Search results for: backbone
28 Process Improvement and Redesign of the Immuno Histology (IHC) Lab at MSKCC: A Lean and Ergonomic Study
Authors: Samantha Meyerholz
Abstract:
MSKCC offers patients cutting edge cancer care with the highest quality standards. However, many patients and industry members do not realize that the operations of the Immunology Histology Lab (IHC) are the backbone for carrying out this mission. The IHC lab manufactures blocks and slides containing critical tissue samples that will be read by a Pathologist to diagnose and dictate a patient’s treatment course. The lab processes 200 requests daily, leading to the generation of approximately 2,000 slides and 1,100 blocks each day. Lab material is transported through labeling, cutting, staining and sorting manufacturing stations, while being managed by multiple techs throughout the space. The quality of the stain as well as wait times associated with processing requests, is directly associated with patients receiving rapid treatments and having a wider range of care options. This project aims to improve slide request turnaround time for rush and non-rush cases, while increasing the quality of each request filled (no missing slides or poorly stained items). Rush cases are to be filled in less than 24 hours, while standard cases are allotted a 48 hour time period. Reducing turnaround times enable patients to communicate sooner with their clinical team regarding their diagnosis, ultimately leading faster treatments and potentially better outcomes. Additional project goals included streamlining tech and material workflow, while reducing waste and increasing efficiency. This project followed a DMAIC structure with emphasis on lean and ergonomic principles that could be integrated into an evolving lab culture. Load times and batching processes were analyzed using process mapping, FMEA analysis, waste analysis, engineering observation, 5S and spaghetti diagramming. Reduction of lab technician movement as well as their body position at each workstation was of top concern to pathology leadership. With new equipment being brought into the lab to carry out workflow improvements, screen and tool placement was discussed with the techs in focus groups, to reduce variation and increase comfort throughout the workspace. 5S analysis was completed in two phases in the IHC lab, helping to drive solutions that reduced rework and tech motion. The IHC lab plans to continue utilizing these techniques to further reduce the time gap between tissue analysis and cancer care.Keywords: engineering, ergonomics, healthcare, lean
Procedia PDF Downloads 22327 Appraisal of Conservation Strategies of Veligonda Forest Range of Eastern Ghats, Andhra Pradesh, India
Authors: Khasim Munir Bhasha Shaik
Abstract:
Veligonda and adjoining hill range spread along about 170 Km North to South in Kadapa and Nellore Districts stretching a little further into Prakasam District. The latitude in general ranges up to 1000m. The forests are generally dry deciduous type. Veligonda and adjoining hill ranges comprise of Palakonda, Seshachalam, Lankamala and the terminal part of Nallamalais from mid-region of Southern Eastern Ghats. The Veligonda range which separates the Nellore district from Kadapa and Kurnool is the backbone of the Eastern Ghats, starting from Nagari promontory in Chittoor district. It runs in a northerly direction along the western border of the Nellore district, with a raising elevation of 3,626 ft at Penchalakona in Raipur thaluk. Veligonda hill ranges are high in altitude and have deep valleys. Among the Veligondas range of hills the Durgam in Venkatagiri range and Penchalakona are the most prominent and are situated 914 meters above mean sea level. It has more than 3000 species of plants along with 500 animal species. The unique specialty of this region is the presence of Pterocarpus santalinus(endangered) and Santalum album (vulnerable). In the present study, an attempt is made to assess the efforts that are going on to conserve the biodiversity of flora and fauna of this region. Various conservation strategies were suggested to protect the biodiversity and richness of Veligonda forest, hill region of Eastern Ghats of Andhra Pradesh. The major threats and the reasons for the dwindling species richness are poor rainfall, adverse climatic conditions, robbery of Red sanders and poaching of animals by the local tribals. Efforts are to be made to conserve some of the animals by both in situ and ex-situ methods. More awareness is to be developed among the local communities who are dwelling in the vicinity and importance of conservation is to be emphasized to them. Anthropogenic attachments are to be made by introducing more numbers of sacred groves. Gross enforcement of law is to be made to protect the various forest resources in this area. The important species with the medicinal values are to be identified. It was found that two important wildlife sanctuaries named Sri Lankamalleswarawildlife sanctuary and Sripenusila Narasimha wildlife sanctuary are working for the comprehensive conservation of the environment in this area. Apart from this more than 38 important sacred grooves are there where the plants and animals are protected by local Yanadi and other communities.Keywords: biodiversity, wild life sanctuary, habitat destruction, eastern Ghats
Procedia PDF Downloads 15626 Effects of Land Certification in Securing Women’s Land Rights: The Case of Oromia Regional State, Central Ethiopia
