Search results for: thermal alteration index
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7111

Search results for: thermal alteration index

6961 The Effect of Patient Positioning on Pleth Variability Index during Surgery

Authors: Omid Azimaraghi, Noushin Khazaei

Abstract:

Background: Fluid therapy is an important aspect of the perioperative period and a major challenge for anesthesiologists. To authors best knowledge, there is a lack of strong guidance and evidence regarding the optimal approach to fluid therapy. Therefore a variety of medical devices have been introduced to help physicians. In this study, we aimed to evaluate the effectiveness of pleth variability index in guiding fluid therapy in different patient positions. Materials and Methods: Inclusion criteria consisted of patients aged 18-50 years old and classified as American Society of Anesthesiologists physical status I and II, who were candidates for elective thyroidectomy surgery. In total, 36 patients meeting the inclusion criteria were enrolled in the study. After induction of anesthesia and start of mechanical ventilation Pleth variability index was measured in the supine position, then patients were placed in Trendelenburg and reverse Trendelenburg position (30 degrees, 5 minutes); Pleth Variability Index has measured again in the mentioned positions. Results: Mean PVI (Pleth Variability Index) in the supine position was 14.3 ± 3.7 in comparison to 21.5 ± 4.3 in the reverse Trendelenburg position. The mean PVI in Trendelenburg position was 9.1 ± 2.0 in Trendelenburg position (p < 0.05). Conclusion: In conclusion, we found that Pleth Variability Index varies with patient position and this should be taken into account when using this index during fluid therapy.

Keywords: fluid therapy, Pleth Variability Index, position, surgery

Procedia PDF Downloads 142
6960 Experimental Observation on Air-Conditioning Using Radiant Chilled Ceiling in Hot Humid Climate

Authors: Ashmin Aryal, Pipat Chaiwiwatworakul, Surapong Chirarattananon

Abstract:

Radiant chilled ceiling (RCC) has been perceived to save more energy and provide better thermal comfort than the traditional air conditioning system. However, its application has been rather limited by some reasons e.g., the scarce information about the thermal characteristic in the radiant room and the local climate influence on the system performance, etc. To bridge such gap, an office-like experiment room with a RCC was constructed in the hot and humid climate of Thailand. This paper presents exemplarily results from the RCC experiments to give an insight into the thermal environment in a radiant room and the cooling load associated to maintain the room's comfort condition. It gave a demonstration of the RCC system operation for its application to achieve thermal comfort in offices in a hot humid climate, as well.

Keywords: radiant chilled ceiling, thermal comfort, cooling load, outdoor air unit

Procedia PDF Downloads 104
6959 3D Simulation for Design and Predicting Performance of a Thermal Heat Storage Facility using Sand

Authors: Nadjiba Mahfoudi, Abdelhafid Moummi , Mohammed El Ganaoui

Abstract:

Thermal applications are drawing increasing attention in the solar energy research field, due to their high performance in energy storage density and energy conversion efficiency. In these applications, solar collectors and thermal energy storage systems are the two core components. This paper presents a thermal analysis of the transient behavior and storage capability of a sensible heat storage device in which sand is used as a storage media. The TES unit with embedded charging tubes is connected to a solar air collector. To investigate it storage characteristics a 3D-model using no linear coupled partial differential equations for both temperature of storage medium and heat transfer fluid (HTF), has been developed. Performances of thermal storage bed of capacity of 17 MJ (including bed temperature, charging time, energy storage rate, charging energy efficiency) have been evaluated. The effect of the number of charging tubes (3 configurations) is presented.

