Search results for: international ovarian tumor analysis classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32120

Search results for: international ovarian tumor analysis classification

31970 An Examination of the Challenges of Domestication of International Laws and Human Rights Laws in Nigeria

Authors: Uche A. Nnawulezi

Abstract:

This study evolved from the need to look at and evaluate the difficulties in the domestication of International Laws and Human Rights Laws in Nigeria. Essentially, the paper-based its examination on documentary evidence and depended much on secondary sources, for example, textbooks, journals, articles, periodicals and research reports emanating from suggestions of international law experts, jurists and human rights lawyers on the development challenges in domesticating international laws and human rights laws in Nigeria. These data were analyzed by the application of content analysis and careful observation of the current municipal laws which has posed great challenges in the domestication of International laws. This paper might follow the historical backdrop of the practices in the use of International law in Nigeria and should likewise consider the challenges inherent in these practices. The paper suggests that a sustainable domestication of International Laws and its application in Nigerian courts will ensure a better enforcement of human rights within the domestic jurisdiction.

Keywords: international law, human rights, domestication, challenges

Procedia PDF Downloads 244
31969 Pose Normalization Network for Object Classification

Authors: Bingquan Shen

Abstract:

Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.

Keywords: convolutional neural networks, object classification, pose normalization, viewpoint invariant

Procedia PDF Downloads 352
31968 Electro-Thermal Imaging of Breast Phantom: An Experimental Study

Authors: H. Feza Carlak, N. G. Gencer

Abstract:

To increase the temperature contrast in thermal images, the characteristics of the electrical conductivity and thermal imaging modalities can be combined. In this experimental study, it is objected to observe whether the temperature contrast created by the tumor tissue can be improved just due to the current application within medical safety limits. Various thermal breast phantoms are developed to simulate the female breast tissue. In vitro experiments are implemented using a thermal infrared camera in a controlled manner. Since experiments are implemented in vitro, there is no metabolic heat generation and blood perfusion. Only the effects and results of the electrical stimulation are investigated. Experimental study is implemented with two-dimensional models. Temperature contrasts due to the tumor tissues are obtained. Cancerous tissue is determined using the difference and ratio of healthy and tumor images. 1 cm diameter single tumor tissue causes almost 40 °mC temperature contrast on the thermal-breast phantom. Electrode artifacts are reduced by taking the difference and ratio of background (healthy) and tumor images. Ratio of healthy and tumor images show that temperature contrast is increased by the current application.

Keywords: medical diagnostic imaging, breast phantom, active thermography, breast cancer detection

Procedia PDF Downloads 428
31967 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems

Authors: Bruno Trstenjak, Dzenana Donko

Abstract:

Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.

Keywords: case based reasoning, classification, expert's knowledge, hybrid model

Procedia PDF Downloads 367
31966 Improving the Aqueous Solubility of Taxol through Altering XLOGP3

Authors: Arianna Zhu, Thomas Bakupog

Abstract:

Taxol (generic name paclitaxel) is an antineoplastic drug used to treat breast, lung, and ovarian cancer. It performs exceptionally well against a wide variety of tumors, including B16 melanoma, L1210 and P388 leukemias, MX-1 mammary tumors, and CX-1 colon tumor xenografts. However, despite taxol’s efficacy in antitumor activity, its aqueous solubility is extremely poor, decreasing its bioavailability and making it difficult for the body to absorb. The objective of this study is to improve the solubility of taxol, thus increasing the bioavailability of the drug in preventing cancer. By modifying the structure of taxol, four novel taxol derivatives were created with improved solubilities. Two of the derivatives were given an additional hydrogen donor and acceptor and thus showed a pronounced positive change in solubility. The results of this work solve the issue of taxol’s inadequate solubility and show potential in increasing the absorption of the drug.

