Search results for: eddy current losses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10019

Search results for: eddy current losses

9869 Deadline Missing Prediction for Mobile Robots through the Use of Historical Data

Authors: Edwaldo R. B. Monteiro, Patricia D. M. Plentz, Edson R. De Pieri

Abstract:

Mobile robotics is gaining an increasingly important role in modern society. Several potentially dangerous or laborious tasks for human are assigned to mobile robots, which are increasingly capable. Many of these tasks need to be performed within a specified period, i.e., meet a deadline. Missing the deadline can result in financial and/or material losses. Mechanisms for predicting the missing of deadlines are fundamental because corrective actions can be taken to avoid or minimize the losses resulting from missing the deadline. In this work we propose a simple but reliable deadline missing prediction mechanism for mobile robots through the use of historical data and we use the Pioneer 3-DX robot for experiments and simulations, one of the most popular robots in academia.

Keywords: deadline missing, historical data, mobile robots, prediction mechanism

Procedia PDF Downloads 401
9868 Harnessing Earth's Electric Field and Transmission of Electricity

Authors: Vaishakh Medikeri

Abstract:

Energy in this Universe is the most basic characteristic of every particle. Since the birth of life on this planet, there has been a quest undertaken by the living beings to analyze, understand and harness the precious natural facts of the nature. In this quest, one of the greatest undertaken is the process of harnessing the naturally available energy. Scientists around the globe have discovered many ways to harness the freely available energy. But even today we speak of “Power Crisis”. Nikola Tesla once said “Nature has stored up in this universe infinite energy”. Energy is everywhere around us in unlimited quantities; all of it waiting to be harnessed by us. Here in this paper a method has been proposed to harness earth's electric field and transmit the stored electric energy using strong magnetic fields and electric fields. In this paper a new technique has been proposed to harness earth's electric field which is everywhere around the world in infinite quantities. Near the surface of the earth there is an electric field of about 120V/m. This electric field is used to charge a capacitor with high capacitance. Later the energy stored is allowed to pass through a device which converts the DC stored into AC. The AC so produced is then passed through a step down transformer to magnify the incoming current. Later the current passes through the RLC circuit. Later the current can be transmitted wirelessly using the principle of resonant inductive coupling. The proposed apparatus can be placed in most of the required places and any circuit tuned to the frequency of the transmitted current can receive the energy. The new source of renewable energy is of great importance if implemented since the apparatus is not costly and can be situated in most of the required places. And also the receiver which receives the transmitted energy is just an RLC circuit tuned to the resonant frequency of the transmitted energy. By using the proposed apparatus the energy losses can be reduced to a very large extent.

Keywords: capacitor, inductive resonant coupling, RLC circuit, transmission of electricity

Procedia PDF Downloads 373
9867 Global Voltage Harmonic Index for Measuring Harmonic Situation of Power Grids: A Focus on Power Transformers

Authors: Alireza Zabihi, Saeed Peyghami, Hossein Mokhtari

Abstract:

With the increasing deployment of renewable power plants, such as solar and wind, it is crucial to measure the harmonic situation of the grid. This paper proposes a global voltage harmonic index to measure the harmonic situation of the power grid with a focus on power transformers. The power electronics systems used to connect these plants to the network can introduce harmonics, leading to increased losses, reduced efficiency, false operation of protective relays, and equipment damage due to harmonic intensifications. The proposed index considers the losses caused by harmonics in power transformers which are of great importance and value to the network, providing a comprehensive measure of the harmonic situation of the grid. The effectiveness of the proposed index is evaluated on a real-world distribution network, and the results demonstrate its ability to identify the harmonic situation of the network, particularly in relation to power transformers. The proposed index provides a comprehensive measure of the harmonic situation of the grid, taking into account the losses caused by harmonics in power transformers. The proposed index has the potential to support power companies in optimizing their power systems and to guide researchers in developing effective mitigation strategies for harmonics in the power grid.

Keywords: global voltage harmonic index, harmonics, power grid, power quality, power transformers, renewable energy

Procedia PDF Downloads 127
9866 Numerical Investigation of Entropy Signatures in Fluid Turbulence: Poisson Equation for Pressure Transformation from Navier-Stokes Equation

Authors: Samuel Ahamefula Mba

Abstract:

Fluid turbulence is a complex and nonlinear phenomenon that occurs in various natural and industrial processes. Understanding turbulence remains a challenging task due to its intricate nature. One approach to gain insights into turbulence is through the study of entropy, which quantifies the disorder or randomness of a system. This research presents a numerical investigation of entropy signatures in fluid turbulence. The work is to develop a numerical framework to describe and analyse fluid turbulence in terms of entropy. This decomposes the turbulent flow field into different scales, ranging from large energy-containing eddies to small dissipative structures, thus establishing a correlation between entropy and other turbulence statistics. This entropy-based framework provides a powerful tool for understanding the underlying mechanisms driving turbulence and its impact on various phenomena. This work necessitates the derivation of the Poisson equation for pressure transformation of Navier-Stokes equation and using Chebyshev-Finite Difference techniques to effectively resolve it. To carry out the mathematical analysis, consider bounded domains with smooth solutions and non-periodic boundary conditions. To address this, a hybrid computational approach combining direct numerical simulation (DNS) and Large Eddy Simulation with Wall Models (LES-WM) is utilized to perform extensive simulations of turbulent flows. The potential impact ranges from industrial process optimization and improved prediction of weather patterns.