Keywords: design, thermal modeling, heat transfer enhancement, sand, sensible heat storage

Procedia PDF Downloads 535
6958 The Influence of Water and Salt Crystals Content on Thermal Conductivity Coefficient of Red Clay Brick

Authors: Dalia Bednarska, Marcin Koniorczyk

Abstract:

This paper presents results of experiments aimed at studying hygro-thermal properties of red clay brick. The main objective of research was to investigate the relation between thermal conductivity coefficient of brick and its water or Na2SO4 solution content. The research was conducted using stationary technique for the totally dried specimens, as well as the ones 25%, 50%, 75% and 100% imbued with water or sodium sulfate solution. Additionally, a sorption isotherm test was conducted for seven relative humidity levels. Furthermore the change of red clay brick pore structure before and after imbuing with water and salt solution was investigated by multi-cycle mercury intrusion test. The experimental results confirm negative influence of water or sodium sulphate on thermal properties of material. The value of thermal conductivity coefficient increases along with growth of water or Na₂SO₄ solution content. The study shows that the presence of Na₂SO₄ solution has less negative influence on brick’s thermal conductivity coefficient than water.

Keywords: building materials, red clay brick, sodium sulfate, thermal conductivity coefficient

Procedia PDF Downloads 379
6957 Refractometric Optical Sensing by Using Photonics Mach–Zehnder Interferometer

Authors: Gong Zhang, Hong Cai, Bin Dong, Jifang Tao, Aiqun Liu, Dim-Lee Kwong, Yuandong Gu

Abstract:

An on-chip refractive index sensor with high sensitivity and large measurement range is demonstrated in this paper. The sensing structures are based on Mach-Zehnder interferometer configuration, built on the SOI substrate. The wavelength sensitivity of the sensor is estimated to be 3129 nm/RIU. Meanwhile, according to the interference pattern period changes, the measured period sensitivities are 2.9 nm/RIU (TE mode) and 4.21 nm/RIU (TM mode), respectively. As such, the wavelength shift and the period shift can be used for fine index change detection and larger index change detection, respectively. Therefore, the sensor design provides an approach for large index change measurement with high sensitivity.

Keywords: Mach-Zehnder interferometer, nanotechnology, refractive index sensing, sensors

Procedia PDF Downloads 424
6956 Determination of Air Quality Index Using Respirable Dust Sampler

Authors: Sapan Bhatnagar, Danish Akhtar, Salman Ahmed, Asif Ekbal, Gufran Beig

Abstract:

Particulates are the solid and liquid droplets present in the atmosphere, they have serious negative effects on human health and environment. PM10 and PM2.5 are so small that they can penetrate deep into our lungs through the respiratory system. Determination of the amount of particulates present in the atmosphere per cubic meter is necessary to monitor, regulate and model atmospheric particulate levels. Air Quality Index is an index tells us how clean or polluted our air is, and what associated health effects might be a concern for us. The AQI focuses on health affects you may experience within a few hours or days after breathing polluted air. The quality rating for each pollutant was calculated. The geometric mean of these quality ratings gives the Air Quality Index. The existing concentrations of pollutants were compared with ambient air quality standards.

Keywords: air quality index, particulate, respirable dust sampler, dust sampler

Procedia PDF Downloads 553
6955 Systems Approach on Thermal Analysis of an Automatic Transmission

Authors: Sinsze Koo, Benjin Luo, Matthew Henry

Abstract:

In order to increase the performance of an automatic transmission, the automatic transmission fluid is required to be warm up to an optimal operating temperature. In a conventional vehicle, cold starts result in friction loss occurring in the gear box and engine. The stop and go nature of city driving dramatically affect the warm-up of engine oil and automatic transmission fluid and delay the time frame needed to reach an optimal operating temperature. This temperature phenomenon impacts both engine and transmission performance but also increases fuel consumption and CO2 emission. The aim of this study is to develop know-how of the thermal behavior in order to identify thermal impacts and functional principles in automatic transmissions. Thermal behavior was studied using models and simulations, developed using GT-Suit, on a one-dimensional thermal and flow transport. A power train of a conventional vehicle was modeled in order to emphasis the thermal phenomena occurring in the various components and how they impact the automatic transmission performance. The simulation demonstrates the thermal model of a transmission fluid cooling system and its component parts in warm-up after a cold start. The result of these analyses will support the future designs of transmission systems and components in an attempt to obtain better fuel efficiency and transmission performance. Therefore, these thermal analyses could possibly identify ways that improve existing thermal management techniques with prioritization on fuel efficiency.