Authors: Mesfin Nigussie Ibido
Abstract:
The study is designed to explore the effects of land certification in securing women’s land rights of two rural villages in Robe district at Arsi Zone of Oromia regional state. The land is very critical assets for human life survival and the backbone for rural women livelihood. Equal access and control power to the land have given a chance for rural women to participate in different economic activities and improve their bargaining ability for decision making on their rights. Unfortunately, women were discriminated and marginalized from access and control of land for centuries through customary practices. However, in many countries, legal reform is used as a powerful tool for eliminating discriminatory provisions in property rights. Among other equity and efficiency concerns, the land certification program in Ethiopia attempts to address gender bias concerns of the current land-tenure system. The existed rural land policy was recognizing a women land rights and benefited by strengthened wives awareness of their land rights and contribute to the strong involvement of wives in decision making. However, harmful practices and policy implementation problems still against women do not fully exercise a provision of land rights in a different area of the country. Thus, this study is carried out to examine the effect of land certification in securing women’s land rights by eliminating the discriminatory nature of cultural abuses of study areas. Probability and non-probability sampling types were used, and the sample size was determined by using the sampling distribution of the proportion method. Systematic random sampling method was applied by taking the nth element of the sample frame. Both quantitative and qualitative research methods were applied, and survey respondents of 192 households were conducted and administering questionnaires in the quantitative method. The qualitative method was applied by interviews with focus group discussions with rural women, case stories, Village, and relevant district offices. Triangulation method was applied in data collection, data presentation and in the analysis of findings. Study finding revealed that the existence of land certification is affected by rural women positively by advancing their land rights, but still, some women are challenged by unsolved problems in the study areas. The study forwards recommendation on the existed problems or gaps to ensure women’s equal access to and control over land in the study areas.Keywords: decision making, effects, land certification, land right, tenure security
Procedia PDF Downloads 20725 Effects of Plasma Technology in Biodegradable Films for Food Packaging
Authors: Viviane P. Romani, Bradley D. Olsen, Vilásia G. Martins
Abstract:
Biodegradable films for food packaging have gained growing attention due to environmental pollution caused by synthetic films and the interest in the better use of resources from nature. Important research advances were made in the development of materials from proteins, polysaccharides, and lipids. However, the commercial use of these new generation of sustainable materials for food packaging is still limited due to their low mechanical and barrier properties that could compromise the food quality and safety. Thus, strategies to improve the performance of these materials have been tested, such as chemical modifications, incorporation of reinforcing structures and others. Cold plasma is a versatile, fast and environmentally friendly technology. It consists of a partially ionized gas containing free electrons, ions, and radicals and neutral particles able to react with polymers and start different reactions, leading to the polymer degradation, functionalization, etching and/or cross-linking. In the present study, biodegradable films from fish protein prepared through the casting technique were plasma treated using an AC glow discharge equipment. The reactor was preliminary evacuated to ~7 Pa and the films were exposed to air plasma for 2, 5 and 8 min. The films were evaluated by their mechanical and water vapor permeability (WVP) properties and changes in the protein structure were observed using Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). Potential cross-links and elimination of surface defects by etching might be the reason for the increase in tensile strength and decrease in the elongation at break observed. Among the times of plasma application tested, no differences were observed when higher times of exposure were used. The X-ray pattern showed a broad peak at 2θ = 19.51º that corresponds to the distance of 4.6Å by applying the Bragg’s law. This distance corresponds to the average backbone distance within the α-helix. Thus, the changes observed in the films might indicate that the helical configuration of fish protein was disturbed by plasma treatment. SEM images showed surface damage in the films with 5 and 8 min of plasma treatment, indicating that 2 min was the most adequate time of treatment. It was verified that plasma removes water from the films once weight loss of 4.45% was registered for films treated during 2 min. However, after 24 h in 50% of relative humidity, the water lost was recovered. WVP increased from 0.53 to 0.65 g.mm/h.m².kPa after plasma treatment during 2 min, that is desired for some foods applications which require water passage through the packaging. In general, the plasma technology affects the properties and structure of fish protein films. Since this technology changes the surface of polymers, these films might be used to develop multilayer materials, as well as to incorporate active substances in the surface to obtain active packaging.Keywords: fish protein films, food packaging, improvement of properties, plasma treatment