Keywords: turbulence, Navier-Stokes equation, Poisson pressure equation, numerical investigation, Chebyshev-finite difference, hybrid computational approach, large Eddy simulation with wall models, direct numerical simulation

Procedia PDF Downloads 94
9865 Hedging and Corporate Governance: Lessons from the Financial Crisis

Authors: Rodrigo Zeidan

Abstract:

The paper identifies failures of decision making and corporate governance that allow non-financial companies around the world to develop hedging strategies that lead to hefty losses in the aftermath of the financial crisis. The sample is comprised of 346 companies from 10 international markets, of which 49 companies (and a subsample of 13 distressed companies) lose a combined US$18.9 billion. An event study shows that most companies that present losses in derivatives experience negative abnormal returns, including a number of companies in which the effect is persistent after a year. The results of a probit model indicate that the lack of a formal hedging policy, no monitoring to the CFOs, and considerations of hubris and remuneration contribute to the mismanagement of hedging policies.

Keywords: risk management, hedging, derivatives, monitoring, corporate governance structure, event study, hubris

Procedia PDF Downloads 442
9864 Physicochemical Stability of Pulse Spreads during Storage after Sous Vide Treatment and High Pressure Processing

Authors: Asnate Kirse, Daina Karklina, Sandra Muizniece-Brasava, Ruta Galoburda

Abstract:

Pulses are high in plant protein and dietary fiber, and contain slowly digestible starches. Innovative products from pulses could increase their consumption and benefit consumer health. This study was conducted to evaluate physicochemical stability of processed cowpea (Vigna unguiculata (L.) Walp. cv. Fradel) and maple pea (Pisum sativum var. arvense L. cv. Bruno) spreads at 5 °C temperature during 62-day storage. Physicochemical stability of pulse spreads was compared after sous vide treatment (80 °C/15 min) and high pressure processing (700 MPa/10 min/20 °C). Pulse spreads were made by homogenizing cooked pulses in a food processor together with salt, citric acid, oil, and bruschetta seasoning. A total of four different pulse spreads were studied: Cowpea spread without and with seasoning, maple pea spread without and with seasoning. Transparent PA/PE and light proof PET/ALU/PA/PP film pouches were used for packaging of pulse spreads under vacuum. The parameters investigated were pH, water activity and mass losses. Pulse spreads were tested on days 0, 15, 29, 42, 50, 57 and 62. The results showed that sous-vide treatment and high pressure processing had an insignificant influence on pH, water activity and mass losses after processing, irrespective of packaging material did not change (p>0.1). pH and water activity of sous-vide treated and high pressure processed pulse spreads in different packaging materials proved to be stable throughout the storage. Mass losses during storage accounted to 0.1% losses. Chosen sous-vide treatment and high pressure processing regimes and packaging materials are suitable to maintain consistent physicochemical quality of the new products during 62-day storage.

Keywords: cowpea, flexible packaging, maple pea, water activity

Procedia PDF Downloads 280
9863 Influence of Harmonics on Medium Voltage Distribution System: A Case Study for Residential Area

Authors: O. Arikan, C. Kocatepe, G. Ucar, Y. Hacialiefendioglu

Abstract:

In this paper, influence of harmonics on medium voltage distribution system of Bogazici Electricity Distribution Inc. (BEDAS) which takes place at Istanbul/Turkey is investigated. A ring network consisting of residential loads is taken into account for this study. Real system parameters and measurement results are used for simulations. Also, probable working conditions of the system are analyzed for %50, %75 and %100 loading of transformers with similar harmonic contents. Results of the study are exhibited the influence of nonlinear loads on %THDV, P.F. and technical losses of the medium voltage distribution system.