Keywords: thermal management, automatic transmission, hybrid, and systematic approach

Procedia PDF Downloads 354
6954 Thermal Resistance Analysis of Flexible Composites Based on Al2O3 Aerogels

Authors: Jianzheng Wei, Duo Zhen, Zhihan Yang, Huifeng Tan

Abstract:

The deployable descent technology is a lightweight entry method using an inflatable heat shield. The heatshield consists of a pressurized core which is covered by different layers of thermal insulation and flexible ablative materials in order to protect against the thermal loads. In this paper, both aluminum and silicon-aluminum aerogels were prepared by freeze-drying method. The latter material has bigger specific surface area and nano-scale pores. Mullite fibers are used as the reinforcing fibers to prepare the aerogel matrix to improve composite flexibility. The flexible composite materials were performed as an insulation layer to an underlying aramid fabric by a thermal shock test at a heat flux density of 120 kW/m2 and uniaxial tensile test. These results show that the aramid fabric with untreated mullite fibers as the thermal protective layer is completely carbonized at the heat of about 60 s. The aramid fabric as a thermal resistance layer of the composite material still has good mechanical properties at the same heat condition.

Keywords: aerogel, aramid fabric, flexibility, thermal resistance

Procedia PDF Downloads 128
6953 Best Timing for Capturing Satellite Thermal Images, Asphalt, and Concrete Objects

Authors: Toufic Abd El-Latif Sadek

Abstract:

The asphalt object represents the asphalted areas like roads, and the concrete object represents the concrete areas like concrete buildings. The efficient extraction of asphalt and concrete objects from one satellite thermal image occurred at a specific time, by preventing the gaps in times which give the close and same brightness values between asphalt and concrete, and among other objects. So that to achieve efficient extraction and then better analysis. Seven sample objects were used un this study, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found that, the best timing for capturing satellite thermal images to extract the two objects asphalt and concrete from one satellite thermal image, saving time and money, occurred at a specific time in different months. A table is deduced shows the optimal timing for capturing satellite thermal images to extract effectively these two objects.

Keywords: asphalt, concrete, satellite thermal images, timing

Procedia PDF Downloads 296
6952 Co-Integration Model for Predicting Inflation Movement in Nigeria

Authors: Salako Rotimi, Oshungade Stephen, Ojewoye Opeyemi

Abstract:

The maintenance of price stability is one of the macroeconomic challenges facing Nigeria as a nation. This paper attempts to build a co-integration multivariate time series model for inflation movement in Nigeria using data extracted from the abstract of statistics of the Central Bank of Nigeria (CBN) from 2008 to 2017. The Johansen cointegration test suggests at least one co-integration vector describing the long run relationship between Consumer Price Index (CPI), Food Price Index (FPI) and Non-Food Price Index (NFPI). All three series show increasing pattern, which indicates a sign of non-stationary in each of the series. Furthermore, model predictability was established with root-mean-square-error, mean absolute error, mean average percentage error, and Theil’s unbiased statistics for n-step forecasting. The result depicts that the long run coefficient of a consumer price index (CPI) has a positive long-run relationship with the food price index (FPI) and non-food price index (NFPI).

Keywords: economic, inflation, model, series

Procedia PDF Downloads 220
6951 Correlation to Predict Thermal Performance According to Working Fluids of Vertical Closed-Loop Pulsating Heat Pipe

Authors: Niti Kammuang-lue, Kritsada On-ai, Phrut Sakulchangsatjatai, Pradit Terdtoon

Abstract:

