Search results for: emotional recognition
3126 Hybrid SVM/DBN Model for Arabic Isolated Words Recognition
Authors: Elyes Zarrouk, Yassine Benayed, Faiez Gargouri
Abstract:
This paper presents a new hybrid model for isolated Arabic words recognition. To do this, we apply Support Vectors Machine (SVM) as an estimator of posterior probabilities within the Dynamic Bayesian networks (DBN). This paper deals a comparative study between DBN and SVM/DBN systems for multi-dialect isolated Arabic words. Performance using SVM/DBN is found to exceed that of DBNs trained on an identical task, giving higher recognition accuracy for four different Arabic dialects. In fact, the average of recognition rates for the four dialects with SVM/DBN was 87.67% while 83.01% with DBN.Keywords: dynamic Bayesian networks, hybrid models, supports vectors machine, Arabic isolated words
Procedia PDF Downloads 5613125 The Application of a Hybrid Neural Network for Recognition of a Handwritten Kazakh Text
Authors: Almagul Assainova , Dariya Abykenova, Liudmila Goncharenko, Sergey Sybachin, Saule Rakhimova, Abay Aman
Abstract:
The recognition of a handwritten Kazakh text is a relevant objective today for the digitization of materials. The study presents a model of a hybrid neural network for handwriting recognition, which includes a convolutional neural network and a multi-layer perceptron. Each network includes 1024 input neurons and 42 output neurons. The model is implemented in the program, written in the Python programming language using the EMNIST database, NumPy, Keras, and Tensorflow modules. The neural network training of such specific letters of the Kazakh alphabet as ә, ғ, қ, ң, ө, ұ, ү, h, і was conducted. The neural network model and the program created on its basis can be used in electronic document management systems to digitize the Kazakh text.Keywords: handwriting recognition system, image recognition, Kazakh font, machine learning, neural networks
Procedia PDF Downloads 2633124 An Investigation into Kenyan Teachers’ Views of Children’s Emotional and Behavioural Difficulties
Authors: Fred Mageto
Abstract:
A great number of children in mainstream schools across Kenya are currently living with emotional, behavioural difficulties. This study aims to explore teachers’ perceptions of children’s emotional and behavioural difficulties (EBD) and their attributions of the causes of EBD. The relevance of this area of study to current educational practice is illustrated in the fact that primary school teachers in Kenya find classroom behaviour problems one of the major difficulties they face. The information presented in this study was gathered from 182 teachers that responded back to the survey, of whom 27 teachers were later interviewed. In general, teachers’ perceptions of EBD reflect personal experience, training, and attitudes. Teachers appear from this study to use words such as indifferent, frightened, withdrawn, aggressive, disobedient, hyperactive, less ambitious, lacking concentration, and academically weak to describe pupils with emotional and behavioural difficulties (EBD). The implications of this study are envisaged as being extremely important to support teachers addressing children’s EBD and shed light on the contributing factors to EBD for a successful teaching-learning process in Libyan primary schools.Keywords: teachers, children, learning, emotional and behaviour difficulties
Procedia PDF Downloads 1633123 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network
Procedia PDF Downloads 1633122 An Investigation into Libyan Teachers’ Views of Children’s Emotional and Behavioral Difficulties
Authors: Abdelbasit Gadour
Abstract:
A great number of children in mainstream schools across Libya are currently living with emotional, behavioral difficulties. This study aims to explore teachers’ perceptions of children’s emotional and behavioral difficulties (EBD) and their attributions of the causes of EBD. The relevance of this area of study to current educational practice is illustrated in the fact that primary school teachers in Libya find classroom behavior problems one of the major difficulties they face. The information presented in this study was gathered from 182 teachers that responded back to the survey, of whom 27 teachers were later interviewed. In general, teachers’ perceptions of EBD reflect personal experience, training, and attitudes. Teachers appear from this study to use words such as indifferent, frightened, withdrawn, aggressive, disobedient, hyperactive, less ambitious, lacking concentration, and academically weak to describe pupils with emotional and behavioral difficulties (EBD). The implications of this study are envisaged as being extremely important to support teachers addressing children’s EBD and shed light on the contributing factors to EBD for a successful teaching-learning process in Libyan primary schools.Keywords: children, emotional and behavior difficulties, learning, teachers'
Procedia PDF Downloads 1443121 Specified Human Motion Recognition and Unknown Hand-Held Object Tracking
Authors: Jinsiang Shaw, Pik-Hoe Chen
Abstract:
This paper aims to integrate human recognition, motion recognition, and object tracking technologies without requiring a pre-training database model for motion recognition or the unknown object itself. Furthermore, it can simultaneously track multiple users and multiple objects. Unlike other existing human motion recognition methods, our approach employs a rule-based condition method to determine if a user hand is approaching or departing an object. It uses a background subtraction method to separate the human and object from the background, and employs behavior features to effectively interpret human object-grabbing actions. With an object’s histogram characteristics, we are able to isolate and track it using back projection. Hence, a moving object trajectory can be recorded and the object itself can be located. This particular technique can be used in a camera surveillance system in a shopping area to perform real-time intelligent surveillance, thus preventing theft. Experimental results verify the validity of the developed surveillance algorithm with an accuracy of 83% for shoplifting detection.Keywords: Automatic Tracking, Back Projection, Motion Recognition, Shoplifting
Procedia PDF Downloads 3333120 The Investigation of Women Civil Engineers’ Identity Development through the Lens of Recognition Theory
Authors: Hasan Sungur, Evrim Baran, Benjamin Ahn, Aliye Karabulut Ilgu, Chris Rehmann, Cassandra Rutherford
Abstract:
Engineering identity contributes to the professional and educational persistence of women engineers. A crucial factor contributing to the development of the engineering identity is recognition. Those without adequate recognition often do not succeed in positively building their identities. This research draws on Honneth’s recognition theory to identify factors impacting women civil engineers’ feelings of recognition as civil engineers. A survey was composed and distributed to 330 female alumni who graduated from the Department of Civil, Construction, and Environmental Engineering at Iowa State University in the last ten years. The survey items include demographics, perceptions of the identity of civil engineering, and factors that influence the recognition of civil engineering identities, such as views of society and family. Descriptive analysis of the survey responses revealed that the perceptions of civil engineering varied widely. Participants’ definitions of civil engineering included the terms: construction, design, and infrastructure. Almost half of the participants reported that the major reason to study civil engineering was their interest in the subject matter, and most reported that they were proud to be civil engineers. Many study participants reported that their parents see them as civil engineers. Treatment of institutions and the workplace were also considered as having a significant impact on the recognition of women civil engineers. Almost half of the participants reported that they felt isolated or ignored at work because of their gender. This research emphasizes the importance of recognition for the development of the civil engineering identity of womenKeywords: civil engineering, gender, identity, recognition
Procedia PDF Downloads 2563119 Recognition of Voice Commands of Mentor Robot in Noisy Environment Using Hidden Markov Model
Authors: Khenfer Koummich Fatma, Hendel Fatiha, Mesbahi Larbi
Abstract:
This paper presents an approach based on Hidden Markov Models (HMM: Hidden Markov Model) using HTK tools. The goal is to create a human-machine interface with a voice recognition system that allows the operator to teleoperate a mentor robot to execute specific tasks as rotate, raise, close, etc. This system should take into account different levels of environmental noise. This approach has been applied to isolated words representing the robot commands pronounced in two languages: French and Arabic. The obtained recognition rate is the same in both speeches, Arabic and French in the neutral words. However, there is a slight difference in favor of the Arabic speech when Gaussian white noise is added with a Signal to Noise Ratio (SNR) equals 30 dB, in this case; the Arabic speech recognition rate is 69%, and the French speech recognition rate is 80%. This can be explained by the ability of phonetic context of each speech when the noise is added.Keywords: Arabic speech recognition, Hidden Markov Model (HMM), HTK, noise, TIMIT, voice command
Procedia PDF Downloads 3903118 Emotional Skills and Musical Performance in the Elementary Music Education in Conservatoires: An Exploratory Study
Authors: Emilia A. Campayo-Munoz, Alberto Cabedo-Mas
Abstract:
Music students have to face the challenges of musical practice -such as discipline in study, competitiveness, or performance anxiety- that require good emotional management to enable successful performance. However, few rigorous implementations focused on studying the influence of emotional skills in student's musical performance. Responding to this gap in the literature, this study aims to explore the relationship between emotional skills and musical performance in the context of elementary music education in conservatoires. Given the individual nature of the instrumental studies and the difficult availability of teachers to be trained in emotional education, it was decided to conduct a multiple case study in a Spanish music conservatoire. Author 1 carried out the implementation of the research with three 10-year-old students who were selected from her piano class. All of them attended the third year of their piano studies. The research processes consisted of the implementation of a set of specific and cross-sectional activities designed 'ad hoc' to be articulated in the subjects of individual instrument -piano- and ensemble in parallel to the contents of musical nature. The CE-360º questionnaire was used to measure different aspects of the students' emotional skills from a multi-angle perspective, each of the questionnaires being responded by oneself, three teachers and three peers, before and after the implementation. The data from the questionnaire were compared with the grades that the students obtained during the first and last quarter of the school year in the attended subjects. Acknowledging the complexity of emotional development, the results indicate possible relations between emotional skills and musical performance in music education in conservatoires. The results show that for the cases explored; there exists a relationship between emotional skills and musical performance. Although generalizations cannot be made, this study reinforces the need to further explore emotional development in instrumental teaching and suggest the importance of inviting teachers to reflect on the pedagogical practices extended in the conservatoires and to develop and implement those that promote the work of the students' emotions.Keywords: conservatoires, emotional skills, music education, musical performance
Procedia PDF Downloads 2443117 Psychological Skills Training for Severely Injured Athletes to Enhance Recovery and Return to Sport
Authors: John E Coumbe-Lilley
Abstract:
This IRB-approved study explored athletes' emotional recovery experiences following a severe sports injury keeping them out of their sport for six months or longer. A realistic thematic analytical approach was used to interpret the findings of 44 semi-structured interviews of athletes who competed at high school, college, and professional levels of competition. Thematic analysis validated by a self-rating scale demonstrated athletes cross a series of emotional thresholds during their injury rehabilitation process. Results showed athletes crossed two to six emotional thresholds before positive emotion and coping were consistently experienced following their injury. Athletes reported being unequipped to cope with negative emotional intensity, the longevity of recovery, and enduring depression during long-term rehabilitation. Positive emotional recovery was expected no sooner than nine months and up to 2.5 years following a sports injury. In addition, 100% of athletes received no psychological skills training (PST) for coping and recovery, and 93% of athletes indicated passive psychological coping strategies in the first month following injury, which extended their time to recover. Athletes recommended immediate, realistic, and evidence-based strategies benefitting the emotional recovery of severely injured athletes emotional recovery to improve athletes' emotional well-being during long-term rehabilitation and enhance their return to sport. Future experimental research might compare the post-PST program that emerged from this study to determine its efficacy in improving the recovery of severely injured athletes.Keywords: sports, injury, rehabilitation, psychological skills training, coping
Procedia PDF Downloads 1363116 Automatic Speech Recognition Systems Performance Evaluation Using Word Error Rate Method
Authors: João Rato, Nuno Costa
Abstract:
The human verbal communication is a two-way process which requires a mutual understanding that will result in some considerations. This kind of communication, also called dialogue, besides the supposed human agents it can also be performed between human agents and machines. The interaction between Men and Machines, by means of a natural language, has an important role concerning the improvement of the communication between each other. Aiming at knowing the performance of some speech recognition systems, this document shows the results of the accomplished tests according to the Word Error Rate evaluation method. Besides that, it is also given a set of information linked to the systems of Man-Machine communication. After this work has been made, conclusions were drawn regarding the Speech Recognition Systems, among which it can be mentioned their poor performance concerning the voice interpretation in noisy environments.Keywords: automatic speech recognition, man-machine conversation, speech recognition, spoken dialogue systems, word error rate
Procedia PDF Downloads 3223115 A Study on Measuring Emotional Labor and Burnout Levels of Shopping Mall Employess: The Case of the Province of Konya
Authors: Ilknur Çevik Tekin, Serdar Öge
Abstract:
As a result of globalization and changing consumer preferences, the number of shopping malls has increased significantly in recent years. Consumers prefer shopping malls to both do comfortable shopping in a short time and benefit from the social facilities there. Employees, who are obliged to behave to the consumers in the way the company wants them to do, often spend intensive emotional effort because companies buy the emotions the employees must display to customers in order to ensure customer satisfaction. The emotions the employees constantly try to contain may lead to the phenomenon of burn-out in time. This study was conducted to reveal the relationship between the emotional labor and burn-out levels of shopping mall employees, who work in shopping malls and are supposed to reflect the corporate culture.Keywords: emotional labor, burnout, shopping mall employees
Procedia PDF Downloads 3403114 Application of Signature Verification Models for Document Recognition
Authors: Boris M. Fedorov, Liudmila P. Goncharenko, Sergey A. Sybachin, Natalia A. Mamedova, Ekaterina V. Makarenkova, Saule Rakhimova
Abstract:
In modern economic conditions, the question of the possibility of correct recognition of a signature on digital documents in order to verify the expression of will or confirm a certain operation is relevant. The additional complexity of processing lies in the dynamic variability of the signature for each individual, as well as in the way information is processed because the signature refers to biometric data. The article discusses the issues of using artificial intelligence models in order to improve the quality of signature confirmation in document recognition. The analysis of several possible options for using the model is carried out. The results of the study are given, in which it is possible to correctly determine the authenticity of the signature on small samples.Keywords: signature recognition, biometric data, artificial intelligence, neural networks
Procedia PDF Downloads 1493113 Role of Emotional Support and Work Motivation for Quality of Work Life on Balinese Working Women
Authors: Komang Rahayu Indrawati, Ni Wayan Sinthia Widiastuti, Ratna Dewi Santosa
Abstract:
Today the career of Balinese working women has been highly developed where able to work with loyalty and high professionalism. Career for a woman is one conscious choice and a call of conscience, which provides financial support for her family. Career for women can develop their own potencies, intellectually, and socially, so women feel that their role is meaningful and beneficial for herself and others. Emotional support becomes important to understand certainly for women who have multirole like Balinese working women to meet the demands of their role and also enhancing their work motivation and the quality of work life. This research used quantitative research method with questionnaires dissemination to 120 respondents and analyzed using Multiple Regression Analysis. The purpose of this study was to see the role of emotional support for work motivation and quality of work life in working Balinese women. The results of this study showed that emotional support and work motivation give a significant role in the quality of work life on Balinese working women.Keywords: Balinese working women, emotional support, quality of work life, work motivation
Procedia PDF Downloads 1973112 Research on Emotional Healing Street Furniture under the Background of Urban Micro-Renewal
Authors: Tanhao Gao, Hongtao Zhou
Abstract:
With the COVID-19 pandemic spreading worldwide, people are facing more significant mental pressure. The government and social groups are sparing no effort to find ways to heal people's emotions and return to normal life. Therefore, research on emotional healing has urgency and practical significance. From the perspective of urban planning, street furniture has the potential to become "emotional healing touchpoints." This study first analyzed the suitable places for adding emotional healing street furniture in the background of urban micro-renewal and combined the fifteen-minute living circle, the leftover space, and urban acupuncture theories, then used the 5W analysis method to show the main characteristics of emotionally healing street furniture. Finally, the research discovers four design strategies, which can be summarized as: A. Exploring the renewal potential of the leftover space; B. Integrating with local culture and the surrounding environment; C. Discovering quick and straightforward ways of interaction; D. Finding a delicate balance between artistry and functionality. Then, the author takes one emotional healing street furniture located on Chifeng Road as an example to show the design strategies vividly.Keywords: emotional healing, street furniture, urban micro-renewal, urban acupuncture
Procedia PDF Downloads 1943111 Automatic Music Score Recognition System Using Digital Image Processing
Authors: Yuan-Hsiang Chang, Zhong-Xian Peng, Li-Der Jeng
Abstract:
Music has always been an integral part of human’s daily lives. But, for the most people, reading musical score and turning it into melody is not easy. This study aims to develop an Automatic music score recognition system using digital image processing, which can be used to read and analyze musical score images automatically. The technical approaches included: (1) staff region segmentation; (2) image preprocessing; (3) note recognition; and (4) accidental and rest recognition. Digital image processing techniques (e.g., horizontal /vertical projections, connected component labeling, morphological processing, template matching, etc.) were applied according to musical notes, accidents, and rests in staff notations. Preliminary results showed that our system could achieve detection and recognition rates of 96.3% and 91.7%, respectively. In conclusion, we presented an effective automated musical score recognition system that could be integrated in a system with a media player to play music/songs given input images of musical score. Ultimately, this system could also be incorporated in applications for mobile devices as a learning tool, such that a music player could learn to play music/songs.Keywords: connected component labeling, image processing, morphological processing, optical musical recognition
Procedia PDF Downloads 4213110 A Recognition Method of Ancient Yi Script Based on Deep Learning
Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma
Abstract:
Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.Keywords: recognition, CNN, Yi character, divergence
Procedia PDF Downloads 1653109 Characterising the Processes Underlying Emotion Recognition Deficits in Adolescents with Conduct Disorder
Authors: Nayra Martin-Key, Erich Graf, Wendy Adams, Graeme Fairchild
Abstract:
Children and adolescents with Conduct Disorder (CD) have been shown to demonstrate impairments in emotion recognition, but it is currently unclear whether this deficit is related to specific emotions or whether it represents a global deficit in emotion recognition. An emotion recognition task with concurrent eye-tracking was employed to further explore this relationship in a sample of male and female adolescents with CD. Participants made emotion categorization judgements for presented dynamic and morphed static facial expressions. The results demonstrated that males with CD, and to a lesser extent, females with CD, displayed impaired facial expression recognition in general, whereas callous-unemotional (CU) traits were linked to specific problems in sadness recognition in females with CD. A region-of-interest analysis of the eye-tracking data indicated that males with CD exhibited reduced fixation times for the eye-region of the face compared to typically-developing (TD) females, but not TD males. Females with CD did not show reduced fixation to the eye-region of the face relative to TD females. In addition, CU traits did not influence CD subjects’ attention to the eye-region of the face. These findings suggest that the emotion recognition deficits found in CD males, the worst performing group in the behavioural tasks, are partly driven by reduced attention to the eyes.Keywords: attention, callous-unemotional traits, conduct disorder, emotion recognition, eye-region, eye-tracking, sex differences
Procedia PDF Downloads 3243108 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network
Authors: Marcio Leal, Marta Villamil
Abstract:
Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.Keywords: artificial neural network, computer vision, dynamic time warping, infrared, sign language recognition
Procedia PDF Downloads 2183107 Investigation of New Gait Representations for Improving Gait Recognition
Authors: Chirawat Wattanapanich, Hong Wei
Abstract:
This study presents new gait representations for improving gait recognition accuracy on cross gait appearances, such as normal walking, wearing a coat and carrying a bag. Based on the Gait Energy Image (GEI), two ideas are implemented to generate new gait representations. One is to append lower knee regions to the original GEI, and the other is to apply convolutional operations to the GEI and its variants. A set of new gait representations are created and used for training multi-class Support Vector Machines (SVMs). Tests are conducted on the CASIA dataset B. Various combinations of the gait representations with different convolutional kernel size and different numbers of kernels used in the convolutional processes are examined. Both the entire images as features and reduced dimensional features by Principal Component Analysis (PCA) are tested in gait recognition. Interestingly, both new techniques, appending the lower knee regions to the original GEI and convolutional GEI, can significantly contribute to the performance improvement in the gait recognition. The experimental results have shown that the average recognition rate can be improved from 75.65% to 87.50%.Keywords: convolutional image, lower knee, gait
Procedia PDF Downloads 2023106 Offline Signature Verification in Punjabi Based On SURF Features and Critical Point Matching Using HMM
Authors: Rajpal Kaur, Pooja Choudhary
Abstract:
Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capabilities to the reliably distinguish between an authorized person and an imposter. The Signature recognition systems can categorized as offline (static) and online (dynamic). This paper presents Surf Feature based recognition of offline signatures system that is trained with low-resolution scanned signature images. The signature of a person is an important biometric attribute of a human being which can be used to authenticate human identity. However the signatures of human can be handled as an image and recognized using computer vision and HMM techniques. With modern computers, there is need to develop fast algorithms for signature recognition. There are multiple techniques are defined to signature recognition with a lot of scope of research. In this paper, (static signature) off-line signature recognition & verification using surf feature with HMM is proposed, where the signature is captured and presented to the user in an image format. Signatures are verified depended on parameters extracted from the signature using various image processing techniques. The Off-line Signature Verification and Recognition is implemented using Mat lab platform. This work has been analyzed or tested and found suitable for its purpose or result. The proposed method performs better than the other recently proposed methods.Keywords: offline signature verification, offline signature recognition, signatures, SURF features, HMM
Procedia PDF Downloads 3853105 The Influence of Emotional Intelligence Skills on Innovative Start-Ups Coaching: A Neuro-Management Approach
Authors: Alina Parincu, Giuseppe Empoli, Alexandru Capatina
Abstract:
The purpose of this paper is to identify the most influential predictors of emotional intelligence skills, in the case of 20 business innovation coaches, on the co-creation of knowledge through coaching services delivered to innovative start-ups from Europe, funded through Horizon 2020 – SME Instrument. We considered the emotional intelligence skills (self-awareness, self-regulation, motivation, empathy and social skills) as antecedent conditions of the outcome: the quality of coaching services, perceived by the entrepreneurs who received funding within SME instrument, using fuzzy-sets qualitative comparative analysis (fsQCA) approach. The findings reveal that emotional intelligence skills, trained with neuro-management techniques, were associated with increased goal-focused business coaching skills.Keywords: neuro-management, innovative start-ups, business coaching, fsQCA
Procedia PDF Downloads 1763104 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition
Authors: Mohamed Lotfy, Ghada Soliman
Abstract:
Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.Keywords: computer vision, pattern recognition, optical character recognition, deep learning
Procedia PDF Downloads 963103 Dancing with Perfectionism and Emotional Inhibition on the Ground of Disordered Eating Behaviors: Investigating Emotion Regulation Difficulties as Mediating Factor
Authors: Merve Denizci Nazligul
Abstract:
Dancers seem to have much higher risk levels for the development of eating disorders, compared to non-dancing counterparts. In a remarkably competitive nature of dance environment, perfectionism and emotion regulation difficulties become inevitable risk factors. Moreover, early maladaptive schemas are associated with various eating disorders. In the current study, it was aimed to investigate the mediating role of difficulties with emotion regulation on the relationship between perfectionism and disordered eating behaviors, as well as on the relationship between early maladaptive schemas and disordered eating behaviors. A total of 70 volunteer dancers (n = 47 women, n = 23 men) were recruited in the study (M age = 25.91, SD = 8.9, range 19–63) from the university teams or private clubs in Turkey. The sample included various types of dancers (n = 26 ballets or ballerinas, n =32 Latin, n = 10 tango, n = 2 hiphop). The mean dancing hour per week was 11.09 (SD = 7.09) within a range of 1-30 hours. The participants filled a questionnaire set including demographic information form, Dutch Eating Behavior Questionnaire, Multidimensional Perfectionism Scale, three subscales (Emotional Inhibition, Unrelenting Standards-Hypercriticalness, Approval Seeking-Recognition Seeking) from Young Schema Questionnaire-Short Form-3 and Difficulties in Emotion Regulation Scale. The mediation hypotheses were tested using the PROCESS macro in SPSS. The findings revealed that emotion regulation difficulties significantly mediated the relationship between three distinct subtypes of perfectionism and emotional eating. The results of the Sobel test suggested that there were significant indirect effects of self-oriented perfectionism (b = .06, 95% CI = .0084, .1739), other-oriented perfectionism (b = .15, 95% CI = .0136, .4185), and socially prescribed perfectionism (b = .09, 95% CI = .0104, .2344) on emotional eating through difficulties with emotion regulation. Moreover, emotion regulation difficulties significantly mediated the relationship between emotional inhibition and emotional eating (F(1,68) = 4.67, R2 = .06, p < .05). These results seem to provide some evidence that perfectionism might become a risk factor for disordered eating behaviors when dancers are not able to regulate their emotions. Further, gaining an understanding of how inhibition of emotions leads to inverse effects on eating behavior may be important to develop intervention strategies to manage their disordered eating patterns in risk groups. The present study may also support the importance of using unified protocols for transdiagnostic approaches which focus on identifying, accepting, prompting to express maladaptive emotions and appraisals.Keywords: dancers, disordered eating, emotion regulation difficulties, perfectionism
