Search results for: different nighttime temperatures
1650 Co-Pyrolysis Characteristics of Waste Polyolefins
Authors: Si̇nem Uğuz, Yuksel Ardali
Abstract:
Nowadays rapid population growth causes a mandatory increase in consumption. As a result of production activities which meet this consumption, energy sources decrease rapidly on our world. As well as with this production activities various waste occurs. At the end of the production and accumulation of this waste need a mandatory disposal. In this context, copyrolysis of waste polyolefins were investigated. In this study for pyrolysis process, polyethylene and polyprophylene are selected as polyolefins. The pyrolysis behavior (efficiency of solid, liquid and gas production) of selected materials were examined at the different temperatures and different mixtures. Pyrolysis process was carried out at 550 °C and 600 °C without air in a fixed bed pyrolysis oven solid under the nitrogen flow to provide inertness of medium. Elemental analyses (C, H, O, N, S) of this solid and liquid (bitumen) products were made and the calorific value was calculated. The availability of liquid product as a fuel was investigated. In addition different products’ amounts formed like solid, liquid and gas at different temperatures were evaluated.Keywords: alternative energy, elemental analysis, pyrolysis, waste reduction
Procedia PDF Downloads 3171649 Temperature Dependence and Seasonal Variation of Denitrifying Microbial Consortia from a Woodchip Bioreactor in Denmark
Authors: A. Jéglot, F. Plauborg, M. K. Schnorr, R. S. Sørensen, L. Elsgaard
Abstract:
Artificial wetlands such as woodchip bioreactors are efficient tools to remove nitrate from agricultural wastewater with a minimized environmental impact. However, the temperature dependence of the microbiological nitrate removal prevents the woodchip bioreactors from being an efficient system when the water temperature drops below 8℃. To quantify and describe the temperature effects on nitrate removal efficiency, we studied nitrate-reducing enrichments from a woodchip bioreactor in Denmark based on samples collected in Spring and Fall. Growth was quantified as optical density, and nitrate and nitrous oxide concentrations were measured in time-course experiments to compare the growth of the microbial population and the nitrate conversion efficiencies at different temperatures. Ammonia was measured to indicate the importance of dissimilatory nitrate reduction to ammonia (DNRA) in nitrate conversion for the given denitrifying community. The temperature responses observed followed the increasing trend proposed by the Arrhenius equation, indicating higher nitrate removal efficiencies at higher temperatures. However, the growth and the nitrous oxide production observed at low temperature provided evidence of the psychrotolerance of the microbial community under study. The assays conducted showed higher nitrate removal from the microbial community extracted from the woodchip bioreactor at the cold season compared to the ones extracted during the warmer season. This indicated the ability of the bacterial populations in the bioreactor to evolve and adapt to different seasonal temperatures.Keywords: agricultural waste water treatment, artificial wetland, denitrification, psychrophilic conditions
Procedia PDF Downloads 1251648 Study of Dormancy-Breaking of Bitter Apple Seed (Citrullus Colocynthis L. Schard)
Authors: Asghar Rahimi, Majid Puryousef
Abstract:
This study aimed to examine dormancy-breaking of bitter apple (Citrullus colocynthis) seed. Seeds of wild bitter apple collected from the Balochestan zone in east of Iran were subjected to different treatments including temperatures (20 and 30°C) and some dormancy breaking methods on breaking seed dormancy of bitter apple. Only 6 treatments from 12 dormancy breaking treatments were effective in dormancy breaking, therefore only effective treatments were analyzed. In general, germination percentage of cleaved seeds, soaked seeds in hot water (98°c) and soaking in H2SO4 in both temperatures was higher than other treatments and germination percentage of scarified seeds with sandy paper in both temperature was lower than other treatments. Also germination percentage of soaked seeds in hot water (98°c) and naturally cracked seeds in temperature 20°c was higher than 30°c.Keywords: foliar application, nano chelate, nitrogen, Safflower
Procedia PDF Downloads 2231647 Air Breakdown Voltage Prediction in Post-arcing Conditions for Compact Circuit Breakers
Authors: Jing Nan
Abstract:
The air breakdown voltage in compact circuit breakers is a critical factor in the design and reliability of electrical distribution systems. This voltage determines the threshold at which the air insulation between conductors will fail or 'break down,' leading to an arc. This phenomenon is highly sensitive to the conditions within the breaker, such as the temperature and the distance between electrodes. Typically, air breakdown voltage models have been reliable for predicting failure under standard operational temperatures. However, in conditions post-arcing, where temperatures can soar above 2000K, these models face challenges due to the complex physics of ionization and electron behaviour at such high-energy states. Building upon the foundational understanding that the breakdown mechanism is initiated by free electrons and propelled by electric fields, which lead to ionization and, potentially, to avalanche or streamer formation, we acknowledge the complexity introduced by high-temperature environments. Recognizing the limitations of existing experimental data, a notable research gap exists in the accurate prediction of breakdown voltage at elevated temperatures, typically observed post-arcing, where temperatures exceed 2000K.To bridge this knowledge gap, we present a method that integrates gap distance and high-temperature effects into air breakdown voltage assessment. The proposed model is grounded in the physics of ionization, accounting for the dynamic behaviour of free electrons which, under intense electric fields at elevated temperatures, lead to thermal ionization and potentially reach the threshold for streamer formation as Meek's criterion. Employing the Saha equation, our model calculates equilibrium electron densities, adapting to the atmospheric pressure and the hot temperature regions indicative of post-arc temperature conditions. Our model is rigorously validated against established experimental data, demonstrating substantial improvements in predicting air breakdown voltage in the high-temperature regime. This work significantly improves the predictive power for air breakdown voltage under conditions that closely mimic operational stressors in compact circuit breakers. Looking ahead, the proposed methods are poised for further exploration in alternative insulating media, like SF6, enhancing the model's utility for a broader range of insulation technologies and contributing to the future of high-temperature electrical insulation research.Keywords: air breakdown voltage, high-temperature insulation, compact circuit breakers, electrical discharge, saha equation
