technical expertise to effectively perform EDM tasks. Thus, in response to these limitations, this study intends to design and implement an EDM application framework which aims at automating and simplify the development of EDM in E-learning environment. The application framework introduces a Service-Oriented Architecture (SOA) that hides the complexity of technical details and enables users to perform EDM in an automated fashion. The framework was designed based on abstraction, extensibility, and interoperability principles. The framework implementation was made up of three major modules. The first module provides an abstraction for data gathering, which was done by extending Moodle LMS (Learning Management System) source code. The second module provides data mining methods and techniques as services; it was done by converting Weka API into a set of Web services. The third module acts as an intermediary between the first two modules, it contains a user-friendly interface that allows dynamically locating data provider services, and running knowledge discovery tasks on data mining services. An experiment was conducted to evaluate the overhead of the proposed framework through a combination of simulation and implementation. The experiments have shown that the overhead introduced by the SOA mechanism is relatively small, therefore, it has been concluded that a service-oriented architecture can be effectively used to facilitate educational data mining in E-learning environments.Keywords: educational data mining, e-learning, distributed data mining, moodle, service-oriented architecture, Weka
Procedia PDF Downloads 23625632 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components
Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea
Abstract:
Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.Keywords: assessment, part of speech, sentiment analysis, student feedback
Procedia PDF Downloads 14325631 Unauthorized License Verifier and Secure Access to Vehicle
Authors: G. Prakash, L. Mohamed Aasiq, N. Dhivya, M. Jothi Mani, R. Mounika, B. Gomathi
Abstract:
In our day to day life, many people met with an accident due to various reasons like over speed, overload in the vehicle, violation of the traffic rules, etc. Driving license system is difficult task for the government to monitor. To prevent non-licensees from driving who are causing most of the accidents, a new system is proposed. The proposed system consists of a smart card capable of storing the license details of a particular person. Vehicles such as cars, bikes etc., should have a card reader capable of reading the particular license. A person, who wishes to drive the vehicle, should insert the card (license) in the vehicle and then enter the password in the keypad. If the license data stored in the card and database about the entire license holders in the microcontroller matches, he/she can proceed for ignition after the automated opening of the fuel tank valve, otherwise the user is restricted to use the vehicle. Moreover, overload detector in our proposed system verifies and then prompts the user to avoid overload before driving. This increases the security of vehicles and also ensures safe driving by preventing accidents.Keywords: license, verifier, EEPROM, secure, overload detection
Procedia PDF Downloads 24225630 An Archaeological Approach to Dating Polities and Architectural Ingenuity in Ijebu, South Western Nigeria
Authors: Olanrewaju B. Lasisi
Abstract:
The position of Ijebu-Ode, the historical capital of the Ijebu Kingdom, at the center of gravity of Ijebu land is enclosed by the 180-km-long earthwork and suggests a centrally controlled project. This paper reflects on the first stratigraphic drawing of the banks and ditches of this earthwork, and place its construction mechanism in a chronological framework. Nine radiocarbon dates obtained at the site suggest that the earthwork was built in the late 14th or early 15th century. This suggests a relationship with the Ijebu Kingdom, which pre-existed the opening of the Atlantic trade but first became visible only in the Portuguese records in the 1480s. In June 2017, more earthworks were found but within the core of Ijebu Land. This most recent finding points to an extension of territory from the center to the outlying villages. One central question about this discovery of monumental architectures that was functional around the 14th century or before is in its mode of construction. Apparently, iron tools must have been used in the construction of ‘a 20m deep ditch that runs 180km in circumference.’ Thus, the discovery of iron-working sites around the vicinity of the earthwork is a pointer to this building process that is up till now shrouded in mystery. By comparing the chronology of Ijebu earthworks with the evidence of Iron working in south western Nigeria around the first half of the first millennium AD, it can be thought that the rise in polity triggered the knowledge of metallurgy in the region.Keywords: archaeology, earthworks, Ijebu, metallurgy
Procedia PDF Downloads 24725629 Mining the Proteome of Fusobacterium nucleatum for Potential Therapeutics Discovery
Authors: Abdul Musaweer Habib, Habibul Hasan Mazumder, Saiful Islam, Sohel Sikder, Omar Faruk Sikder
Abstract:
The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for antibacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome sequence of the Fusobacterium nucleatum, a human oral pathogen having association with colorectal cancer. Our study divulged 1499 proteins of Fusobacterium nucleatum, which has no homolog in human genome. These proteins were subjected to screening further by using the Database of Essential Genes (DEG) that resulted in the identification of 32 vitally important proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the KEGG Automated Annotation Server (KAAS) resulted in sorting 3 key enzymes of F. nucleatum that may be good candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have demonstrated the 3-D structure of these three proteins. Finally, determination of ligand binding sites of the key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover effective novel therapeutic compounds against Fusobacterium nucleatum.Keywords: colorectal cancer, drug target, Fusobacterium nucleatum, homology modeling, ligands