Procedia PDF Downloads 1453102 The Role of Principals’ Emotional Intelligence on School Leadership Effectiveness
Authors: Daniel Gebreslassie Mekonnen
Abstract:
Effective leadership has a crucial role in excelling in the overall success of a school. Today there is much attention given to school leadership, without which schools can never be successful. Therefore, the study was aimed at investigating the role of principals’ leadership styles and their emotional intelligence on the work motivation and job performance of teachers in Addis Ababa, Ethiopia. The study, thus, first examined the relationship between work motivation and job performance of the teachers in relation to the perceived leadership styles and emotional intelligence of principals. Second, it assessed the mean differences and the interaction effects of the principals’ leadership styles and emotional intelligence on the work motivation and job performance of the teachers. Finally, the study investigated whether principals’ leadership styles and emotional intelligence variables had significantly predicted the work motivation and job performance of teachers. As a means, a quantitative approach and descriptive research design were employed to conduct the study. Three hundred sixteen teachers were selected using multistage sampling techniques as participants of the study from the eight sub-cities in Addis Ababa. The main data-gathering instruments used in this study were the path-goal leadership questionnaire, emotional competence inventory, multidimensional work motivation scale, and job performance appraisal scale. The quantitative data were analyzed by using the statistical techniques of Pearson–product-moment correlation analysis, two-way analysis of variance, and stepwise multiple regression analysis. Major findings of the study have revealed that the work motivation and job performance of the teachers were significantly correlated with the perceived participative leadership style, achievement-oriented leadership style, and emotional intelligence of principals. Moreover, the emotional intelligence of the principals was found to be the best predictor of the teachers’ work motivation, whereas the achievement-oriented leadership style of the principals was identified as the best predictor of the job performance of the teachers. Furthermore, the interaction effects of all four path-goal leadership styles vis-a-vis the emotional intelligence of the principals have shown differential effects on the work motivation and job performance of teachers. Thus, it is reasonable to conclude that emotional intelligence is the sine qua non of effective school leadership. Hence, this study would be useful for policymakers and educational leaders to come up with policies that would enhance the role of emotional intelligence on school leadership effectiveness. Finally, pertinent recommendations were drawn from the findings and the conclusions of the study.Keywords: emotional intelligence, leadership style, job performance, work motivation
Procedia PDF Downloads 1023101 Recognition of Grocery Products in Images Captured by Cellular Phones
Authors: Farshideh Einsele, Hassan Foroosh
Abstract:
In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using wellknown geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.Keywords: camera-based OCR, feature extraction, document, image processing, grocery products
Procedia PDF Downloads 4063100 Characteristics of the Labor Intensity of Secondary School Teachers
Authors: Meruyert Burumbayeva, Aiman Mussina, Gulshat Yerdenova, Bakyt Ilyassova, Aiymtory Abildaeva, Gulnoza Aldabekova
Abstract:
In this paper, there were analyzed the intensity of teachers of secondary schools of Astana. The analysis is based on the account of the whole complex of factors of production, creating the preconditions for the emergence of adverse neuro-emotional states (surge). All the factors of the labor process in the qualitative or quantitative terms were grouped into types of loads: intellectual, sensory, emotional, monotone, regime. The results showed that teachers' work activity is more intense in terms of sensory, intellectual, emotional work schedule loads and characterized class working conditions for tensions as '1st degree of harmful stressful work' and by a combined indicator refers to the category of high labor intensity.Keywords: intensity of teachers, neuro-emotional states, labor process, occupational stress
Procedia PDF Downloads 3263099 The Effects of Emotional Working Memory Training on Trait Anxiety
Authors: Gabrielle Veloso, Welison Ty
Abstract:
Trait anxiety is a pervasive tendency to attend to and experience fears and worries to a disproportionate degree, across various situations. This study sought to determine if participants who undergo emotional working memory training will have significantly lower scores on the trait anxiety scales post-intervention. The study also sought to determine if emotional regulation mediated the relationship between working memory training and trait anxiety. Forty-nine participants underwent 20 days of computerized emotional working memory training called Emotional Dual n-back, which involves viewing a continuous stream of emotional content on a grid, and then remembering the location and color of items presented on the grid. Participants of the treatment group had significantly lower trait anxiety compared to controls post-intervention. Mediation analysis determined that working memory training had no significant relationship to anxiety as measured by the Beck’s Anxiety Inventory-Trait (BAIT), but was significantly related to anxiety as measured by form Y2 of the Spielberger State-Trait Anxiety Inventory (STAI-Y2). Emotion regulation, as measured by the Emotional Regulation Questionnaire (ERQ), was found not to mediate between working memory training and trait anxiety reduction. Results suggest that working memory training may be useful in reducing psychoemotional symptoms rather than somatic symptoms of trait anxiety. Moreover, it proposes for future research to further look into the mediating role of emotion regulation via neuroimaging and the development of more comprehensive measures of emotion regulation.Keywords: anxiety, emotion regulation, working-memory, working-memory training
Procedia PDF Downloads 1523098 Vision-Based Hand Segmentation Techniques for Human-Computer Interaction
Abstract:
This work is the part of vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of this paper is to develop robust and efficient hand segmentation algorithm such as an input to another system which attempt to bring the HCI performance nearby the human-human interaction, by modeling an intelligent sign language recognition system based on prediction in the context of dialogue between the system (avatar) and the interlocutor. For the purpose of hand segmentation, an overcoming occlusion approach has been proposed for superior results for detection of hand from an image.Keywords: HCI, sign language recognition, object tracking, hand segmentation
Procedia PDF Downloads 4133097 Neural Network Based Control Algorithm for Inhabitable Spaces Applying Emotional Domotics
Authors: Sergio A. Navarro Tuch, Martin Rogelio Bustamante Bello, Leopoldo Julian Lechuga Lopez
Abstract:
In recent years, Mexico’s population has seen a rise of different physiological and mental negative states. Two main consequences of this problematic are deficient work performance and high levels of stress generating and important impact on a person’s physical, mental and emotional health. Several approaches, such as the use of audiovisual stimulus to induce emotions and modify a person’s emotional state, can be applied in an effort to decreases these negative effects. With the use of different non-invasive physiological sensors such as EEG, luminosity and face recognition we gather information of the subject’s current emotional state. In a controlled environment, a subject is shown a series of selected images from the International Affective Picture System (IAPS) in order to induce a specific set of emotions and obtain information from the sensors. The raw data obtained is statistically analyzed in order to filter only the specific groups of information that relate to a subject’s emotions and current values of the physical variables in the controlled environment such as, luminosity, RGB light color, temperature, oxygen level and noise. Finally, a neural network based control algorithm is given the data obtained in order to feedback the system and automate the modification of the environment variables and audiovisual content shown in an effort that these changes can positively alter the subject’s emotional state. During the research, it was found that the light color was directly related to the type of impact generated by the audiovisual content on the subject’s emotional state. Red illumination increased the impact of violent images and green illumination along with relaxing images decreased the subject’s levels of anxiety. Specific differences between men and women were found as to which type of images generated a greater impact in either gender. The population sample was mainly constituted by college students whose data analysis showed a decreased sensibility to violence towards humans. Despite the early stage of the control algorithm, the results obtained from the population sample give us a better insight into the possibilities of emotional domotics and the applications that can be created towards the improvement of performance in people’s lives. The objective of this research is to create a positive impact with the application of technology to everyday activities; nonetheless, an ethical problem arises since this can also be applied to control a person’s emotions and shift their decision making.Keywords: data analysis, emotional domotics, performance improvement, neural network
Procedia PDF Downloads 143