Keywords: Taxol, Solubility, improving bioavailability, logP

Procedia PDF Downloads 69
31965 Spatial Audio Player Using Musical Genre Classification

Authors: Jun-Yong Lee, Hyoung-Gook Kim

Abstract:

In this paper, we propose a smart music player that combines the musical genre classification and the spatial audio processing. The musical genre is classified based on content analysis of the musical segment detected from the audio stream. In parallel with the classification, the spatial audio quality is achieved by adding an artificial reverberation in a virtual acoustic space to the input mono sound. Thereafter, the spatial sound is boosted with the given frequency gains based on the musical genre when played back. Experiments measured the accuracy of detecting the musical segment from the audio stream and its musical genre classification. A listening test was performed based on the virtual acoustic space based spatial audio processing.

Keywords: automatic equalization, genre classification, music segment detection, spatial audio processing

Procedia PDF Downloads 429
31964 Analysis of Patient No-Shows According to Health Conditions

Authors: Sangbok Lee

Abstract:

There has been much effort on process improvement for outpatient clinics to provide quality and acute care to patients. One of the efforts is no-show analysis or prediction. This work analyzes patient no-shows along with patient health conditions. The health conditions refer to clinical symptoms that each patient has, out of the followings; hyperlipidemia, diabetes, metastatic solid tumor, dementia, chronic obstructive pulmonary disease, hypertension, coronary artery disease, myocardial infraction, congestive heart failure, atrial fibrillation, stroke, drug dependence abuse, schizophrenia, major depression, and pain. A dataset from a regional hospital is used to find the relationship between the number of the symptoms and no-show probabilities. Additional analysis reveals how each symptom or combination of symptoms affects no-shows. In the above analyses, cross-classification of patients by age and gender is carried out. The findings from the analysis will be used to take extra care to patients with particular health conditions. They will be forced to visit clinics by being informed about their health conditions and possible consequences more clearly. Moreover, this work will be used in the preparation of making institutional guidelines for patient reminder systems.

Keywords: healthcare system, no show analysis, process improvment, statistical data analysis

Procedia PDF Downloads 233
31963 Studies on Induction of Cytotoxicity Through Apoptosis In Ovarian Cancer Cell Line (CAOV-3) by Chloroform Extract of Artocarpus Kemando Miq

Authors: Noor Shafifiyaz Mohd Yazid, Najihah Mohd Hashim, Hapipah Mohd Ali, Syam Mohan, Rosea Go

Abstract:

Artocarpus kemando is a plant species from Moraceae family. This plant is used as household utensil by the local and the fruits are edible. The plants’ bark was used for the extraction process and yielded the chloroform crude extract which was used to screen for anticancer potential. The cytotoxic effect of the extract on CAOV-3 and WRL 68 cell lines were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT assays. Qualitative AO/PI assay was performed to confirm the apoptosis and necrosis process. Meanwhile, the measurement of cell loss, nuclear morphology, DNA content, cell membrane permeability, mitochondrial membrane potential changes and cytochrome c release from mitochondria were detected through cytotoxicity 3 assay. In MTT assay, A. kemando inhibited 50% growth of CAOV-3 cells at 27.9 ± 0:03, 20.1± 0:03, 18.21± 0:04 µg/mL after 24, 48 and 72 hour, respectively. The morphology changes can be seen on CAOV-3 with a production of cell membrane blebbing, cromatin condensation and apoptotic bodies. Evaluation of cytotoxicity 3 on CAOV-3 cells after treated with extract resulting loss of mitochondrial membrane potential and release of cytochrome c from mitochondria. The results demonstrated A. kemando has potentially anticancer agent, particularly on human ovarian cancer.

Keywords: anticancer, Artocarpus kemando, ovarian cancer, cytotoxicity

Procedia PDF Downloads 551
31962 Sexual and Gender Based Crimes in International Criminal Law: Moving Forwards or Backwards

Authors: Khadija Ali

Abstract:

Prosecution of sexual violence in international criminal law requires not only an understanding of the mechanisms employed to prosecute sexual violence but also a critical analysis of the factors facilitating perpetuation of such crimes in armed conflicts. The extrapolations laid out in this essay delve into the jurisprudence of international criminal law pertaining to sexual and gender based violence followed by the core question of this essay: Has the entrenchment of sexual violence as international crimes in the Rome Statute been successful to address such violence in armed conflicts?