The objectives of this paper are to investigate effects of dimensionless numbers on thermal performance of the vertical closed-loop pulsating heat pipe (VCLPHP) and to establish a correlation to predict the thermal performance of the VCLPHP. The CLPHPs were made of long copper capillary tubes with inner diameters of 1.50, 1.78, and 2.16mm and bent into 26 turns. Then, both ends were connected together to form a loop. The evaporator, adiabatic, and condenser sections length were equal to 50 and 150 mm. R123, R141b, acetone, ethanol, and water were chosen as variable working fluids with constant filling ratio of 50% by total volume. Inlet temperature of heating medium and adiabatic section temperature was constantly controlled at 80 and 50oC, respectively. Thermal performance was represented in a term of Kutateladze number (Ku). It can be concluded that when Prandtl number of liquid working fluid (Prl), and Karman number (Ka) increases, thermal performance increases. On contrary, when Bond number (Bo), Jacob number (Ja), and Aspect ratio (Le/Di) increases, thermal performance decreases. Moreover, the correlation to predict more precise thermal performance has been successfully established by analyzing on all dimensionless numbers that have effect on the thermal performance of the VCLPHP.

Keywords: vertical closed-loop pulsating heat pipe, working fluid, thermal performance, dimensionless parameter

Procedia PDF Downloads 394
6950 Study on the Thermal Conductivity about Porous Materials in Wet State

Authors: Han Yan, Jieren Luo, Qiuhui Yan, Xiaoqing Li

Abstract:

The thermal conductivity of porous materials is closely related to the thermal and moisture environment and the overall energy consumption of the building. The study of thermal conductivity of porous materials has great significance for the realization of low energy consumption building and economic construction building. Based on the study of effective thermal conductivity of porous materials at home and abroad, the thermal conductivity under a variety of different density of polystyrene board (EPS), plastic extruded board (XPS) and polyurethane (PU) and phenolic resin (PF) in wet state through theoretical analysis and experimental research has been studied. Initially, the moisture absorption and desorption properties of specimens had been discussed under different density, which led a result indicates the moisture absorption of four porous materials all have three stages, fast, stable and gentle. For the moisture desorption, there are two types. One is the existence of the rapid phase of the stage, such as XPS board, PU board. The other one does not have the fast desorption, instead, it is more stabilized, such as XPS board, PF board. Furthermore, the relationship between water content and thermal conductivity of porous materials had been studied and fitted, which figured out that in the wake of the increasing water content, the thermal conductivity of porous material is continually improving. At the same time, this result also shows, in different density, when the same kind of materials decreases, the saturated moisture content increases. Finally, the moisture absorption and desorption properties of the four kinds of materials are compared comprehensively, and it turned out that the heat preservation performance of PU board is the best, followed by EPS board, XPS board, PF board.

Keywords: porous materials, thermal conductivity, moisture content, transient hot-wire method

Procedia PDF Downloads 160
6949 Effect of Transit-Oriented Development on Air Quality in Neighborhoods of Delhi

Authors: Smriti Bhatnagar

Abstract:

This study aims to find if the Transit-oriented planning and development approach benefit the quality of air in neighborhoods of New Delhi. Two methodologies, namely the land use regression analysis and the Transit-oriented development index analysis, are being used to explore this relationship. Land Use Regression Analysis makes use of urban form characteristics as obtained for 33 neighborhoods in Delhi. These comprise road lengths, land use areas, population and household densities, number of amenities and distance between amenities. Regressions are run to establish the relationship between urban form variables and air quality parameters (dependent variables). For the Transit-oriented development index analysis, the Transit-oriented Development index is developed as a composite index comprising 29 urban form indicators. This index is developed by assigning weights to each of the 29 urban form data points. Regressions are run to establish the relationship between the Transit-oriented development index and air quality parameters. The thesis finds that elements of Transit-oriented development if incorporated in planning approach, have a positive effect on air quality. Roads suited for non-motorized transport, well connected civic amenities in neighbourhoods, for instance, have a directly proportional relationship with air quality. Transit-oriented development index, however, is not found to have a consistent relationship with air quality parameters. The reason could this, however, be in the way that the index has been constructed.