Procedia PDF Downloads 851646 Evaluating Residual Mechanical and Physical Properties of Concrete at Elevated Temperatures
Authors: S. Hachemi, A. Ounis, S. Chabi
Abstract:
This paper presents the results of an experimental study on the effects of elevated temperature on compressive and flexural strength of Normal Strength Concrete (NSC), High Strength Concrete (HSC) and High Performance Concrete (HPC). In addition, the specimen mass and volume were measured before and after heating in order to determine the loss of mass and volume during the test. In terms of non-destructive measurement, ultrasonic pulse velocity test was proposed as a promising initial inspection method for fire damaged concrete structure. 100 Cube specimens for three grades of concrete were prepared and heated at a rate of 3°C/min up to different temperatures (150, 250, 400, 600, and 900°C). The results show a loss of compressive and flexural strength for all the concretes heated to temperature exceeding 400°C. The results also revealed that mass and density of the specimen significantly reduced with an increase in temperature.Keywords: high temperature, compressive strength, mass loss, ultrasonic pulse velocity
Procedia PDF Downloads 3471645 Efficacy of Vitamins A, C and E on the Growth Performance of Broiler Chickens Subjected to Heat Stress
Authors: Desierin Rodrin, Magdalena Alcantara, Cristina Olo
Abstract:
The increase in environmental temperatures brought about by climate change impacts negatively the growth performance of broilers that may be solved by manipulating the diet of the animals. Hence, this study was conducted to evaluate the effects of different vitamin supplements on the growth performance of broiler chickens subjected to ambient (31°C) and heat stress (34°C) temperatures. The treatments were: I- Control (no vitamin supplement), II- Vitamin A (4.5 mg/kg of feed), III- Vitamin C (250 mg/kg of feed), IV- Vitamin E (250 mg/kg of feed), V- Vitamin C and E (250 mg/kg of feed and 250 mg/kg of feed), VI- Vitamin A and E (4.5 mg/kg of feed and 250 mg/kg of feed), VII- Vitamin A and C (4.5 mg/kg of feed and 250 mg/kg of feed), and VIII- Vitamin A, C and E (4.5 mg/kg of feed, 250 mg/kg of feed and 250 mg/kg of feed). The birds (n=240) were distributed randomly into eight treatments replicated three times, with each replicates having five birds. Ambient temperature was maintained using a 25 watts bulb for every 20 birds, while heat stress condition was sustained at 34°C for about 9 hours daily by using a 50 watts bulb per 5 birds. The interaction of vitamin supplements and temperatures did not significantly (P>0.05) affected body weight, average daily gain, feed consumption and feed conversion efficiency throughout the growing period. Similarly, supplementation of different vitamins did not improve (P>0.05) the overall production performance of birds throughout the rearing period. Birds raised in heat stress (34°C) condition had significantly lower ((P<0.05) body weight, average daily gain, and feed consumption compared to birds raised in ambient temperature at weeks 3, 4 and 5 of rearing. Supplementation of vitamins A, C, and E in the diet of broilers did not alleviate the effect of heat stress in the growth performance of broilers.Keywords: broiler growth performance, heat stress, vitamin supplementation, vitamin A, vitamin C, vitamin E
Procedia PDF Downloads 2941644 Genetic Divergence of Life History Traits in Indian Populations of Drosophila bipectinata
Authors: Manvender Singh
Abstract:
Temperature is one of the most important climatic parameter for explaining the geographic distribution of ectothermic species. Empirical investigations on norms of the reaction according to developmental temperatures are helpful in analyzing the adapture capacity of a species which may be related to its ecological niche. In the present investigation, we have compared the effects of developmental temperatures on fecundity, hatchability, viability, and duration of development in five natural populations of Drosophila bipectinata along the latitudinal range. The clinal patterns for fecundity, as well as ovariole number, were observed which showed significant positive correlation (r=0.97). Similarly, hatchability and duration of development also revealed a positive correlation with latitude. Hence, suggesting the role of natural selection in maintaining the genetic divergence for life history traits along the north-south transect of the Indian Subcontinent.Keywords: growth temperature, fecundity, hatchability, viability, duration of development, Drosophila
Procedia PDF Downloads 2461643 Observation of a Phase Transition in Adsorbed Hydrogen at 101 Kelvin
Authors: Raina J. Olsen, Andrew K. Gillespie, John W. Taylor, Cristian I. Contescu, Peter Pfeifer, James R. Morris
Abstract:
While adsorbent surfaces such as graphite are known to increase the melting temperature of solid H2, this effect is normally rather small, increasing to 20 Kelvin (K) relative to 14 K in the bulk. An as-yet unidentified phase transition has been observed in a system of H2 adsorbed in a porous, locally graphitic, Saran carbon with sub-nanometer sized pores at temperatures (74-101 K) and pressures ( > 76 bar) well above the critical point of bulk H2 using hydrogen adsorption and neutron scattering experiments. Adsorption data shows a discontinuous pressure jump in the kinetics at 76 bar after nearly an hour of equilibration time, which is identified as an exothermic phase transition. This discontinuity is observed in the 87 K isotherm, but not the 77 K isotherm. At higher pressures, the measured isotherms show greater excess adsorption at 87 K than 77 K. Inelastic neutron scattering measurements also show a striking phase transition, with the amount of high angle scattering (corresponding to large momentum transfer/ large effective mass) increasing by up to a factor of 5 in the novel phase. During the course of the neutron scattering experiment, three of these reversible