Keywords: conflict, gender, international criminal law, sexual violence

Procedia PDF Downloads 572
31961 Demystifying the Legitimacy of the International Court of Justice

Authors: Roger-Claude Liwanga

Abstract:

Over the last seven decades, there has been a proliferation of international tribunals. Yet, they have not received unanimous approval, raising a question about their legitimacy. A legitimate international tribunal is one whose authority to adjudicate international disputes is perceived as justified. Using the case study of the International Court of Justice (ICJ), this article highlights the three criteria that should be considered in assessing the legitimacy of an international tribunal, which include legal, sociological, and moral elements. It also contends that the ICJ cannot claim 'full' legitimacy if any of these components of legitimacy is missing in its decisions. The article further suggests that the legitimacy of the ICJ has a dynamic nature, as litigating parties may constantly change their perception of the court’s authority at any time before, during, or after the judicial process. The article equally describes other factors that can contribute to maintaining the international court’s legitimacy, including fairness and unbiasedness, sound interpretation of international legal norms, and transparency.

Keywords: international tribunals, legitimacy, human rights, international law

Procedia PDF Downloads 377
31960 Effect of Different Porous Media Models on Drug Delivery to Solid Tumors: Mathematical Approach

Authors: Mostafa Sefidgar, Sohrab Zendehboudi, Hossein Bazmara, Madjid Soltani

Abstract:

Based on findings from clinical applications, most drug treatments fail to eliminate malignant tumors completely even though drug delivery through systemic administration may inhibit their growth. Therefore, better understanding of tumor formation is crucial in developing more effective therapeutics. For this purpose, nowadays, solid tumor modeling and simulation results are used to predict how therapeutic drugs are transported to tumor cells by blood flow through capillaries and tissues. A solid tumor is investigated as a porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multi scale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. In this work, the mathematical model in our previous studies is developed by considering two model of momentum equation for porous media: Darcy and Brinkman. The mathematical method involves processes such as fluid flow through solid tumor as porous media, extravasation of blood flow from vessels, blood flow through vessels and solute diffusion, convective transport in extracellular matrix. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model does.

Keywords: solid tumor, porous media, Darcy model, Brinkman model, drug delivery

Procedia PDF Downloads 306
31959 Changing Landscape of International Law of Governance: ‘One Belt One Road Initiative’ as a Case Study

Authors: Tikumporn Rodkhunmuang

Abstract:

The importance of ‘international law of governance’ is the means and end to deal with international affairs. This research paper seeks to first study the historical development of international law of governance from the classical period of the international legal framework of global governance until the contemporary period of its framework. Second, the international law of governance is extremely turning into the crucial point in its long history because of the changing of China's foreign policies towards ‘One Belt One Road Initiative’. Third, the proposing model of the existing international law of governance within Chinese characteristics will be the new rules and modalities of modern diplomacy and governed international affairs. Methodologically speaking, this research paper is conducting under mixed methods research, which are also included numerical analysis and theoretical considerations. As a result, this research paper is the critical point of the international legal framework of global governance that changing the diplomatic paradigm as well as turning China into a great-power in international politics. So, this research paper is useful for international legal scholars and diplomats for slightly changing their understanding of the rapidly changing their norms from western norms to the eastern norms of international law. Therefore, the outcome of the research is the modern model of China to make a diplomatic relationship with other countries in the global society.

Keywords: global governance, international law, landscape, one belt one road

Procedia PDF Downloads 187
31958 Radio-Guided Surgery with β− Radiation: Test on Ex-Vivo Specimens

Authors: E. Solfaroli Camillocci, C. Mancini-Terracciano, V. Bocci, A. Carollo, M. Colandrea, F. Collamati, M. Cremonesi, M. E. Ferrari, P. Ferroli, F. Ghielmetti, C. M. Grana, M. Marafini, S. Morganti, M. Patane, G. Pedroli, B. Pollo, L. Recchia, A. Russomando, M. Schiariti, M. Toppi, G. Traini, R. Faccini

Abstract:

A Radio-Guided Surgery technique exploiting β− emitting radio-tracers has been suggested to overcome the impact of the large penetration of γ radiation. The detection of electrons in low radiation background provides a clearer delineation of the margins of lesioned tissues. As a start, the clinical cases were selected between the tumors known to express receptors to a β− emitting radio-tracer: 90Y-labelled DOTATOC. The results of tests on ex-vivo specimens of meningioma brain tumor and abdominal neuroendocrine tumors are presented. Voluntary patients were enrolled according to the standard uptake value (SUV > 2 g/ml) and the expected tumor-to-non-tumor ratios (TNR∼10) estimated from PET images after administration of 68Ga-DOTATOC. All these tests validated this technique yielding a significant signal on the bulk tumor and a negligible background from the nearby healthy tissue. Even injecting as low as 1.4 MBq/kg of radiotracer, tumor remnants of 0.1 ml would be detectable. The negligible medical staff exposure was confirmed and among the biological wastes only urine had a significant activity.

Keywords: ex-vivo test, meningioma, neuroendocrine tumor, radio-guided surgery

Procedia PDF Downloads 294
31957 The International Labor Organization and the Formulation of International Labor Standards

Authors: Tahraoui Boualem

Abstract:

The International Labor Organization is one of the specialized agencies of the United Nations, and it is the only organization within the United Nations system that is distinguished by its tripartite legitimacy and which simultaneously includes governments, workers' and employers' organizations of its member states in a joint effort to set standards and policies Work to promote decent work in various parts of the world, and the expression of international labor standards basically means two types of documents, namely international labor agreements and international labor recommendations, and so far its general conference, which is held annually, has set a number of standards, the number of which has reached 184 agreements and 192 recommendations so far. For this reason, it is decided to clarify the International Labor Organization and the formulation of international labor standards within two sections. In the first topic, the researcher discusses the concept of the International Labor Organization, and in the second topic, it highlights the legal basis for the authority of the International Labor Organization in protecting the rights of workers.

Keywords: international labor, international labor standards, rights of workers, nation’s system

Procedia PDF Downloads 71
31956 Musical Instruments Classification Using Machine Learning Techniques

Authors: Bhalke D. G., Bormane D. S., Kharate G. K.

Abstract:

This paper presents classification of musical instrument using machine learning techniques. The classification has been carried out using temporal, spectral, cepstral and wavelet features. Detail feature analysis is carried out using separate and combined features. Further, instrument model has been developed using K-Nearest Neighbor and Support Vector Machine (SVM). Benchmarked McGill university database has been used to test the performance of the system. Experimental result shows that SVM performs better as compared to KNN classifier.

Keywords: feature extraction, SVM, KNN, musical instruments

Procedia PDF Downloads 480
31955 Riesz Mixture Model for Brain Tumor Detection

Authors: Mouna Zitouni, Mariem Tounsi

Abstract:

This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.

Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution

Procedia PDF Downloads 17
31954 Benign Osteoblastoma of the Mandible Resection and Replacement of the Defects with Decellularized Cattle Bone Scaffold with Mesenchymal Bone Marrow Stem Cells

Authors: K. Mardaleishvili, G. Loladze, G. Shatirishivili, D. Chakhunashvili, A. Vishnevskaya, Z. Kakabadze

Abstract:

Benign osteoblastoma is a benign tumor of the bone, usually affecting the vertebrae and long tubular bones. It is a rarely seen tumor of the facial bones. The authors present a case of a 28-year-old male patient with a tumor in mandibular body. The lesion was radically resected and histological analysis of the specimen demonstrated features typical of a benign osteoblastoma. The defect of the jaw was reconstructed with titanium implants and decellularized and lyophilized cattle bone matrix with mesenchymal bone marrow stem cells transplantation. This presentation describes the procedures for rehabilitating a patient with decellularized bone scaffold in the region of the face, recovering the facial contours and esthetics of the patient.