Keywords: air quality, land use regression, mixed-use planning, transit-oriented development index, New Delhi

Procedia PDF Downloads 245
6948 Thermal Insulating Silicate Materials Suitable for Thermal Insulation and Rehabilitation Structures

Authors: Jitka Hroudová, Martin Sedlmajer, Jiří Zach

Abstract:

Problems insulation of building structures is often closely connected with the problem of moisture remediation. In the case of historic buildings or if only part of the redevelopment of envelope of structures, it is not possible to apply the classical external thermal insulation composite systems. This application is mostly effective thermal insulation plasters with high porosity and controlled capillary properties which assures improvement of thermal properties construction, its diffusion openness towards the external environment and suitable treatment capillary properties of preventing the penetration of liquid moisture and salts thereof toward the outer surface of the structure. With respect to the current trend of reducing the energy consumption of building structures and reduce the production of CO2 is necessary to develop capillary-active materials characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The aim of researchers at the Faculty of Civil Engineering, Brno University of Technology is the development and study of hygrothermal behaviour of optimal materials for thermal insulation and rehabilitation of building structures with the possible use of alternative, less energy demanding binders in comparison with conventional, frequently used binder, which represents cement. The paper describes the evaluation of research activities aimed at the development of thermal insulation and repair materials using lightweight aggregate and alternative binders such as metakaolin and finely ground fly ash.

Keywords: thermal insulating plasters, rehabilitation materials, thermal conductivity, lightweight aggregate, alternative binders.

Procedia PDF Downloads 281
6947 Detecting Financial Bubbles Using Gap between Common Stocks and Preferred Stocks

Authors: Changju Lee, Seungmo Ku, Sondo Kim, Woojin Chang

Abstract:

How to detecting financial bubble? Addressing this simple question has been the focus of a vast amount of empirical research spanning almost half a century. However, financial bubble is hard to observe and varying over the time; there needs to be more research on this area. In this paper, we used abnormal difference between common stocks price and those preferred stocks price to explain financial bubble. First, we proposed the ‘W-index’ which indicates spread between common stocks and those preferred stocks in stock market. Second, to prove that this ‘W-index’ is valid for measuring financial bubble, we showed that there is an inverse relationship between this ‘W-index’ and S&P500 rate of return. Specifically, our hypothesis is that when ‘W-index’ is comparably higher than other periods, financial bubbles are added up in stock market and vice versa; according to our hypothesis, if investors made long term investments when ‘W-index’ is high, they would have negative rate of return; however, if investors made long term investments when ‘W-index’ is low, they would have positive rate of return. By comparing correlation values and adjusted R-squared values of between W-index and S&P500 return, VIX index and S&P500 return, and TED index and S&P500 return, we showed only W-index has significant relationship between S&P500 rate of return. In addition, we figured out how long investors should hold their investment position regard the effect of financial bubble. Using this W-index, investors could measure financial bubble in the market and invest with low risk.

Keywords: financial bubble detection, future return, forecasting, pairs trading, preferred stocks

Procedia PDF Downloads 347
6946 Thermal Resistance of Special Garments Exposed to a Radiant Heat

Authors: Jana Pichova, Lubos Hes, Vladimir Bajzik

Abstract:

Protective clothing is designed to keep a wearer save in hazardous conditions or enable perform short time working operation without being injured or feeling discomfort. Firefighters or other related workers are exposed to abnormal heat which can be conductive, convective or radiant type. Their garment is proposed to resist this conditions and prevent burn injuries or dead of human. However thermal comfort of firefighter exposed to high heat source have not been studied yet. Thermal resistance is the best representative parameter of thermal comfort. In this study a new method of testing of thermal resistance of special clothing exposed to high radiation heat source was designed. This method simulates human body wearing single or multi-layered garment which is exposed to radiative heat. Setup of this method enables measuring of radiative heat flow in time without effect of convection. The new testing method is verified on chosen group of textiles for firefighters.

Keywords: protective clothing, radiative heat, thermal comfort of firefighters, thermal resistance of special garments

Procedia PDF Downloads 354
6945 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection

Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang

Abstract:

To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detections is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15um/10m and the accuracy of the machine tool is significant improved.