Procedia PDF Downloads 38925628 Multidirectional Product Support System for Decision Making in Textile Industry Using Collaborative Filtering Methods
Authors: A. Senthil Kumar, V. Murali Bhaskaran
Abstract:
In the information technology ground, people are using various tools and software for their official use and personal reasons. Nowadays, people are worrying to choose data accessing and extraction tools at the time of buying and selling their products. In addition, worry about various quality factors such as price, durability, color, size, and availability of the product. The main purpose of the research study is to find solutions to these unsolved existing problems. The proposed algorithm is a Multidirectional Rank Prediction (MDRP) decision making algorithm in order to take an effective strategic decision at all the levels of data extraction, uses a real time textile dataset and analyzes the results. Finally, the results are obtained and compared with the existing measurement methods such as PCC, SLCF, and VSS. The result accuracy is higher than the existing rank prediction methods.Keywords: Knowledge Discovery in Database (KDD), Multidirectional Rank Prediction (MDRP), Pearson’s Correlation Coefficient (PCC), VSS (Vector Space Similarity)
Procedia PDF Downloads 28825627 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet
Authors: Azene Zenebe
Abstract:
Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science
Procedia PDF Downloads 15525626 The Impact of Spirituality on the Voluntary Simplicity Lifestyle Tendency: An Explanatory Study on Turkish Consumers
Authors: Esna B. Buğday, Niray Tunçel
Abstract:
Spirituality has a motivational influence on consumers' psychological states, lifestyles, and behavioral intentions. Spirituality refers to the feeling that there is a divine power greater than ourselves and a connection among oneself, others, nature, and the sacred. In addition, spirituality concerns the human soul and spirit against the material and physical world and consists of three dimensions: self-discovery, relationships, and belief in a higher power. Of them, self-discovery is to explore the meaning and the purpose of life. Relationships refer to the awareness of the connection between human beings and nature as well as respect for them. In addition, higher power represents the transcendent aspect of spirituality, which means to believe in a holy power that creates all the systems in the universe. Furthermore, a voluntary simplicity lifestyle is (1) to adopt a simple lifestyle by minimizing the attachment to and the consumption of material things and possessions, (2) to have an ecological awareness respecting all living creatures, and (3) to express the desire for exploring and developing the inner life. Voluntary simplicity is a multi-dimensional construct that consists of a desire for a voluntarily simple life (e.g., avoiding excessive consumption), cautious attitudes in shopping (e.g., not buying unnecessary products), acceptance of self-sufficiency (e.g., being self-sufficient individual), and rejection of highly developed functions of products (e.g., preference for simple functioned products). One of the main reasons for living simply is to sustain a spiritual life, as voluntary simplicity provides the space for achieving psychological and spiritual growth, cultivating self-reliance since voluntary simplifier frees themselves from the overwhelming externals and takes control of their daily lives. From this point of view, it is expected that people with a strong sense of spirituality will be likely to adopt a simple lifestyle. In this respect, the study aims to examine the impact of spirituality on consumers' voluntary simple lifestyle tendencies. As consumers' consumption attitudes and behaviors depend on their lifestyles, exploring the factors that lead them to embrace voluntary simplicity significantly predicts their purchase behavior. In this respect, this study presents empirical research based on a data set collected from 478 Turkish consumers through an online survey. First, exploratory factor analysis is applied to the data to reveal the dimensions of spirituality and voluntary simplicity scales. Second, confirmatory factor analysis is conducted to assess the measurement model. Last, the hypotheses are analyzed using partial least square structural equation modeling (PLS-SEM). The results confirm that spirituality's self-discovery and relationships dimensions positively impact both cautious attitudes in shopping and acceptance of self-sufficiency dimensions of voluntary simplicity. In contrast, belief in a higher power does not significantly influence consumers' voluntary simplicity tendencies. Even though there has been theoretical support drawing a positive relationship between spirituality and voluntary simplicity, to the best of the authors' knowledge, this has not been empirically tested in the literature before. Hence, this study contributes to the current knowledge by analyzing the direct influence of spirituality on consumers' voluntary simplicity tendencies. Additionally, analyzing this impact on the consumers of an emerging market is another contribution to the literature.Keywords: spirituality, voluntary simplicity, self-sufficiency, conscious shopping, Turkish consumers
Procedia PDF Downloads 15325625 Discovery of New Inhibitors for Colorectal Cancer Treatment
Authors: Kai-Cheng Hsu, Tzu-Ying Sung, Jinn-Moon Yang
Abstract:
Colorectal cancer (CRC) is one of the main causes of cancer death in the world. Although several drugs have been developed to treat colorectal cancer, such as Regorafenib and 5-FU, their efficacy is often limited by the development of drug resistance. Therefore, development of new drugs with new scaffolds is necessary to treat CRC. Here, we used site-moiety maps to identify inhibitors against PIM1, LIMK1, SRC, and mTOR, which are often overexpressed in CRC. A site-moiety map represents physicochemical properties and moiety preferences of a binding site through anchors. An anchor contains three elements: (1) conserved interacting residues of a binding pocket; (2) moiety preference of the binding pocket; and (3) the type (e.g., hydrogen-bonding or van der Waals interactions) of interaction between the moieties and the binding pocket. Then, we performed a structure-based virtual screening of ~260,000 compounds and selected compound candidates with high site-moiety map scores for bioassays. Among these candidates, compound 1 and compound 2 inhibited the growth of CRC cells with IC50 values of <10 μM. The experimental result of enzyme-based assays indicated that compound 1 is a dual inhibitor against PIM1 (IC50 6 μM) and LIMK1(IC50 11 μM). Compound 2 was predicted as a SRC inhibitor and will be further validated. The compounds inhibited different protein targets compared to the current drugs. We believe that the compounds provide a starting point to design new drugs for CRC treatment.Keywords: colorectal cancer, drug discovery, site-moiety map, virtual screening, PIM1, LIMK1