Keywords: distribution system, harmonic, technical losses, power factor, total harmonic distortion, residential load, medium voltage

Procedia PDF Downloads 573
9862 Comparison of FASTMAP and B0 Field Map Shimming for 4T MRI

Authors: Mohan L. Jayatiake, Judd Storrs, Jing-Huei Lee

Abstract:

The optimal MRI resolution relies on a homogeneous magnetic field. However, local susceptibility variations can lead to field inhomogeneities that cause artifacts such as image distortion and signal loss. The effects of local susceptibility variation notoriously increase with magnetic field strength. Active shimming improves homogeneity by applying corrective fields generated from shim coils, but requires calculation of optimal current for each shim coil. FASTMAP (fast automatic shimming technique by mapping along projections) is an effective technique for finding optimal currents works well at high-field, but is restricted to shimming spherical regions of interest. The 3D gradient-echo pulse sequence was modified to reduce sensitivity to eddy currents and used to obtain susceptibility field maps at 4T. Measured fields were projected onto first-and second-order spherical harmonic functions corresponding to shim hardware. A spherical phantom was used to calibrate the shim currents. Susceptibility maps of a volunteer’s brain with and without FASTMAP shimming were obtained. Simulations indicate that optimal shim currents derived from the field map may provide better overall shimming of the human brain.

Keywords: shimming, high-field, active, passive

Procedia PDF Downloads 509
9861 Electrolytic Capacitor-Less Transformer-Less AC-DC LED Driver with Current Ripple Canceller

Authors: Yasunori Kobori, Li Quan, Shu Wu, Nizam Mohyar, Zachary Nosker, Nobukazu Tsukiji, Nobukazu Takai, Haruo Kobayashi

Abstract:

This paper proposes an electrolytic capacitor-less transformer-less AC-DC LED driver with a current ripple canceller. The proposed LED driver includes a diode bridge, a buck-boost converter, a negative feedback controller and a current ripple cancellation circuit. The current ripple canceller works as a bi-directional current converter using a sub-inductor, a sub-capacitor and two switches for controlling current flow. LED voltage is controlled in order to regulate LED current by the negative feedback controller using a current sense resistor. There are two capacitors which capacitance of 5 uF. We describe circuit topologies, operation principles and simulation results for our proposed circuit. In addition, we show the line regulation for input voltage variation from 85V to 130V. The output voltage ripple is 2V and the LED current ripple is 65 mA which is less than 20% of the typical current of 350 mA. We are now making the proposed circuit on a universal board in order to measure the experimental characteristics.

Keywords: LED driver, electrolytic, capacitor-less, AC-DC converter, buck-boost converter, current ripple canceller

Procedia PDF Downloads 473
9860 Numerical Investigation of Turbulent Inflow Strategy in Wind Energy Applications

Authors: Arijit Saha, Hassan Kassem, Leo Hoening

Abstract:

Ongoing climate change demands the increasing use of renewable energies. Wind energy plays an important role in this context since it can be applied almost everywhere in the world. To reduce the costs of wind turbines and to make them more competitive, simulations are very important since experiments are often too costly if at all possible. The wind turbine on a vast open area experiences the turbulence generated due to the atmosphere, so it was of utmost interest from this research point of view to generate the turbulence through various Inlet Turbulence Generation methods like Precursor cyclic and Kaimal Spectrum Exponential Coherence (KSEC) in the computational simulation domain. To be able to validate computational fluid dynamic simulations of wind turbines with the experimental data, it is crucial to set up the conditions in the simulation as close to reality as possible. This present work, therefore, aims at investigating the turbulent inflow strategy and boundary conditions of KSEC and providing a comparative analysis alongside the Precursor cyclic method for Large Eddy Simulation within the context of wind energy applications. For the generation of the turbulent box through KSEC method, firstly, the constrained data were collected from an auxiliary channel flow, and later processing was performed with the open-source tool PyconTurb, whereas for the precursor cyclic, only the data from the auxiliary channel were sufficient. The functionality of these methods was studied through various statistical properties such as variance, turbulent intensity, etc with respect to different Bulk Reynolds numbers, and a conclusion was drawn on the feasibility of KSEC method. Furthermore, it was found necessary to verify the obtained data with DNS case setup for its applicability to use it as a real field CFD simulation.

Keywords: Inlet Turbulence Generation, CFD, precursor cyclic, KSEC, large Eddy simulation, PyconTurb

Procedia PDF Downloads 96
9859 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 139
9858 Antmicrobial Packaging, a Step Towards Safe Food: A Review

Authors: Hafiz A. Sakandar, M. Afzaal, U. Khan, M. N. Akhtar

Abstract:

Food is the primary concern of living organisms, provision of diet for maintenance of good physical and mental health is a basic right of an individual and the outcome of factors related to diet on health has been matter of apprehension since ancient times. Healthy and fresh food always demanded by the consumers. Modern research has find out many alternatives of traditional packaging. Now the consumer knows that good packaging system is that which protects the food from the contaminants and increases shelf life of food product. While in Pakistan about 40% of fruits and vegetables lost due to spoilage caused by poor handling, transportation, and poor packaging interaction with other environmental conditions. So it is crucial for developing countries like Pakistan to pay attention to these exacerbating situations for economy losses by considering food packaging an ultimate solution to the problem.