Keywords: facial bones, osteoblastoma, stem cells, transplantation

Procedia PDF Downloads 421
31953 Morphological Processing of Punjabi Text for Sentiment Analysis of Farmer Suicides

Authors: Jaspreet Singh, Gurvinder Singh, Prabhsimran Singh, Rajinder Singh, Prithvipal Singh, Karanjeet Singh Kahlon, Ravinder Singh Sawhney

Abstract:

Morphological evaluation of Indian languages is one of the burgeoning fields in the area of Natural Language Processing (NLP). The evaluation of a language is an eminent task in the era of information retrieval and text mining. The extraction and classification of knowledge from text can be exploited for sentiment analysis and morphological evaluation. This study coalesce morphological evaluation and sentiment analysis for the task of classification of farmer suicide cases reported in Punjab state of India. The pre-processing of Punjabi text involves morphological evaluation and normalization of Punjabi word tokens followed by the training of proposed model using deep learning classification on Punjabi language text extracted from online Punjabi news reports. The class-wise accuracies of sentiment prediction for four negatively oriented classes of farmer suicide cases are 93.85%, 88.53%, 83.3%, and 95.45% respectively. The overall accuracy of sentiment classification obtained using proposed framework on 275 Punjabi text documents is found to be 90.29%.

Keywords: deep neural network, farmer suicides, morphological processing, punjabi text, sentiment analysis

Procedia PDF Downloads 326
31952 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack

Authors: Varun Agarwal

Abstract:

Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.

Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images

Procedia PDF Downloads 130
31951 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification

Procedia PDF Downloads 464
31950 Loving is Universal, Dating is not: Dating Experiences of International Students in Vancouver

Authors: Nel Jayson Santos

Abstract:

The growing number of international students in post-secondary institutions in Canada has positively contributed to the country’s economy and educational systems while also enriching cultural diversity in the classrooms. However, international students face social and relational challenges as they try to adapt to their host nation’s culture. One specific area of cultural adaptation among international students that has yet to be studied extensively is dating experiences and romantic relationships. Although numerous studies have been done regarding the relational challenges and dating experiences of American international students, only a few studies have focused on international students based in Canada. Hence, this study examines the dating preferences, dating challenges, and dating adaptations of international students based in Vancouver, Canada. Using a social constructivist approach, a semi-structured interview was conducted among fifteen heterosexual international college students. Inductive thematic analysis was then used to analyze the gathered data and identify common themes. Findings suggest that students’ (1) preferences were influenced by racial background and parental approval of dating partners; (2) students experienced language barriers and cultural differences; (3) students adapted through constant communication and being open-minded. Finally, the analysis intends to help counselors and psychologists in various colleges to help understand the issues of international students in terms of intimate and romantic relationships.

Keywords: higher education, international students, dating experiences, cultural adaptation

Procedia PDF Downloads 209
31949 Expression Profiling and Immunohistochemical Analysis of Squamous Cell Carcinoma of Head and Neck (Tumor, Transition Zone, Normal) by Whole Genome Scale Sequencing

Authors: Veronika Zivicova, Petr Broz, Zdenek Fik, Alzbeta Mifkova, Jan Plzak, Zdenek Cada, Herbert Kaltner, Jana Fialova Kucerova, Hans-Joachim Gabius, Karel Smetana Jr.

Abstract:

The possibility to determine genome-wide expression profiles of cells and tissues opens a new level of analysis in the quest to define dysregulation in malignancy and thus identify new tumor markers. Toward this long-term aim, we here address two issues on this level for head and neck cancer specimen: i) defining profiles in different regions, i.e. the tumor, the transition zone and normal control and ii) comparing complete data sets for seven individual patients. Special focus in the flanking immunohistochemical part is given to adhesion/growth-regulatory galectins that upregulate chemo- and cytokine expression in an NF-κB-dependent manner, to these regulators and to markers of differentiation, i.e. keratins. The detailed listing of up- and down-regulations, also available in printed form (1), not only served to unveil new candidates for testing as marker but also let the impact of the tumor in the transition zone become apparent. The extent of interindividual variation raises a strong cautionary note on assuming uniformity of regulatory events, to be noted when considering therapeutic implications. Thus, a combination of test targets (and a network analysis for galectins and their downstream effectors) is (are) advised prior to reaching conclusions on further perspectives.