spectral phase transitions were observed to occur in response to only changes in sample temperature. The novel phase was observed by neutron scattering only at high H2 pressure (123 bar and 187 bar) and temperatures between 74-101 K in the sample of interest, but not at low pressure (30 bar), or in a control activated carbon at 186 bar of H2 pressure. Based on several of the more unusual observations, such as the slow equilibration and the presence of both an upper and lower temperature bound, a reasonable hypothesis is that this phase forms only in the presence of a high concentration of ortho-H2 (nuclear spin S=1). The increase in adsorption with temperature, temperatures which cross the lower temperature bound observed by neutron scattering, indicates that this novel phase is denser. Structural characterization data on the adsorbent shows that it may support a commensurate solid phase denser than those known to exist on graphite at much lower temperatures. Whatever this phase is eventually proven to be, these results show that surfaces can have a more striking effect on hydrogen phases than previously thought.Keywords: adsorbed phases, hydrogen, neutron scattering, nuclear spin
Procedia PDF Downloads 4681642 Electron-Ion Recombination for Photoionized and Collisionally Ionized Plasmas
Authors: Shahin A. Abdel-Naby, Asad T. Hassan
Abstract:
Astrophysical plasma environments can be classified into collisionally ionized (CP) and photoionizedplasmas (PP). In the PP, ionization is caused by an external radiation field, while it is caused by electron collision in the CP. Accurate and reliable laboratory astrophysical data for electron-ion recombination is needed for plasma modeling for low and high-temperatures. Dielectronic recombination (DR) is the dominant recombination process for the CP for most of the ions. When a free electron is captured by an ion with simultaneous excitation of its core, a doubly-exited intermediate state may be formed. The doubly excited state relaxes either by electron emission (autoionization) or by radiative decay (photon emission). DR process takes place when the relaxation occurs to a bound state by a photon emission. DR calculations at low-temperatures are problematic and challenging since small uncertaintiesin the low-energy DR resonance positions can produce huge uncertainties in DR rate coefficients.DR rate coefficients for N²⁺ and O³⁺ ions are calculated using state-of-the-art multi-configurationBreit-Pauli atomic structure AUTOSTRUCTURE collisional package within the generalized collisional-radiative framework. Level-resolved calculations for RR and DR rate coefficients from the ground and metastable initial states are produced in an intermediate coupling scheme associated withn = 0 and n = 1 core-excitations. DR cross sections for these ions are convoluted with the experimental electron-cooler temperatures to produce DR rate coefficients. Good agreements are foundbetween these rate coefficients and theexperimental measurements performed at CRYRING heavy-ionstorage ring for both ions.Keywords: atomic data, atomic process, electron-ion collision, plasmas
Procedia PDF Downloads 991641 Effect of Incineration Temperatures to Time on the Rice Husk Ash (RHA) Silica Structure: A Comparative Study to the Literature with Experimental Work
Authors: Binyamien Ibrahim Rasoul
Abstract:
Controlled burning of rice husk can produce amorphous rice husk ash (RHA) with high silica content which can significantly enhance the properties of concrete. This study has been undertaken to investigate the relationship between the incineration temperatures and time to produce RHA with ultimate reactivity. The rice husk samples were incinerated in an electrical muffle furnace at 350°C, 400°C, 425°C 450°C, 475°C, and 500°C for 60 and 90 minutes, respectively. The silica structure in the Rice Husk Ash (RHA) was determined using X-Ray diffraction analysis, while chemical properties obtained using X-Ray Fluorescence. The results show that RHA appeared to be the totally amorphous when the husk incineration up to 425°C for 60 and even at 90 minutes. However, with increased temperature to 450°C, 475°C and 500°C, traces of crystalline silica (quartz) were detected. However, cannot be taken into account as it does not affect on the ash structure. In conclusion, the result gives an idea of the temperature and the time required to produce ash from rice husk with totally amorphous form.Keywords: rice husk ash, silica, compressive strength, tensile strength, X-Ray diffraction, X-R florescence, pozzolanic activity
Procedia PDF Downloads 1661640 Extreme Temperature Response to Solar Radiation Management in Southeast Asia
Authors: Heri Kuswanto, Brina Miftahurrohmah, Fatkhurokhman Fauzi
Abstract:
Southeast Asia has experienced rising temperatures and is predicted to reach a 1.5°C increase by 2030, which is earlier than the Paris Agreement target. Solar Radiation Management (SRM) has been proposed as an alternative to combat global warming. This research investigates changes in the annual maximum temperature (TXx) with and without SRM over southeast Asia. We examined outputs from three ensemble members of the Geoengineering Large Ensemble Project (GLENS) experiment for the period 2051 to 2080. One ensemble member generated outputs that significantly deviated from the others, leading to the removal of ensemble 3 from the impact analysis. Our observations indicate that the magnitude of TXx changes with SRM is heterogeneous across countries. We found that SRM significantly reduces TXx levels compared to historical periods. Furthermore, SRM can reduce temperatures by up to 5°C compared to scenarios without SRM, with even more pronounced effects in Thailand, Cambodia, Laos, and Myanmar. This indicates that SRM can mitigate climate change by lowering future TXx levels.Keywords: solar radiation management, GLENS, extreme, temperature, ensemble
Procedia PDF Downloads 191639 Bactericidal Efficacy of Quaternary Ammonium Compound on Carriers with Food Additive Grade Calcium Hydroxide against Salmonella Infantis and Escherichia coli
Authors: M. Shahin Alam, Satoru Takahashi, Mariko Itoh, Miyuki Komura, Mayuko Suzuki, Natthanan Sangsriratanakul, Kazuaki Takehara
Abstract:
Cleaning and disinfection are key components of routine biosecurity in livestock farming and food processing industry. The usage of suitable disinfectants and their proper concentration are important factors for a successful biosecurity program. Disinfectants have optimum bactericidal and virucidal efficacies at temperatures above 20°C, but very few studies on application and effectiveness of disinfectants at low temperatures have been done. In the present study, the bactericidal efficacies of food additive grade calcium hydroxide (FdCa(OH)), quaternary ammonium compound (QAC) and their mixture, were investigated under different conditions, including time, organic materials (fetal bovine serum: FBS) and temperature, either in suspension or in carrier test. Salmonella Infantis and Escherichia coli, which are the most prevalent gram negative bacteria in commercial poultry housing and food processing industry, were used in this study. Initially, we evaluated these disinfectants at two different temperatures (4°C and room temperature (RT) (25°C ± 2°C)) and 7 contact times (0, 5 and 30 sec, 1, 3, 20 and 30 min), with suspension tests either in the presence or absence of 5% FBS. Secondly, we investigated the bactericidal efficacies of these disinfectants by carrier tests (rubber, stainless steel and plastic) at same temperatures and 4 contact times (30 sec, 1, 3, and 5 min). Then, we compared the bactericidal efficacies of each disinfectant within their mixtures, as follows. When QAC was diluted with redistilled water (dW2) at 1: 500 (QACx500) to obtain the final concentration of didecyl-dimethylammonium chloride (DDAC) of 200 ppm, it could inactivate Salmonella Infantis within 5 sec at RT either with or without 5% FBS in suspension test; however, at 4°C it required 30 min in presence of 5% FBS. FdCa(OH)2 solution alone could inactivate bacteria within 1 min both at RT and 4°C even with 5% FBS. While FdCa(OH)2 powder was added at final concentration 0.2% to QACx500 (Mix500), the mixture could inactivate bacteria within 30 sec and 5 sec, respectively, with or without 5% FBS at 4°C. The findings from the suspension test indicated that low temperature inhibited the bactericidal efficacy of QAC, whereas Mix500 was effective, regardless of short contact time and low temperature, even with 5% FBS. In the carrier test, single disinfectant required bit more time to inactivate bacteria on rubber and plastic surfaces than on stainless steel. However, Mix500 could inactivate S. Infantis on rubber, stainless steel and plastic surfaces within 30 sec and 1 min, respectively, at RT and 4°C; but, for E. coli, it required only 30 sec at both temperatures. So, synergistic effects were observed on different carriers at both temperatures. For a successful enhancement of biosecurity during winter, the disinfectants should be selected that could have short contact times with optimum efficacy against the target pathogen. The present study findings help farmers to make proper strategies for application of disinfectants in their livestock farming and food processing industry.Keywords: carrier, food additive grade calcium hydroxide (FdCa(OH)₂), quaternary ammonium compound, synergistic effects
Procedia PDF Downloads 2951638 Development of Extemporaneous Pediatric Syrup of Prednisone
Authors: Amel Chenafa, Sihem Boulenouar, Linda Aoued, Imane Sediri, Ismahan Djebbar, Mohamed Adil Selka
Abstract:
Introduction: The specialties intended for adults are often inadequate marketed for pediatric use, such as for a galenic form or in the dosage. For an industrial, development of a pediatric drug is confronted to various problems. So, the hospital pharmacies have to respond to adaptation needs of pharmaceutical forms for pediatric use. The objective of our work is to develop an oral form of prednisone for pediatric use since no adapted form to children is commercialized. Materials and Methods: Therefore an extemporaneous syrup of prednisone was prepared at the concentration of 0,5mg/ml from 5mg tablets and stored in amber glass bottles. Organoleptic and microbiological stability was studied in two temperatures: 5°C and 25°C, and evaluated at D0, D15, and D30. Results: No organoleptic changes have been detected on the syrup conserved at 25 and 5°C. The results show that there is no presence of bacteria, yeasts, and molds in the syrups stored at both temperatures during the analysis period. Conclusion: Sheltered from light, the developed syrup of prednisone remained stable at room temperature and/or refrigerator for 30 days.Keywords: extemporaneous syrup, pediatric drug, prednisone, stability
Procedia PDF Downloads 3881637 Experimental Measurements of Evacuated Enclosure Thermal Insulation Effectiveness for Vacuum Flat Plate Solar Thermal Collectors
Authors: Paul Henshall, Philip Eames, Roger Moss, Stan Shire, Farid Arya, Trevor Hyde
Abstract:
Encapsulating the absorber of a flat plate solar thermal collector in vacuum by an enclosure that can be evacuated can result in a significant increase in collector performance and achievable operating temperatures. This is a result of the thermal insulation effectiveness of the vacuum layer surrounding the absorber, as less heat is lost during collector operation. This work describes experimental thermal insulation characterization tests of prototype vacuum flat plate solar thermal collectors that demonstrate the improvement in absorber heat loss coefficients. Furthermore, this work describes the selection and sizing of a getter, suitable for maintaining the vacuum inside the enclosure for the lifetime of the collector, which can be activated at low temperatures.Keywords: vacuum, thermal, flat-plate solar collector, insulation
Procedia PDF Downloads 3981636 Corrosion Behavior of Steels in Molten Salt Reactors
Authors: Jana Rejková, Marie Kudrnová
Abstract:
This paper deals with the research of materials for one of the types of reactors IV. generation - reactor with molten salts. One of the advantages of molten salts applied as a coolant in reactors is the ability to operate at relatively low pressures, as opposed to cooling with water or gases. Compared to liquid metal cooling, which also allows lower operating pressures, salt melts are less prone to chemical reactions. The service life of the construction materials used is limited by the operating temperatures of the reactor and the content of impurities in the salts. For the research of corrosion resistance, an experimental device was designed and assembled, enabling exposure at high temperatures without access to oxygen in a flowing atmosphere of inert gas. Nickel alloys Inconel 601, 617, and 625 were tested in a mixture of chloride salts LiCl – KCl (58,2 - 41,8 wt. %). The experiment showed high resistance of the materials used and based on the results and XPS analysis, other construction materials were proposed for the experiments.Keywords: molten salt, corrosion, nuclear reactor, nickel alloy