Procedia PDF Downloads 16324 How Strategic Urban Design Promote Sustainable Urban Mobility: A Comparative Analysis of Cities from Global North and Global South
Authors: Rati Sandeep Choudhari
Abstract:
Mobility flows are considered one of the most important elements of urbanisation, with transport infrastructure serving as a backbone of urban fabrics. Although rapid urbanisation and changing land use patterns have led to an increase in urban mobility levels around the globe, mobility, in general, has become an unpleasant experience for city dwellers, making locations around the city inconvenient to access. With public transport featured in almost every sustainable mobility plan in developing countries, the intermodality and integration with appropriate non–motorised transport infrastructure is often neglected. As a result, people choose to use private cars and two-wheelers to travel, rendering public transit systems underutilised, and encroaching onto pedestrian space on streets, thus making urban mobility unsafe and inconvenient for a major section of society. On the other hand, cities in the West, especially in Europe, depend heavily on inter–modal transit systems, allowing people to shift between metros, buses, trams, walking, and cycling to access even the remote locations of the city. Keeping accessibility as the focal point while designing urban mobility plans and policies, these cities have appropriately refined their urban form, optimised urban densities, developed a multimodal transit system, and adopted place-making strategies to foster a sense of place, thus, improving the quality of urban mobility experience in cities. Using a qualitative research approach, the research looks in detail into the existing literature on what kind of strategies can be applied to improve the urban mobility experience for city dwellers. It further studies and draws out a comparative analysis of cities in both developed and developing parts of the world where these strategies have been used to create people-centric mobility systems, fostering a sense of place with respect to urban mobility and how these strategies affected their social, economic, and environmental dynamics. The examples reflect on how different strategies like redefining land use patterns to form close knit neighbourhoods, development of non – motorise transit systems, and their integration with public transport infrastructure and place-making approach has helped in enhancing the quality and experience of mobility infrastructure in cities. The research finally concludes by laying out strategies that can be adopted by cities of the Global South to develop future mobility systems in a people-centric and sustainable way.Keywords: urban mobility, sustainable transport, strategic planning, people-centric approach
Procedia PDF Downloads 13023 Assessment of the Impact of Social Compliance Certification on Abolition of Forced Labour and Discrimination in the Garment Manufacturing Units in Bengaluru: A Perspective of Women Sewing Operators
Authors: Jonalee Das Bajpai, Sandeep Shastri
Abstract:
The Indian Textile and Garment Industry is one of the major contributors to the country’s economy. This industry is also one of the largest labour intensive industries after agriculture and livestock. This Indian garment industry caters to both the domestic and international market. Although this industry comes under the purview of Indian Labour Laws and other voluntary work place standards yet, this industry is often criticized for the undue exploitation of the workers. This paper explored the status of forced labour and discrimination at work place in the garment manufacturing units in Bengaluru. This study is conducted from the perspective of women sewing operators as majority of operators in Bengaluru are women. The research also explored to study the impact of social compliance certification in abolishing forced labour and discrimination at work place. Objectives of the Research: 1. To study the impact of 'Social Compliance Certification' on abolition of forced labour among the women workforce. 2. To study the impact of 'Social Compliance Certification' on abolition of discrimination at workplace among the women workforce. Sample Size and Data Collection Techniques: The main backbone of the data which is the primary data was collected through a structured questionnaire. The questionnaire attempted to explore the extent of prevalence of forced labour and discrimination against women workers from the perspective of women workers themselves. The sample size for the same was 600 (n) women sewing operators from the garment industry with minimum one year of work experience. Three hundred samples were selected from units with Social Compliance Certification like SA8000, WRAP, BSCI, ETI and so on. Other three hundred samples were selected from units without Social Compliance Certification. Out of these three hundred samples, one hundred and fifty samples were selected from units with Buyer’s Code of Conduct and another one hundred and fifty were from domestic units that do not come under the purview of any such certification. The responses of the survey were further authenticated through on sight visit and personal interactions. Comparative analysis of the workplace environment between units with Social Compliance certification, units with Buyer’s Code of Conduct and domestic units that do not come under the purview of any such voluntary workplace environment enabled to analyze the impact of Social Compliance certification on abolition of workplace environment and discrimination at workplace. Correlation analysis has been conducted to measure the relationship between impact of forced labour and discrimination at workplace on the level of job satisfaction. The result displayed that abolition of forced labour and abolition of discrimination at workplace have a higher level of job satisfaction among the women workers.Keywords: discrimination, garment industry, forced labour, social compliance certification