Keywords: galectins, genome scale sequencing, squamous cell carcinoma, transition zone

Procedia PDF Downloads 238
31948 Determination of the Bank's Customer Risk Profile: Data Mining Applications

Authors: Taner Ersoz, Filiz Ersoz, Seyma Ozbilge

Abstract:

In this study, the clients who applied to a bank branch for loan were analyzed through data mining. The study was composed of the information such as amounts of loans received by personal and SME clients working with the bank branch, installment numbers, number of delays in loan installments, payments available in other banks and number of banks to which they are in debt between 2010 and 2013. The client risk profile was examined through Classification and Regression Tree (CART) analysis, one of the decision tree classification methods. At the end of the study, 5 different types of customers have been determined on the decision tree. The classification of these types of customers has been created with the rating of those posing a risk for the bank branch and the customers have been classified according to the risk ratings.

Keywords: client classification, loan suitability, risk rating, CART analysis

Procedia PDF Downloads 338
31947 Autophagy Suppresses Bladder Tumor Formation in a Mouse Orthotopic Bladder Tumor Formation Model

Authors: Wan-Ting Kuo, Yi-Wen Liu, Hsiao-Sheng Liu

Abstract:

Annual incidence of bladder cancer increases in the world and occurs frequently in the male. Most common type is transitional cell carcinoma (TCC) which is treated by transurethral resection followed by intravesical administration of agents. In clinical treatment of bladder cancer, chemotherapeutic drugs-induced apoptosis is always used in patients. However, cancers usually develop resistance to chemotherapeutic drugs and often lead to aggressive tumors with worse clinical outcomes. Approximate 70% TCC recurs and 30% recurrent tumors progress to high-grade invasive tumors, indicating that new therapeutic agents are urgently needed to improve the successful rate of overall treatment. Nonapoptotic program cell death may assist to overcome worse clinical outcomes. Autophagy which is one of the nonapoptotic pathways provides another option for bladder cancer patients. Autophagy is reported as a potent anticancer therapy in some cancers. First of all, we established a mouse orthotopic bladder tumor formation model in order to create a similar tumor microenvironment. IVIS system and micro-ultrasound were utilized to noninvasively monitor tumor formation. In addition, we carried out intravesical treatment in our animal model to be consistent with human clinical treatment. In our study, we carried out intravesical instillation of the autophagy inducer in mouse orthotopic bladder tumor to observe tumor formation by noninvasive IVIS system and micro-ultrasound. Our results showed that bladder tumor formation is suppressed by the autophagy inducer, and there are no significant side effects in the physiology of mice. Furthermore, the autophagy inducer upregulated autophagy in bladder tissues of the treated mice was confirmed by Western blot, immunohistochemistry, and immunofluorescence. In conclusion, we reveal that a novel autophagy inducer with low side effects suppresses bladder tumor formation in our mouse orthotopic bladder tumor model, and it provides another therapeutic approach in bladder cancer patients.

Keywords: bladder cancer, transitional cell carcinoma, orthotopic bladder tumor formation model, autophagy

Procedia PDF Downloads 177
31946 A Summary-Based Text Classification Model for Graph Attention Networks

Authors: Shuo Liu

Abstract:

In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text.

Keywords: Chinese natural language processing, text classification, abstract extraction, graph attention network

Procedia PDF Downloads 100
31945 Real-Time Classification of Marbles with Decision-Tree Method

Authors: K. S. Parlak, E. Turan

Abstract:

The separation of marbles according to the pattern quality is a process made according to expert decision. The classification phase is the most critical part in terms of economic value. In this study, a self-learning system is proposed which performs the classification of marbles quickly and with high success. This system performs ten feature extraction by taking ten marble images from the camera. The marbles are classified by decision tree method using the obtained properties. The user forms the training set by training the system at the marble classification stage. The system evolves itself in every marble image that is classified. The aim of the proposed system is to minimize the error caused by the person performing the classification and achieve it quickly.