Keywords: thermal expansion error of grating scale, error compensation, machine tools, integral method

Procedia PDF Downloads 342
6944 Thermal Regions for Unmanned Aircraft Systems Route Planning

Authors: Resul Fikir

Abstract:

Unmanned Aircraft Systems (UAS) become indispensable parts of modern air power as force multiplier. One of the main advantages of UAS is long endurance. UAS have to take extra payloads to accomplish different missions but these payloads decrease endurance of aircraft because of increasing drag. There are continuing researches to increase the capability of UAS. There are some vertical thermal air currents, which can cause climb and increase endurance, in nature. Birds and gliders use thermals to gain altitude with no effort. UAS have wide wing which can use of thermals like birds and gliders. Thermal regions, which is area of 2000-3000 meter (1 NM), exist all around the world. It is free and clean source. This study analyses if thermal regions can be adopted and implemented as an assistant tool for UAS route planning. First and second part of study will contain information about the thermal regions and current applications about UAS in aviation and climbing performance with a real example. Continuing parts will analyze the contribution of thermal regions to UAS endurance. Contribution is important because planning declaration of UAS navigation rules will be in 2015.

Keywords: airways, thermals, UAS, UAS roadmap

Procedia PDF Downloads 398
6943 Applying Intelligent Material in Food Packaging

Authors: Kasra Ghaemi, Syeda Tasnim, Shohel Mahmud

Abstract:

One of the main issues affecting the quality and shelf life of food products is temperature fluctuation during transportation and storage. Packaging plays an important role in protecting food from environmental conditions, especially thermal variations. In this study, the performance of using microencapsulated Phase Change Material (PCM) as a promising thermal buffer layer in smart food packaging is investigated. The considered insulation layer is evaluated for different thicknesses and the absorbed heat from the environment. The results are presented in terms of the melting time of PCM or provided thermal protection period.

Keywords: food packaging, phase change material, thermal buffer, protection time

Procedia PDF Downloads 64
6942 Computing Some Topological Descriptors of Single-Walled Carbon Nanotubes

Authors: Amir Bahrami

Abstract:

In the fields of chemical graph theory, molecular topology, and mathematical chemistry, a topological index or a descriptor index also known as a connectivity index is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. Topological indices are used for example in the development of quantitative structure-activity relationships (QSARs) in which the biological activity or other properties of molecules are correlated with their chemical structure. In this paper some descriptor index (descriptor index) of single-walled carbon nanotubes, is determined.

Keywords: chemical graph theory, molecular topology, molecular descriptor, single-walled carbon nanotubes

Procedia PDF Downloads 306
6941 Effect of Texture of Orthorhombic Martensite on Thermal Expansion of Metastable Titanium Alloy

Authors: E. Stepanova, N. Popov, S. Demakov, S. Stepanov

Abstract:

This paper examines the so-called invar-type behavior of metastable titanium alloy subjected to cold rolling. The effect was shown to occur due to the anisotropy of thermal expansion of titanium orthorhombic martensite. By means of X-ray diffraction analysis and dilatometry analyses, the influence of crystallographic texture of orthorhombic martensite on the coefficient of thermal expansion of sheets of metastable titanium alloy VT23 was examined. Anisotropy of the coefficient of thermal expansion has been revealed. It was lower in the rolling plane and higher along the transverse direction of the cold-rolled sheet comparing to the coefficient of thermal expansion of the unprocessed alloy.

Keywords: invar-type, cold rolling, metastable titanium alloy, texture

Procedia PDF Downloads 410
6940 Thermal Contact Resistance of Nanoscale Rough Surfaces

Authors: Ravi Prasher

Abstract:

In nanostructured material thermal transport is dominated by contact resistance. Theoretical models describing thermal transport at interfaces assume perfectly flat surface whereas in reality surfaces can be rough with roughness ranging from sub-nanoscale dimension to micron scale. Here we introduce a model which includes both nanoscale contact mechanics and nanoscale heat transfer for rough nanoscale surfaces. This comprehensive model accounts for the effect of phonon acoustic mismatch, mechanical properties, chemical properties and randomness of the rough surface.