Keywords: packaging, food safety, antimicrobial, food losses

Procedia PDF Downloads 550
9857 Cryptocurrency Crime: Behaviors of Malicious Smart Contracts in Blockchain

Authors: Malaw Ndiaye, Karim Konate

Abstract:

Blockchain and smart contracts can be used to facilitate almost any financial transaction. Thanks to these smart contracts, the settlement of dividends and coupons could be automated. The blockchain would allow all these transactions to be saved in a single ledger rather than in many databases through many organizations as is currently the case. Smart contracts have become lucrative and profitable targets for attackers because they can hold a large amount of money. This paper takes stock of cryptocurrency crime by assessing attacks due to smart contracts and the cost of losses. These losses are often the result of two types of malicious contracts: vulnerable contracts and criminal smart contracts. Studying the behavior of malicious contracts allows us to understand the root causes and consequences of attacks and the defense capabilities that exist although they do not definitively solve the crime problem. It makes it possible to approach new defense perspectives which will be concretized in future work.

Keywords: blockchain, malicious smart contracts, crypto-currency, crimes, attacks

Procedia PDF Downloads 274
9856 Mechanical Properties Analysis of Masonry Residue Mortar as Cement Replacement

Authors: Camila Parodi, Viviana Letelier, Giacomo Moriconi

Abstract:

The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residues in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. Previous researches demonstrate the feasibility of using brick and rust residues, separately, as a cement replacement. This study analyses the variation in the mechanical properties of mortars by incorporating masonry residue composed of clay bricks and cement mortar. In order to improve the mechanical properties of masonry residue, this was subjected to a heat treatment of 650 ° C for four hours and its effect is analyzed in this study. Masonry residue was obtained from a demolition of masonry perimetral walls. The residues were crushed and sieved and the maximum size of particles used was 75 microns. The percentages of cement replaced by masonry residue were 0%, 10%, 20% and 30%. The effect of masonry residue addition and its heat treatment in the mechanical properties of mortars is evaluated through compressive and flexural strength tests after 7, 14 and 28 curing days. Results show that increasing the amount of masonry residue used increases the losses in compressive strength and flexural strength. However, the use of up to a 20% of masonry residue, when a heat treatment is applied, allows obtaining mortars with similar compressive strength to the control mortar. Masonry residues mortars without a heat treatment show losses in compressive strengths between 15% and 27% with respect to masonry residues with heat treatment, which demonstrates the effectiveness of the heat treatment. From this analysis it can be conclude that it is possible to use up to 20% of masonry residue with heat treatment as cement replacement without significant losses in mortars mechanical properties, reducing considerably the environmental impact of the final material.

Keywords: cement replacement, environmental impact, masonry residue, mechanical properties of recycled mortars

Procedia PDF Downloads 392
9855 The Impact of Improved Grain Storage Technology on Marketing Behaviour and Livelihoods of Maize Farmers: A Randomized Controlled Trial in Ethiopia

Authors: Betelhem M. Negede, Maarten Voors, Hugo De Groote, Bart Minten

Abstract:

Farmers in Ethiopia produce most of their own food during one agricultural season per year. Therefore, they need to use on-farm storage technologies to bridge the lean season and benefit from price arbitrage. Maize stored using traditional storage bags offer no protection from insects and molds, leading to high storage losses. In Ethiopia access to and use of modern storage technologies are still limited, restraining farmers to benefit from local maize price fluctuations. We used a randomized controlled trial among 871 maize farmers to evaluate the impacts of Purdue Improved Crop Storage (PICS) bags, also known as hermetic bags, on storage losses, and especially on behavioral changes with respect to consumption, marketing, and income among maize farmers in Ethiopia. This study builds upon the limited previous experimental research that has tried to understand farmers’ grain storage and post-harvest losses and identify mechanisms behind the persistence of these challenges. Our main hypothesis is that access to PICS bags allows farmers to increase production, storage and maize income. Also delay the length of maize storage, reduce maize post-harvest losses and improve their food security. Our results show that even though farmers received only three PICS bags that represent 10percent of their total maize stored, they delay their length of maize storage for sales by two weeks. However, we find no treatment effect on maize income, suggesting that the arbitrage of two weeks is too small. Also, we do not find any reduction in storage losses due to farmers’ reaction by selling early and by using cheap and readily available but potentially harmful storage chemicals. Looking at the heterogeneity treatment effects between the treatment variable and highland and lowland villages, we find a decrease in the percentage of maize stored by 4 percent in the highland villages. This confirms that location specific factors, such as agro-ecology and proximity to markets are important factors that influence whether and how much of the harvest a farmer stores. These findings highlight the benefits of hermetic storage bags, by allowing farmers to make inter-temporal arbitrage and by reducing potential health risks from storage chemicals. The main policy recommendation that emanates from our study is that postharvest losses reduction throughout the whole value chain is an important pathway to food and income security in Sub-Saharan Africa (SSA). However, future storage loss interventions with hermetic storage technologies should take into account the agro-ecology of the study area and quantify storage losses beyond farmers self-reported losses, such as the count and weigh method. Finally, studies on hermetic storage technologies indicate positive impacts on post-harvest losses and in improving food security, but the adoption and use of these technologies is currently still low in SSA. Therefore, future works on the scaling up of hermetic bags, should consider reasons why farmers only use PICS bags to store grains for consumption, which is usually related to a safety-first approach or due to lack of incentives (higher price from maize not treated with chemicals), and no grain quality check.