Procedia PDF Downloads 1671635 Contact Temperature of Sliding Surfaces in AISI 316 Austenitic Stainless Steel During PIN on Disk Dry Wear Testing
Authors: Dler Abdullah Ahmed, Zozan Ahmed Mohammed
Abstract:
This study looked into contact surface temperature during a pin-on-disk test. Friction and wear between sliding surfaces raised the temperature differential between the contact surface and ambient temperatures Tdiff. Tdiff was significantly influenced by wear test variables. Tdiff rose with the increase of sliding speed and applied load while dropped with the increase in ambient temperature. The highest Tdiff was 289°C during the tests at room temperature and 2.5 m/s sliding speed, while the minimum was only 24 °C during the tests at 400°C and 0.5 m/s. However, the maximum contact temperature Tmax was found during tests conducted at high ambient temperatures. The Tmax was estimated based on the theoretical equation. The comparison of experimental and theoretical Tmax data revealed good agreement.Keywords: pin on disk test, contact temperature, wear, sliding surface, friction, ambient temperature
Procedia PDF Downloads 851634 The Role of Urban Development Patterns for Mitigating Extreme Urban Heat: The Case Study of Doha, Qatar
Authors: Yasuyo Makido, Vivek Shandas, David J. Sailor, M. Salim Ferwati
Abstract:
Mitigating extreme urban heat is challenging in a desert climate such as Doha, Qatar, since outdoor daytime temperature area often too high for the human body to tolerate. Recent studies demonstrate that cities in arid and semiarid areas can exhibit ‘urban cool islands’ - urban areas that are cooler than the surrounding desert. However, the variation of temperatures as a result of the time of day and factors leading to temperature change remain at the question. To address these questions, we examined the spatial and temporal variation of air temperature in Doha, Qatar by conducting multiple vehicle-base local temperature observations. We also employed three statistical approaches to model surface temperatures using relevant predictors: (1) Ordinary Least Squares, (2) Regression Tree Analysis and (3) Random Forest for three time periods. Although the most important determinant factors varied by day and time, distance to the coast was the significant determinant at midday. A 70%/30% holdout method was used to create a testing dataset to validate the results through Pearson’s correlation coefficient. The Pearson’s analysis suggests that the Random Forest model more accurately predicts the surface temperatures than the other methods. We conclude with recommendations about the types of development patterns that show the greatest potential for reducing extreme heat in air climates.Keywords: desert cities, tree-structure regression model, urban cool Island, vehicle temperature traverse
Procedia PDF Downloads 3941633 A Feasibility Study on Producing Bio-Coal from Orange Peel Residue by Using Torrefaction
Authors: Huashan Tai, Chien-Hui Lung
Abstract:
Nowadays people use massive fossil fuels which not only cause environmental impacts and global climate change, but also cause the depletion of non-renewable energy such as coal and oil. Bioenergy is currently the most widely used renewable energy, and agricultural waste is one of the main raw materials for bioenergy. In this study, we use orange peel residue, which is easier to collect from agricultural waste to produce bio-coal by torrefaction. The orange peel residue (with 25 to 30% moisture) was treated by torrefaction, and the experiments were conducted with initial temperature at room temperature (approximately at 25° C), with heating rates of 10, 30, and 50°C / min, with terminal temperatures at 150, 200, 250, 300, 350℃, and with residence time of 10, 20, and 30 minutes. The results revealed that the heating value, ash content and energy densification ratio of the solid products after torrefaction are in direct proportion to terminal temperatures and residence time, and are inversely proportional to heating rates. The moisture content, solid mass yield, energy yield, and volumetric energy density of the solid products after torrefaction are inversely proportional to terminal temperatures and residence time, and are in direct proportion to heating rates. In conclusion, we found that the heating values of the solid products were 1.3 times higher than those of the raw orange peels before torrefaction, and the volumetric energy densities were increased by 1.45 times under operating parameters with terminal temperature at 250°C, residence time of 10 minutes, and heating rate of 10°C / min of torrefaction. The results indicated that the residue of orange peel treated by torrefaction improved its energy density and fuel properties, and became more suitable for bio-fuel applications.Keywords: biomass energy, orange, torrefaction
Procedia PDF Downloads 2931632 Stabilizing Additively Manufactured Superalloys at High Temperatures
Authors: Keivan Davami, Michael Munther, Lloyd Hackel
Abstract:
The control of properties and material behavior by implementing thermal-mechanical processes is based on mechanical deformation and annealing according to a precise schedule that will produce a unique and stable combination of grain structure, dislocation substructure, texture, and dispersion of precipitated phases. The authors recently developed a thermal-mechanical technique to stabilize the microstructure of additively manufactured nickel-based superalloys even after exposure to high temperatures. However, the mechanism(s) that controls this stability is still under investigation. Laser peening (LP), also called laser shock peening (LSP), is a shock based (50 ns duration) post-processing technique used for extending performance levels and improving service life of critical components by developing deep levels of plastic deformation, thereby generating high density of dislocations and inducing compressive residual stresses in the surface and deep subsurface of components. These compressive residual stresses are usually accompanied with an increase in hardness and enhance the material’s resistance to surface-related failures such as creep, fatigue, contact damage, and stress corrosion cracking. While the LP process enhances the life span and durability of the material, the induced compressive residual stresses relax at high temperatures (>0.5Tm, where Tm is the absolute melting temperature), limiting the applicability of the technology. At temperatures above 0.5Tm, the compressive residual stresses relax, and yield strength