Procedia PDF Downloads 24725624 A Comparative Study between Japan and the European Union on Software Vulnerability Public Policies
Authors: Stefano Fantin
Abstract:
The present analysis outcomes from the research undertaken in the course of the European-funded project EUNITY, which targets the gaps in research and development on cybersecurity and privacy between Europe and Japan. Under these auspices, the research presents a study on the policy approach of Japan, the EU and a number of Member States of the Union with regard to the handling and discovery of software vulnerabilities, with the aim of identifying methodological differences and similarities. This research builds upon a functional comparative analysis of both public policies and legal instruments from the identified jurisdictions. The result of this analysis is based on semi-structured interviews with EUNITY partners, as well as by the participation of the researcher to a recent report from the Center for EU Policy Study on software vulnerability. The European Union presents a rather fragmented legal framework on software vulnerabilities. The presence of a number of different legislations at the EU level (including Network and Information Security Directive, Critical Infrastructure Directive, Directive on the Attacks at Information Systems and the Proposal for a Cybersecurity Act) with no clear focus on such a subject makes it difficult for both national governments and end-users (software owners, researchers and private citizens) to gain a clear understanding of the Union’s approach. Additionally, the current data protection reform package (general data protection regulation), seems to create legal uncertainty around security research. To date, at the member states level, a few efforts towards transparent practices have been made, namely by the Netherlands, France, and Latvia. This research will explain what policy approach such countries have taken. Japan has started implementing a coordinated vulnerability disclosure policy in 2004. To date, two amendments can be registered on the framework (2014 and 2017). The framework is furthermore complemented by a series of instruments allowing researchers to disclose responsibly any new discovery. However, the policy has started to lose its efficiency due to a significant increase in reports made to the authority in charge. To conclude, the research conducted reveals two asymmetric policy approaches, time-wise and content-wise. The analysis therein will, therefore, conclude with a series of policy recommendations based on the lessons learned from both regions, towards a common approach to the security of European and Japanese markets, industries and citizens.Keywords: cybersecurity, vulnerability, European Union, Japan
Procedia PDF Downloads 15725623 Data Transformations in Data Envelopment Analysis
Authors: Mansour Mohammadpour
Abstract:
Data transformation refers to the modification of any point in a data set by a mathematical function. When applying transformations, the measurement scale of the data is modified. Data transformations are commonly employed to turn data into the appropriate form, which can serve various functions in the quantitative analysis of the data. This study addresses the investigation of the use of data transformations in Data Envelopment Analysis (DEA). Although data transformations are important options for analysis, they do fundamentally alter the nature of the variable, making the interpretation of the results somewhat more complex.Keywords: data transformation, data envelopment analysis, undesirable data, negative data
Procedia PDF Downloads 2425622 A Game Theory Analysis of the Effectiveness of Passenger Profiling for Transportation Security
Authors: Yael Deutsch, Arieh Gavious
Abstract:
The threat of aviation terrorism and its potential damage became significant after the 9/11 terror attacks. These attacks have led authorities and leaders to suggest that security personnel should overcome politically correct scruples about profiling and use it openly. However, there is a lack of knowledge about the smart usage of profiling and its advantages. We analyze game models that are suitable to specific real-world scenarios, focusing on profiling as a tool to detect potential violators, such as terrorists and smugglers. We provide analytical and clear answers to difficult questions, and by that help fighting against harmful violation acts.Keywords: game theory, profiling, security, nash equilibrium
Procedia PDF Downloads 11125621 Unveiling the Black Swan of the Inflation-Adjusted Real Excess Returns-Risk Nexus: Evidence From Pakistan Stock Exchange
Authors: Mohammad Azam
Abstract:
The purpose of this study is to investigate risk and real excess portfolio returns using inflation adjusted risk-free rates, a measuring technique that focuses on the momentum augmented Fama-French six-factor model and use monthly data from 1994 to 2022. With the exception of profitability, the data show that market, size, value, momentum, and investment factors are all strongly associated to excess portfolio stock returns using ordinary lease square regression technique. According to the Gibbons, Ross, and Shanken test, the momentum augmented Fama-French six-factor model outperforms the market. This technique discovery may be utilised by academics and professionals to acquire an in-depth knowledge of the Pakistan Stock Exchange across a broad stock pattern for investing decisions and portfolio construction.Keywords: real excess portfolio returns, momentum augmented fama & french five-factor model, GRS-test, pakistan stock exchange
Procedia PDF Downloads 102