Keywords: arbitrage, PICS hermetic bags, post-harvest storage loss, RCT

Procedia PDF Downloads 136
9854 mm-Wave Wearable Edge Computing Module Hosted by Printed Ridge Gap Waveguide Structures: A Physical Layer Study

Authors: Matthew Kostawich, Mohammed Elmorsy, Mohamed Sayed Sifat, Shoukry Shams, Mahmoud Elsaadany

Abstract:

6G communication systems represent the nominal future extension of current wireless technology, where its impact is extended to touch upon all human activities, including medical, security, and entertainment applications. As a result, human needs are allocated among the highest priority aspects of the system design and requirements. 6G communications is expected to replace all the current video conferencing with interactive virtual reality meetings involving high data-rate transmission merged with massive distributed computing resources. In addition, the current expansion of IoT applications must be mitigated with significant network changes to provide a reasonable Quality of Service (QoS). This directly implies a high demand for Human-Computer Interaction (HCI) through mobile computing modules in future wireless communication systems. This article proposes the utilization of a Printed Ridge Gap Waveguide (PRGW) to host the wearable nodes. To the best of our knowledge, we propose for the first time a physical layer analysis within the context of a complete architecture. A thorough study is provided on the impact of the distortion of the guiding structure on the overall system performance. The proposed structure shows small latency and small losses, highlighting its compatibility with future applications.

Keywords: ridge gap waveguide, edge computing module, 6G, multimedia IoT applications

Procedia PDF Downloads 71
9853 Design and Analysis of Highly Efficient and Reliable Single-Phase Transformerless Inverter for PV Systems

Authors: L. Ashok Kumar, N. Sujith Kumar

Abstract:

Most of the PV systems are designed with transformer for safety purpose with galvanic isolation. However, the transformer is big, heavy and expensive. Also, it reduces the overall frequency of the conversion stage. Generally PV inverter with transformer is having efficiency around 92%–94% only. To overcome these problems, transformerless PV system is introduced. It is smaller, lighter, cheaper and higher in efficiency. However, dangerous leakage current will flow between PV array and the grid due to the stray capacitance. There are different types of configurations available for transformerless inverters like H5, H6, HERIC, oH5, and Dual paralleled buck inverter. But each configuration is suffering from its own disadvantages like high conduction losses, shoot-through issues of switches, dead-time requirements at zero crossing instants of grid voltage to avoid grid shoot-through faults and MOSFET reverse recovery issues. The main objective of the proposed transformerless inverter is to address two key issues: One key issue for a transformerless inverter is that it is necessary to achieve high efficiency compared to other existing inverter topologies. Another key issue is that the inverter configuration should not have any shoot-through issues for higher reliability.

Keywords: grid-connected, photovoltaic (PV) systems, transformerless inverter, stray capacitance, common-mode, leakage current, pulse width modulation (PWM)

Procedia PDF Downloads 501
9852 Next Generation UK Storm Surge Model for the Insurance Market: The London Case

Authors: Iacopo Carnacina, Mohammad Keshtpoor, Richard Yablonsky

Abstract:

Non-structural protection measures against flooding are becoming increasingly popular flood risk mitigation strategies. In particular, coastal flood insurance impacts not only private citizens but also insurance and reinsurance companies, who may require it to retain solvency and better understand the risks they face from a catastrophic coastal flood event. In this context, a framework is presented here to assess the risk for coastal flooding across the UK. The area has a long history of catastrophic flood events, including the Great Flood of 1953 and the 2013 Cyclone Xaver storm, both of which led to significant loss of life and property. The current framework will leverage a technology based on a hydrodynamic model (Delft3D Flexible Mesh). This flexible mesh technology, coupled with a calibration technique, allows for better utilisation of computational resources, leading to higher resolution and more detailed results. The generation of a stochastic set of extra tropical cyclone (ETC) events supports the evaluation of the financial losses for the whole area, also accounting for correlations between different locations in different scenarios. Finally, the solution shows a detailed analysis for the Thames River, leveraging the information available on flood barriers and levees. Two realistic disaster scenarios for the Greater London area are simulated: In the first scenario, the storm surge intensity is not high enough to fail London’s flood defences, but in the second scenario, London’s flood defences fail, highlighting the potential losses from a catastrophic coastal flood event.