Keywords: adhesion and contact resistance, Kaptiza resistance of rough surfaces, nanoscale thermal transport

Procedia PDF Downloads 349
6939 Comprehensive Evaluation of Thermal Environment and Its Countermeasures: A Case Study of Beijing

Authors: Yike Lamu, Jieyu Tang, Jialin Wu, Jianyun Huang

Abstract:

With the development of economy and science and technology, the urban heat island effect becomes more and more serious. Taking Beijing city as an example, this paper divides the value of each influence index of heat island intensity and establishes a mathematical model – neural network system based on the fuzzy comprehensive evaluation index of heat island effect. After data preprocessing, the algorithm of weight of each factor affecting heat island effect is generated, and the data of sex indexes affecting heat island intensity of Shenyang City and Shanghai City, Beijing, and Hangzhou City are input, and the result is automatically output by the neural network system. It is of practical significance to show the intensity of heat island effect by visual method, which is simple, intuitive and can be dynamically monitored.

Keywords: heat island effect, neural network, comprehensive evaluation, visualization

Procedia PDF Downloads 112
6938 Annular Hyperbolic Profile Fins with Variable Thermal Conductivity Using Laplace Adomian Transform and Double Decomposition Methods

Authors: Yinwei Lin, Cha'o-Kuang Chen

Abstract:

In this article, the Laplace Adomian transform method (LADM) and double decomposition method (DDM) are used to solve the annular hyperbolic profile fins with variable thermal conductivity. As the thermal conductivity parameter ε is relatively large, the numerical solution using DDM become incorrect. Moreover, when the terms of DDM are more than seven, the numerical solution using DDM is very complicated. However, the present method can be easily calculated as terms are over seven and has more precisely numerical solutions. As the thermal conductivity parameter ε is relatively large, LADM also has better accuracy than DDM.

Keywords: fins, thermal conductivity, Laplace transform, Adomian, nonlinear

Procedia PDF Downloads 310
6937 An Association between Stock Index and Macro Economic Variables in Bangladesh

Authors: Shamil Mardi Al Islam, Zaima Ahmed

Abstract:

The aim of this article is to explore whether certain macroeconomic variables such as industrial index, inflation, broad money, exchange rate and deposit rate as a proxy for interest rate are interlinked with Dhaka stock price index (DSEX index) precisely after the introduction of new index by Dhaka Stock Exchange (DSE) since January 2013. Bangladesh stock market has experienced rapid growth since its inception. It might not be a very well-developed capital market as compared to its neighboring counterparts but has been a strong avenue for investment and resource mobilization. The data set considered consists of monthly observations, for a period of four years from January 2013 to June 2018. Findings from cointegration analysis suggest that DSEX and macroeconomic variables have a significant long-run relationship. VAR decomposition based on VAR estimated indicates that money supply explains a significant portion of variation of stock index whereas, inflation is found to have the least impact. Impact of industrial index is found to have a low impact compared to the exchange rate and deposit rate. Policies should there aim to increase industrial production in order to enhance stock market performance. Further reasonable money supply should be ensured by authorities to stimulate stock market performance.

Keywords: deposit rate, DSEX, industrial index, VAR

Procedia PDF Downloads 131
6936 Measurement of Thermal Protrusion Profile in Magnetic Recording Heads via Wyko Interferometry

Authors: Joseph Christopher R. Ragasa, Paolo Gabriel P. Casas, Nemesio S. Mangila, Maria Emma C. Villamin, Myra G. Bungag

Abstract:

A procedure in measuring the thermal protrusion profiles of magnetic recording heads was developed using a Wyko HD-8100 optical interference-based instrument. The protrusions in the heads were made by the application of a constant power through the thermal flying height controller pads. It was found that the thermally-induced bubble is confined to form in the same head locations, primarily in the reader and writer regions, regardless of the direction of approach of temperature. An application of power to the thermal flying height control pads ranging from 0 to 50 milliWatts showed that the protrusions demonstrate a linear dependence with the supplied power. The efficiencies calculated using this method were compared to that obtained through Guzik and found to be 19.57% greater due to the static testing environment used in the testing.