begins to drop dramatically. The principal reason is the increasing rate of solid-state diffusion, which affects both the dislocations and the microstructural barriers. Dislocation configurations commonly recover by mechanisms such as climbing and recombining rapidly at high temperatures. Furthermore, precipitates coarsen, and grains grow; virtually all of the available microstructural barriers become ineffective.Our results indicate that by using “cyclic” treatments with sequential LP and annealing steps, the compressive stresses survive, and the microstructure is stable after exposure to temperatures exceeding 0.5Tm for a long period of time. When the laser peening process is combined with annealing, dislocations formed as a result of LPand precipitates formed during annealing have a complex interaction that provides further stability at high temperatures. From a scientific point of view, this research lays the groundwork for studying a variety of physical, materials science, and mechanical engineering concepts. This research could lead to metals operating at higher sustained temperatures enabling improved system efficiencies. The strengthening of metals by a variety of means (alloying, work hardening, and other processes) has been of interest for a wide range of applications. However, the mechanistic understanding of the often complex processes of interactionsbetween dislocations with solute atoms and with precipitates during plastic deformation have largely remained scattered in the literature. In this research, the elucidation of the actual mechanisms involved in the novel cyclic LP/annealing processes as a scientific pursuit is investigated through parallel studies of dislocation theory and the implementation of advanced experimental tools. The results of this research help with the validation of a novel laser processing technique for high temperature applications. This will greatly expand the applications of the laser peening technology originally devised only for temperatures lower than half of the melting temperature.Keywords: laser shock peening, mechanical properties, indentation, high temperature stability
Procedia PDF Downloads 1531631 Comparison of Cu Nanoparticle Formation and Properties with and without Surrounding Dielectric
Authors: P. Dubcek, B. Pivac, J. Dasovic, V. Janicki, S. Bernstorff
Abstract:
When grown only to nanometric sizes, metallic particles (e.g. Ag, Au and Cu) exhibit specific optical properties caused by the presence of plasmon band. The plasmon band represents collective oscillation of the conduction electrons, and causes a narrow band absorption of light in the visible range. When the nanoparticles are embedded in a dielectric, they also cause modifications of dielectrics optical properties. This can be fine-tuned by tuning the particle size. We investigated Cu nanoparticle growth with and without surrounding dielectric (SiO2 capping layer). The morphology and crystallinity were investigated by GISAXS and GIWAXS, respectively. Samples were produced by high vacuum thermal evaporation of Cu onto monocrystalline silicon substrate held at room temperature, 100°C or 180°C. One series was in situ capped by 10nm SiO2 layer. Additionally, samples were annealed at different temperatures up to 550°C, also in high vacuum. The room temperature deposited samples annealed at lower temperatures exhibit continuous film structure: strong oscillations in the GISAXS intensity are present especially in the capped samples. At higher temperatures enhanced surface dewetting and Cu nanoparticles (nanoislands) formation partially destroy the flatness of the interface. Therefore the particle type of scattering is enhanced, while the film fringes are depleted. However, capping layer hinders particle formation, and continuous film structure is preserved up to higher annealing temperatures (visible as strong and persistent fringes in GISAXS), compared to the non- capped samples. According to GISAXS, lateral particle sizes are reduced at higher temperatures, while particle height is increasing. This is ascribed to close packing of the formed particles at lower temperatures, and GISAXS deduced sizes are partially the result of the particle agglomerate dimensions. Lateral maxima in GISAXS are an indication of good positional correlation, and the particle to particle distance is increased as the particles grow with temperature elevation. This coordination is much stronger in the capped and lower temperature deposited samples. The dewetting is much more vigorous in the non-capped sample, and since nanoparticles are formed in a range of sizes, correlation is receding both with deposition and annealing temperature. Surface topology was checked by atomic force microscopy (AFM). Capped sample's surfaces were smoother and lateral size of the surface features were larger compared to the non-capped samples. Altogether, AFM results suggest somewhat larger particles and wider size distribution, and this can be attributed to the difference in probe size. Finally, the plasmonic effect was monitored by UV-Vis reflectance spectroscopy, and relative weak plasmonic effect could be explained by uncomplete dewetting or partial interconnection of the formed particles.Keywords: coper, GISAXS, nanoparticles, plasmonics
Procedia PDF Downloads 1251630 Measurement and Evaluation of Outdoor Lighting Environment at Night in Residential Community in China: A Case Study of Hangzhou
Authors: Jiantao Weng, Yujie Zhao
Abstract:
With the improvement of living quality and demand for nighttime activities in China, the current situation of outdoor lighting environment at night needs to be assessed. Lighting environment at night plays an important role to guarantee night safety. Two typical residential communities in Hangzhou were selected. A comprehensive test method of outdoor lighting environment at night was established. The road, fitness area, landscape, playground and entrance were included. Field measurements and questionnaires were conducted in these two residential communities. The characteristics of residents’ habits and the subjective evaluation on different aspects of outdoor lighting environment at night were collected via questionnaire. A safety evaluation system on the outdoor lighting environment at night in the residential community was established. The results show that there is a big difference in illumination in different areas. The lighting uniformities of roads cannot meet the requirement of lighting standard in China. Residents pay more attention to the lighting environment of the fitness area and road than others. This study can provide guidance for the design and management of outdoor lighting environment at night.Keywords: residential community, lighting environment, night, field measurement