Keywords: storm surge, stochastic model, levee failure, Thames River

Procedia PDF Downloads 232
9851 Intelligent Minimal Allocation of Capacitors in Distribution Networks Using Genetic Algorithm

Authors: S. Neelima, P. S. Subramanyam

Abstract:

A distribution system is an interface between the bulk power system and the consumers. Among these systems, radial distributions system is popular because of low cost and simple design. In distribution systems, the voltages at buses reduces when moved away from the substation, also the losses are high. The reason for a decrease in voltage and high losses is the insufficient amount of reactive power, which can be provided by the shunt capacitors. But the placement of the capacitor with an appropriate size is always a challenge. Thus, the optimal capacitor placement problem is to determine the location and size of capacitors to be placed in distribution networks in an efficient way to reduce the power losses and improve the voltage profile of the system. For this purpose, in this paper, two stage methodologies are used. In the first stage, the load flow of pre-compensated distribution system is carried out using ‘dimension reducing distribution load flow algorithm (DRDLFA)’. On the basis of this load flow the potential locations of compensation are computed. In the second stage, Genetic Algorithm (GA) technique is used to determine the optimal location and size of the capacitors such that the cost of the energy loss and capacitor cost to be a minimum. The above method is tested on IEEE 9 and 34 bus system and compared with other methods in the literature.

Keywords: dimension reducing distribution load flow algorithm, DRDLFA, genetic algorithm, electrical distribution network, optimal capacitors placement, voltage profile improvement, loss reduction

Procedia PDF Downloads 390
9850 Reducing Inventory Costs by Reducing Inventory Levels: Kuwait Flour Mills and Bakeries Company

Authors: Dana Al-Qattan, Faiza Goodarzi, Heba Al-Resheedan, Kawther Shehab, Shoug Al-Ansari

Abstract:

This project involves working with different types of forecasting methods and facility planning tools to help the company we have chosen to improve and reduce its inventory, increase its sales, and decrease its wastes and losses. The methods that have been used by the company have shown no improvement in decreasing the annual losses. The research made in the company has shown that no interest has been made in exploring different techniques to help the company. In this report, we introduce several methods and techniques that will help the company make more accurate forecasts and use of the available space efficiently. We expect our approach to reduce costs without affecting the quality of the product, and hence making production more viable.

Keywords: production planning, inventory management, inventory control, simulation, facility planning and design, engineering economy and costs

Procedia PDF Downloads 570
9849 Optimization Method of Dispersed Generation in Electrical Distribution Systems

Authors: Mahmoud Samkan

Abstract:

Dispersed Generation (DG) is a promising solution to many power system problems such as voltage regulation and power loss. This paper proposes a heuristic two-step method to optimize the location and size of DG for reducing active power losses and, therefore, improve the voltage profile in radial distribution networks. In addition to a DG placed at the system load gravity center, this method consists in assigning a DG to each lateral of the network. After having determined the central DG placement, the location and size of each lateral DG are predetermined in the first step. The results are then refined in the second step. This method is tested for 33-bus system for 100% DG penetration. The results obtained are compared with those of other methods found in the literature.

Keywords: optimal location, optimal size, dispersed generation (DG), radial distribution networks, reducing losses

Procedia PDF Downloads 443
9848 The Search for an Alternative to Tabarru` in Takaful Models

Authors: Abu Umar Faruq Ahmad, Muhammad Ayub

Abstract:

Tabarru` (unilateral gratuitous contribution) is thought to be the basic concept that distinguishes Takaful from conventional non-Sharīʿah compliant insurance. The Sharīʿah compliance of its current practice has been questioned in the premise that, a) it is a form of commutative contract; b) it is akin to the commercial corporate structure of insurance companies due to following the same marketing strategies, allocation to reserves, sharing of underwriting surplus by the companies one way or the other, providing loans to the Takaful funds, and resultantly absorbing the underwriting losses. The Sharīʿah scholars are of the view that the relationship between participants in Takaful should be in the form of commitment to donate, under which a contributor makes commitments himself to donate a sum of money for mutual help and cooperation on the condition that the balance, if any, should be returned to him. With the aim of finding solutions to the above mentioned concerns and other Sharīʿah related issues the study seeks to investigate whether the Takaful companies are functioning in accordance with the Islamic principles of brotherhood, solidarity, and cooperative risk sharing. Given that it discusses the cooperative model of Takaful to address the current and future Sharīʿah related and legal concerns. The study proposed an alternative model and considers it to best serve the objectives of Takaful which operates on the basis of ta`awun or mutual co-operation.