Keywords: decision tree, feature extraction, k-means clustering, marble classification

Procedia PDF Downloads 382
31944 Composite Approach to Extremism and Terrorism Web Content Classification

Authors: Kolade Olawande Owoeye, George Weir

Abstract:

Terrorism and extremism activities on the internet are becoming the most significant threats to national security because of their potential dangers. In response to this challenge, law enforcement and security authorities are actively implementing comprehensive measures by countering the use of the internet for terrorism. To achieve the measures, there is need for intelligence gathering via the internet. This includes real-time monitoring of potential websites that are used for recruitment and information dissemination among other operations by extremist groups. However, with billions of active webpages, real-time monitoring of all webpages become almost impossible. To narrow down the search domain, there is a need for efficient webpage classification techniques. This research proposed a new approach tagged: SentiPosit-based method. SentiPosit-based method combines features of the Posit-based method and the Sentistrenght-based method for classification of terrorism and extremism webpages. The experiment was carried out on 7500 webpages obtained through TENE-webcrawler by International Cyber Crime Research Centre (ICCRC). The webpages were manually grouped into three classes which include the ‘pro-extremist’, ‘anti-extremist’ and ‘neutral’ with 2500 webpages in each category. A supervised learning algorithm is then applied on the classified dataset in order to build the model. Results obtained was compared with existing classification method using the prediction accuracy and runtime. It was observed that our proposed hybrid approach produced a better classification accuracy compared to existing approaches within a reasonable runtime.

Keywords: sentiposit, classification, extremism, terrorism

Procedia PDF Downloads 278
31943 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images

Authors: Shenlun Chen, Leonard Wee

Abstract:

Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.

Keywords: colorectal cancer, differentiation, survival analysis, tumor grading

Procedia PDF Downloads 134
31942 Right Cerebellar Stroke with a Right Vertebral Artery Occlusion Following an Embolization of the Right Glomus Tympanicum Tumor

Authors: Naim Izet Kajtazi

Abstract:

Context: Although rare, glomus tumor (i.e., nonchromaffin chemodectomas and paragan¬gliomas) is the most common middle ear tumor, with female predominance. Pre-operative embolization is often required to devascularize the hypervascular tumor for better surgical outcomes. Process: A 35-year-old female presented with episodes of frequent dizziness, ear fullness, and right ear tinnitus for 12 months. Head imaging revealed a right glomus tympanicum tumor. She underwent pre-operative endovascular embolization of the glomus tympanicum tumor with surgical, cyanoacrylate-based glue. Immediately after the procedure, she developed drowsiness and severe pain in the right temporal region. Further investigations revealed a right cerebellar stroke in the posterior inferior cerebellar artery territory. She was treated with intravenous heparin, followed by one year of oral anticoagulation. With rehabilitation, she significantly recovered from her post embolization stroke. However, the tumor was resected at another institution. Ten years later, follow-up imaging indicated a gradual increase in the size of the glomus jugulare tumor, compressing the nearby critical vascular structures. She subsequently received radiation therapy to treat the residual tumor. Outcome: Currently, she has no neurological deficit, but her mild dizziness, right ear tinnitus, and hearing impairment persist. Relevance: This case highlights the complex nature of these tumors, which often bring challenges to the patients as well as treatment teams. The multi-disciplinary team approach is necessary to tailor the management plan for individual tumors. Although embolization is a safe procedure, careful attention and thoughtful anatomic knowledge regarding dangerous anastomosis are essential to avoid devastating complications. Complications occur due to encountered vessel anomalies and new anastomoses formed during the gluing and changes in hemodynamics.

Keywords: stroke, embolization, MRI brain, cerebral angiogram

Procedia PDF Downloads 71
31941 Medical Image Classification Using Legendre Multifractal Spectrum Features

Authors: R. Korchiyne, A. Sbihi, S. M. Farssi, R. Touahni, M. Tahiri Alaoui

Abstract:

Trabecular bone structure is important texture in the study of osteoporosis. Legendre multifractal spectrum can reflect the complex and self-similarity characteristic of structures. The main objective of this paper is to develop a new technique of medical image classification based on Legendre multifractal spectrum. Novel features have been developed from basic geometrical properties of this spectrum in a supervised image classification. The proposed method has been successfully used to classify medical images of bone trabeculations, and could be a useful supplement to the clinical observations for osteoporosis diagnosis. A comparative study with existing data reveals that the results of this approach are concordant.

Keywords: multifractal analysis, medical image, osteoporosis, fractal dimension, Legendre spectrum, supervised classification

Procedia PDF Downloads 514