Procedia PDF Downloads 1681629 Characterization of Chemically Deposited CdS Thin Films Annealed in Different Atmospheres
Authors: J. Pantoja Enríquez, G. P. Hernández, G. I. Duharte, X. Mathew, J. Moreira, P. J. Sebastian
Abstract:
Cadmium sulfide films were deposited onto glass substrates by chemical bath deposition (CBD) from a bath containing cadmium acetate, ammonium acetate, thiourea, and ammonium hydroxide. The CdS thin films were annealed in air, argon, hydrogen and nitrogen for 1 h at various temperatures (300, 350, 400, 450 and 500 °C). The changes in optical and electrical properties of annealed treated CdS thin films were analyzed. The results showed that, the band-gap and resistivity depend on the post-deposition annealing atmosphere and temperatures. Thus, it was found that these properties of the films, were found to be affected by various processes with opposite effects, some beneficial and others unfavorable. The energy gap and resistivity for different annealing atmospheres was seen to oscillate by thermal annealing. Recrystallization, oxidation, surface passivation, sublimation and materials evaporation were found the main factors of the heat-treatment process responsible for this oscillating behavior. Annealing over 400 °C was seen to degrade the optical and electrical properties of the film.Keywords: cds, thin films, annealing, optical, electrical properties
Procedia PDF Downloads 5121628 Relation between Low Thermal Stress and Antioxidant Enzymes Activity in a Sweetening Plant: Stevia Rebaudiana Bert
Authors: T. Bettaieb, S. Soufi, S. Arbaoui
Abstract:
Stevia rebaudiana Bert. is a natural sweet plant. The leaves contain diterpene glycosides stevioside, rebaudiosides A-F, steviolbioside and dulcoside, which are responsible for its sweet taste and have commercial value all over the world as sugar substitute in foods and medicines. Stevia rebaudiana Bert. is sensitive temperature lower than 9°C. The possibility of its outdoor culture in Tunisian conditions demand genotypes tolerant to low temperatures. In order to evaluate the low temperature tolerance of eight genotypes of Stevia rebaudiana, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalases (CAT) were measured. Before carrying out the analyses, three genotypes of Stevia were exposed for 1 month at a temperature regime of 18°C during the day and 7°C at night similar to winter conditions in Tunisia. In response to the stress generated by low temperature, antioxidant enzymes activity revealed on native gel and quantified by spectrophotometry showed variable levels according to their degree of tolerance to low temperatures.Keywords: chilling tolerance, enzymatic activity, stevia rebaudiana bert, low thermal stress
Procedia PDF Downloads 4451627 Application of Sensory Thermography on Workers of a Wireless Industry in Mexico
Authors: Claudia Camargo Wilson, Enrique Javier de la Vega Bustillos, Jesús Everardo Olguín Tiznado, Juan Andrés López Barreras, Sandra K. Enriquez
Abstract:
This study focuses on the application of sensory thermography, as a non-invasive method to evaluate the musculoskeletal injuries that industry workers performing Highly Repetitive Movements (HRM) may acquire. It was made at a wireless company having the target of analyze temperatures in worker’s wrists, elbows and shoulders in workstations during their activities, this thru sensorial thermography with the goal of detecting maximum temperatures (Tmax) that could indicate possible injuries. The tests were applied during 3 hours for only 2 workers that work in workstations where there’s been the highest index of injuries and accidents. We were made comparisons for each part of the body that were study for both because of the similitude between the activities of the workstations; they were requiring both an immediate evaluation. The Tmax was recorder during the test of the worker 2, in the left wrist, reaching a temperature of 35.088ºC and with a maximum increase of 1.856°C.Keywords: thermography, maximum temperaturas (Tmax), highly repetitive movements (HRM), operator
Procedia PDF Downloads 4051626 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection
Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang
Abstract:
To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detections is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15um/10m and the accuracy of the machine tool is significant improved.Keywords: thermal expansion error of grating scale, error compensation, machine tools, integral method
Procedia PDF Downloads 3731625 An Investigation into Sealing Materials for Vacuum Glazing
Authors: Paul Onyegbule, Harjit Singh
Abstract:
Vacuum glazing is an innovative transparent thermal insulator that has application in high performance window, especially in renewable energy. Different materials as well as sealing methods have been adopted to seal windows with different temperatures. The impact of temperatures on sealing layers has been found to have significant effects on the microstructure of the seal. This paper seeks to investigate the effects of sealing materials specifically glass powder and flux compound (borax) for vacuum glazing. The findings of the experiment conducted show that the sealing material was rigid with some leakage around the edge, and we found that this could be stopped by enhancing the uniformity of the seal within the periphery. Also, we found that due to the intense tensile stress from the oven surface temperature of the seal at 200 0C, a crack was observed at the side of the glass. Based on the above findings, this study concludes that a glass powder with a lower melting temperature of below 250 0C with the addition of an adhesive (borax flux) should be used for future vacuum seals.Keywords: double glazed windows, U-value, heat loss, borax powder, edge seal
Procedia PDF Downloads 2391624 Optimization of the Culture Medium, Incubation Period, pH and Temperatures for Maximal Dye Bioremoval Using A. Fumigates
Authors: Wafaa M. Abd El-Rahim, Magda A. El-Meleigy, Eman Refaat
Abstract:
This study dealing with optimization the conditions affecting the formation of extracellular lignin- degrading enzymes to achieve maximal decolorization activity of Direct Violet dye by one fungal strain. In this study Aspergillus fumigates fungal strain used for production extracellular ligninolytic enzymes for removing Direct Violet dye under different conditions: culture medium, incubation period, pH and temperatures. The results indicted that the removal efficiency of A. fumigatus was enhanced by addition glucose and peptone to the culture medium. The addition of peptone and glucose was found to increase the decolorization activity of the fungal isolate from 51.38% to 93.74% after 4 days of incubation. The highest production of extracellular lignin degrading enzymes also recorded in Direct Violet dye medium supplemented with peptone and glucose. It was also found the decolorization activity of A. fumigatus was decreased gradually by increasing the incubation period up to 4 days. Also it was found that the fungal strain can grow and produce extracellular ligninolytic enzymes which accompanied by efficient removal of Direct Violet dye in a wide pH range of 4-8. The results also found that the maximal biosynthesis of ligninolytic enzymes which accompanied with maximal removal of Direct Violet dye was obtained at a temperature of 28C. This indicates that the different conditions of culture medium, incubation period, pH and temperatures are effective on dye decolorization on the fungal biomass and played a role in Direct Violet dye removal along with enzymatic activity of A. fumigatus.Keywords: A. fumigates, extracellular lignin- degrading enzymes, textile dye, dye removing
Procedia PDF Downloads 2801623 Experimental Investigation of Seawater Thermophysical Properties: Understanding Climate Change Impacts on Marine Ecosystems Through Internal Pressure and Cohesion Energy Analysis
Authors: Nishaben Dholakiya, Anirban Roy, Ranjan Dey
Abstract:
The unprecedented rise in global temperatures has triggered complex changes in marine ecosystems, necessitating a deeper understanding of seawater's thermophysical properties by experimentally measuring ultrasonic velocity and density at varying temperatures and salinity. This study investigates the critical relationship between temperature variations and molecular-level interactions in Arabian Sea surface waters, specifically focusing on internal pressure (π) and cohesion energy density (CED) as key indicators of ecosystem disruption. Our experimental findings reveal that elevated temperatures significantly reduce internal pressure, weakening the intermolecular forces that maintain seawater's structural integrity. This reduction in π correlates directly with decreased habitat stability for marine organisms, particularly affecting pressure-sensitive species and their physiological processes. Similarly, the observed decline in cohesion energy density at higher temperatures indicates a fundamental shift in water molecule organization, impacting the dissolution and distribution of vital nutrients and gases. These molecular-level changes cascade through the ecosystem, affecting everything from planktonic organisms to complex food webs. By employing advanced machine learning techniques, including Stacked Ensemble Machine Learning (SEML) and AdaBoost (AB), we developed highly accurate predictive models (>99% accuracy) for these thermophysical parameters. The results provide crucial insights into the mechanistic relationship between climate warming and marine ecosystem degradation, offering valuable data for environmental policymaking and conservation strategies. The novelty of this research serves as no such thermodynamic investigation has been conducted before in literature, whereas this research establishes a quantitative framework for understanding how molecular-level changes in seawater properties directly influence marine ecosystem stability, emphasizing the urgent need for climate change mitigation efforts.Keywords: thermophysical properties, Arabian Sea, internal pressure, cohesion energy density, machine learning
Procedia PDF Downloads 141622 Liquid-Liquid Transitions in Strontium Tellurite Melts
Authors: Rajinder Kaur, Atul Khanna
Abstract:
Transparent glass-ceramic and crystalline samples of the system: xSrO-(100-x)TeO2; x = 7.5 and 8.5 mol% were prepared by quenching the melts in the temperature range of 700 to 950oC. A very interesting effect of the temperature on the glass-forming ability (GFA) of strontium tellurite melts is observed,and it is found that the melts produce transparent glass-ceramics when it is solidified from lower temperatures in the range of 700-750oC, however, when the melts are cooled from higher temperatures in the range of 850-950oC, the GFA is significantly reduced andanti-glass and/or crystalline phases are produced on solidification.The effect of temperature on GFA of strontium tellurite melts is attributed to short-range structural transformations: TeO₄TeO₃ which procceds towards the right side with an increrase in temperature. This isomerization reaction lowers the melt viscosity and enhances the crystallization tedendency. It is concluded that the high-temperature strontium tellurite meltsfreeze faster into crystalline phases as compared to the melts at a lower temperature; the latter supercooland solidify into glassy phases.Keywords: anti-glasss, ceramic, supercool liquid, raman spectroscopy
Procedia PDF Downloads 851621 Sunshine Hour as a Factor to Maintain the Circadian Rhythm of Heart Rate: Analysis of Ambulatory ECG and Weather Big Data
Authors: Emi Yuda, Yutaka Yoshida, Junichiro Hayano
Abstract:
Distinct circadian rhythm of activity, i.e., high activity during the day and deep rest at night are a typical feature of a healthy lifestyle. Exposure to the skylight is thought to be an important factor to increase arousal level and maintain normal circadian rhythm. To examine whether sunshine hours influence the day-night contract of activity, we analyzed the relationship between 24-hour heart rate (HR) and weather data of the recording day. We analyzed data in 36,500 males and 49,854 females of Allostatic State Mapping by Ambulatory ECG Repository (ALLSTAR) database in Japan. Median (IQR) sunshine duration was 5.3 (2.8-7.9) hr. While sunshine hours had only modest effects of increasing 24-hour average HR in either gender (P=0.0282 and 0.0248 for male and female) and no significant effects on nighttime HR in either gender, it increased daytime HR (P = 0.0007 and 0.0015) and day-night HF difference in both genders (P < 0.0001 for both) even after adjusting for the effects of average temperature, atmospheric pressure, and humidity. Our observations support for the hypothesis that longer sunshine hours enhance circadian rhythm of activity.Keywords: big data, circadian rhythm, heart rate, sunshine
Procedia PDF Downloads 166