Keywords: hibah, musharakah ta`awuniyyah, Tabarru`, Takaful

Procedia PDF Downloads 445
9847 Parametric Analysis of Syn-gas Fueled SOFC with Internal Reforming

Authors: Sanjay Tushar Choudhary

Abstract:

This paper focuses on the thermodynamic analysis of Solid Oxide Fuel Cell (SOFC). In the present work the SOFC has been modeled to work with internal reforming of fuel which takes place at high temperature and direct energy conversion from chemical energy to electrical energy takes place. The fuel-cell effluent is a high-temperature steam which can be used for co-generation purposes. Syn-gas has been used here as fuel which is essentially produced by steam reforming of methane in the internal reformer of the SOFC. A thermodynamic model of SOFC has been developed for planar cell configuration to evaluate various losses in the energy conversion process within the fuel cell. Cycle parameters like fuel utilization ratio and the air-recirculation ratio have been varied to evaluate the thermodynamic performance of the fuel cell. Output performance parameters like terminal voltage, cell-efficiency and power output have been evaluated for various values of current densities. It has been observed that a combination of a lower value of air-circulation ratio and higher values of fuel utilization efficiency gives a better overall thermodynamic performance.

Keywords: current density, SOFC, suel utilization factor, recirculation ratio

Procedia PDF Downloads 508
9846 Variation of Manning’s Coefficient in a Meandering Channel with Emergent Vegetation Cover

Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua

Abstract:

Vegetation plays a major role in deciding the flow parameters in an open channel. It enhances the aesthetic view of the revetments. The major types of vegetation in river typically comprises of herbs, grasses, weeds, trees, etc. The vegetation in an open channel usually consists of aquatic plants with complete submergence, partial submergence, floating plants. The presence of vegetative plants can have both benefits and problems. The major benefits of aquatic plants are they reduce the soil erosion, which provides the water with a free surface to move on without hindrance. The obvious problems are they retard the flow of water and reduce the hydraulic capacity of the channel. The degree to which the flow parameters are affected depends upon the density of the vegetation, degree of submergence, pattern of vegetation, vegetation species. Vegetation in open channel tends to provide resistance to flow, which in turn provides a background to study the varying trends in flow parameters having vegetative growth in the channel surface. In this paper, an experiment has been conducted on a meandering channel having sinuosity of 1.33 with rigid vegetation cover to investigate the effect on flow parameters, variation of manning’s n with degree of the denseness of vegetation, vegetation pattern and submergence criteria. The measurements have been carried out in four different cross-sections two on trough portion of the meanders, two on the crest portion. In this study, the analytical solution of Shiono and knight (SKM) for lateral distributions of depth-averaged velocity and bed shear stress have been taken into account. Dimensionless eddy viscosity and bed friction have been incorporated to modify the SKM to provide more accurate results. A mathematical model has been formulated to have a comparative analysis with the results obtained from Shiono-Knight Method.

Keywords: bed friction, depth averaged velocity, eddy viscosity, SKM

Procedia PDF Downloads 137
9845 Single-Inductor Multi-Output Converters with Four-Level Output Voltages

Authors: Yasunori Kobori, Murong Li, Feng Zhao, Shu Wu, Nobukazu Takai, Haruo Kobayashi

Abstract:

This paper proposes an electrolytic capacitor-less transformer-less AC-DC LED driver with a current ripple canceller. The proposed LED driver includes a diode bridge, a buck-boost converter, a negative feedback controller and a current ripple cancellation circuit. The current ripple canceller works as a bi-directional current converter using a sub-inductor, a sub-capacitor and two switches for controlling current flow. LED voltage is controlled in order to regulate LED current by the negative feedback controller using a current sense resistor. There are two capacitors with capacitance of 5 uF. We describe circuit topologies, operation principles and simulation results for our proposed circuit. In addition, we show the line regulation for input voltage variation from 85V to 130V. The output voltage ripple is 2V and the LED current ripple is 65 mA which is less than 20% of the average of LED current of 350 mA.

Keywords: DC-DC buck converter, four-level output voltage, single inductor multi output (SIMO), switching converter

Procedia PDF Downloads 548
9844 Empirical Research to Improve Performances of Paddy Columnar Dryer

Authors: Duong Thi Hong, Nguyen Van Hung, Martin Gummert

Abstract:

Good practices of mechanical drying can reduce losses of grain quality. Recently, with demands of higher capacity for paddy drying in the Mekong River Delta of Vietnam, columnar dryers have been introduced rapidly in this area. To improve the technology, this study was conducted to investigate and optimize the parameters for drying Jasmine paddy using an empirical cross-flow columnar dryer. The optimum parameters were resulted in air flow rate and drying temperature that are 1-1.5 m³ s-¹ t-¹ of paddy and 40-42°C, respectively. The investigation also addressed a solution of reversing drying air to achieve the uniformity of grain temperature and quality. Results of this study should be significant for developments of grain drying, contributing to reduce post harvest losses

Keywords: paddy drying, columnar dryer, air flow rate, drying temperature

Procedia PDF Downloads 371
9843 A Three Phase Shunt Active Power Filter for Currents Harmonics Elimination and Reactive Power Compensation

Authors: Amar Omeiri

Abstract:

This paper presents a three-phase shunt active power filter for current harmonics suppression and reactive power compensation using the supply current as reference. The proposed APF has a simple control circuit; it consists of detecting the supply current instead of the load current. The advantages of this APF are simplicity of control circuits and low implementation cost. The simulation results show that the proposed APF can compensate the reactive power and suppress current harmonics with two types of non-linear loads.