Keywords: thermal protrusion profile, magnetic recording heads, wyko interferometry, thermal flying height control

Procedia PDF Downloads 443
6935 Research on Urban Thermal Environment Climate Map Based on GIS: Taking Shapingba District, Chongqing as an Example

Authors: Zhao Haoyue

Abstract:

Due to the combined effects of climate change, urban expansion, and population growth, various environmental issues, such as urban heat islands and pollution, arise. Therefore, reliable information on urban environmental climate is needed to address and mitigate the negative effects. The emergence of urban climate maps provides a practical basis for urban climate regulation and improvement. This article takes Shapingba District, Chongqing City, as an example to study the construction method of urban thermal environment climate maps based on GIS spatial analysis technology. The thermal load, ventilation potential analysis map, and thermal environment comprehensive analysis map were obtained. Based on the classification criteria obtained from the climate map, corresponding protection and planning mitigation measures have been proposed.

Keywords: urban climate, GIS, heat island analysis, urban thermal environment

Procedia PDF Downloads 76
6934 The Usage of Thermal Regions as a Air Navigation Rule for Unmanned Aircraft Systems

Authors: Resul Fikir

Abstract:

Unmanned Aircraft Systems (UAS) become indispensable parts of modern airpower as force multiplier .One of the main advantages of UAS is long endurance. UAS have to take extra payloads to accomplish different missions but these payloads decrease endurance of aircraft because of increasing drug. There are continuing researches to increase the capability of UAS. There are some vertical thermal air currents, which can cause climb and increase endurance, in nature. Birds and gliders use thermals to gain altitude with no effort. UAS have wide wing which can use of thermals like birds and gliders. Thermal regions, which is area of 2-3 NM, exist all around the world. It is free and clean source. This study analyses if thermal regions can be adopted and implemented as an assistant tool for UAS route planning. First and second part of study will contain information about the thermal regions and current applications about UAS in aviation and climbing performance with a real example. Continuing parts will analyze the contribution of thermal regions to UAS endurance. Contribution is important because planning declaration of UAS navigation rules will be in 2015.

Keywords: unmanned aircraft systems, Air4All, thermals, gliders

Procedia PDF Downloads 376
6933 Assessing Artificial Neural Network Models on Forecasting the Return of Stock Market Index

Authors: Hamid Rostami Jaz, Kamran Ameri Siahooei

Abstract:

Up to now different methods have been used to forecast the index returns and the index rate. Artificial intelligence and artificial neural networks have been one of the methods of index returns forecasting. This study attempts to carry out a comparative study on the performance of different Radial Base Neural Network and Feed-Forward Perceptron Neural Network to forecast investment returns on the index. To achieve this goal, the return on investment in Tehran Stock Exchange index is evaluated and the performance of Radial Base Neural Network and Feed-Forward Perceptron Neural Network are compared. Neural networks performance test is applied based on the least square error in two approaches of in-sample and out-of-sample. The research results show the superiority of the radial base neural network in the in-sample approach and the superiority of perceptron neural network in the out-of-sample approach.

Keywords: exchange index, forecasting, perceptron neural network, Tehran stock exchange

Procedia PDF Downloads 428
6932 Polygeneration Solar Thermal System

Authors: S. K. Deb, B. C. Sarma

Abstract:

The concentrating solar thermal devices using low cost thin metallic reflector sheet of moderate reflectance can generate heat both at higher temperature for the receiver at it’s focus and at moderate temperature through direct solar irradiative heat absorption by the reflector sheet itself. Investigation on well insulated rear surface of the concentrator with glass covers at it’s aperture plane for waste heat recovery against the conventional radiative, convective & conductive heat losses for a bench model with a thermal analysis is the prime motivation of this study along with an effort to popularize a compact solar thermal polygeneration system.

Keywords: concentrator, polygeneration, aperture, renewable energy, exergy, solar energy

Procedia PDF Downloads 510