Keywords: active power filter, current harmonics and reactive power compensation, PWM inverter, Total Harmonic Distortion, power quality

Procedia PDF Downloads 588
9842 Characterization of the Near-Wake of an Ahmed Body Profile

Authors: Stéphanie Pellerin, Bérengére Podvin, Luc Pastur

Abstract:

In aerovehicles context, the flow around an Ahmed body profile is simulated using the velocity-vorticity formulation of the Navier-Stokes equations, associated to a penalization method for solids and Large Eddy Simulation for turbulence. The study focuses both on the ground influence on the flow and on the dissymetry of the wake, observed for a ground clearance greater than 10% of the body height H. Unsteady and mean flows are presented and analyzed. POD study completes the analysis and gives information on the most energetic structures of the flow.

Keywords: Ahmed body, bi-stability, LES, near wake

Procedia PDF Downloads 624
9841 CFD Simulation of a Large Scale Unconfined Hydrogen Deflagration

Authors: I. C. Tolias, A. G. Venetsanos, N. Markatos

Abstract:

In the present work, CFD simulations of a large scale open deflagration experiment are performed. Stoichiometric hydrogen-air mixture occupies a 20 m hemisphere. Two combustion models are compared and are evaluated against the experiment. The Eddy Dissipation Model and a Multi-physics combustion model which is based on Yakhot’s equation for the turbulent flame speed. The values of models’ critical parameters are investigated. The effect of the turbulence model is also examined. k-ε model and LES approach were tested.

Keywords: CFD, deflagration, hydrogen, combustion model

Procedia PDF Downloads 502
9840 A Design Methodology and Tool to Support Ecodesign Implementation in Induction Hobs

Authors: Anna Costanza Russo, Daniele Landi, Michele Germani

Abstract:

Nowadays, the European Ecodesign Directive has emerged as a new approach to integrate environmental concerns into the product design and related processes. Ecodesign aims to minimize environmental impacts throughout the product life cycle, without compromising performances and costs. In addition, the recent Ecodesign Directives require products which are increasingly eco-friendly and eco-efficient, preserving high-performances. It is very important for producers measuring performances, for electric cooking ranges, hobs, ovens, and grills for household use, and a low power consumption of appliances represents a powerful selling point, also in terms of ecodesign requirements. The Ecodesign Directive provides a clear framework about the sustainable design of products and it has been extended in 2009 to all energy-related products, or products with an impact on energy consumption during the use. The European Regulation establishes measures of ecodesign of ovens, hobs, and kitchen hoods, and domestic use and energy efficiency of a product has a significant environmental aspect in the use phase which is the most impactful in the life cycle. It is important that the product parameters and performances are not affected by ecodesign requirements from a user’s point of view, and the benefits of reducing energy consumption in the use phase should offset the possible environmental impact in the production stage. Accurate measurements of cooking appliance performance are essential to help the industry to produce more energy efficient appliances. The development of ecodriven products requires ecoinnovation and ecodesign tools to support the sustainability improvement. The ecodesign tools should be practical and focused on specific ecoobjectives in order to be largely diffused. The main scope of this paper is the development, implementation, and testing of an innovative tool, which could be an improvement for the sustainable design of induction hobs. In particular, a prototypical software tool is developed in order to simulate the energy performances of the induction hobs. The tool is focused on a multiphysics model which is able to simulate the energy performances and the efficiency of induction hobs starting from the design data. The multiphysics model is composed by an electromagnetic simulation and a thermal simulation. The electromagnetic simulation is able to calculate the eddy current induced in the pot, which leads to the Joule heating of material. The thermal simulation is able to measure the energy consumption during the operational phase. The Joule heating caused from the eddy currents is the output of electromagnetic simulation and the input of thermal ones. The aims of the paper are the development of integrated tools and methodologies of virtual prototyping in the context of the ecodesign. This tool could be a revolutionary instrument in the field of industrial engineering and it gives consideration to the environmental aspects of product design and focus on the ecodesign of energy-related products, in order to achieve a reduced environmental impact.

Keywords: ecodesign, energy efficiency, induction hobs, virtual prototyping

Procedia PDF Downloads 250