Procedia PDF Downloads 19422 Well-Defined Polypeptides: Synthesis and Selective Attachment of Poly(ethylene glycol) Functionalities
Authors: Cristina Lavilla, Andreas Heise
Abstract:
The synthesis of sequence-controlled polymers has received increasing attention in the last years. Well-defined polyacrylates, polyacrylamides and styrene-maleimide copolymers have been synthesized by sequential or kinetic addition of comonomers. However this approach has not yet been introduced to the synthesis of polypeptides, which are in fact polymers developed by nature in a sequence-controlled way. Polypeptides are natural materials that possess the ability to self-assemble into complex and highly ordered structures. Their folding and properties arise from precisely controlled sequences and compositions in their constituent amino acid monomers. So far, solid-phase peptide synthesis is the only technique that allows preparing short peptide sequences with excellent sequence control, but also requires extensive protection/deprotection steps and it is a difficult technique to scale-up. A new strategy towards sequence control in the synthesis of polypeptides is introduced, based on the sequential addition of α-amino acid-N-carboxyanhydrides (NCAs). The living ring-opening process is conducted to full conversion and no purification or deprotection is needed before addition of a new amino acid. The length of every block is predefined by the NCA:initiator ratio in every step. This method yields polypeptides with a specific sequence and controlled molecular weights. A series of polypeptides with varying block sequences have been synthesized with the aim to identify structure-property relationships. All of them are able to adopt secondary structures similar to natural polypeptides, and display properties in the solid state and in solution that are characteristic of the primary structure. By design the prepared polypeptides allow selective modification of individual block sequences, which has been exploited to introduce functionalities in defined positions along the polypeptide chain. Poly(ethylene glycol)(PEG) was the functionality chosen, as it is known to favor hydrophilicity and also yield thermoresponsive materials. After PEGylation, hydrophilicity of the polypeptides is enhanced, and their thermal response in H2O has been studied. Noteworthy differences in the behavior of the polypeptides having different sequences have been found. Circular dichroism measurements confirmed that the α-helical conformation is stable over the examined temperature range (5-90 °C). It is concluded that PEG units are the main responsible of the changes in H-bonding interactions with H2O upon variation of temperature, and the position of these functional units along the backbone is a factor of utmost importance in the resulting properties of the α-helical polypeptides.Keywords: α-amino acid N-carboxyanhydrides, multiblock copolymers, poly(ethylene glycol), polypeptides, ring-opening polymerization, sequence control
Procedia PDF Downloads 20021 Magnetron Sputtered Thin-Film Catalysts with Low Noble Metal Content for Proton Exchange Membrane Water Electrolysis
Authors: Peter Kus, Anna Ostroverkh, Yurii Yakovlev, Yevheniia Lobko, Roman Fiala, Ivan Khalakhan, Vladimir Matolin
Abstract:
Hydrogen economy is a concept of low-emission society which harvests most of its energy from renewable sources (e.g., wind and solar) and in case of overproduction, electrochemically turns the excess amount into hydrogen, which serves as an energy carrier. Proton exchange membrane water electrolyzers (PEMWE) are the backbone of this concept. By fast-response electricity to hydrogen conversion, the PEMWEs will not only stabilize the electrical grid but also provide high-purity hydrogen for variety of fuel cell powered devices, ranging from consumer electronics to vehicles. Wider commercialization of PEMWE technology is however hindered by high prices of noble metals which are necessary for catalyzing the redox reactions within the cell. Namely, platinum for hydrogen evolution reaction (HER), running on cathode, and iridium for oxygen evolution reaction (OER) on anode. Possible way of how to lower the loading of Pt and Ir is by using conductive high-surface nanostructures as catalyst supports in conjunction with thin-film catalyst deposition. The presented study discusses unconventional technique of membrane electron assembly (MEA) preparation. Noble metal catalysts (Pt and Ir) were magnetron sputtered in very low loadings onto the surface of porous sublayers (located on gas diffusion layer or directly on membrane), forming so to say localized three-phase boundary. Ultrasonically sprayed corrosion resistant TiC-based sublayer was used as a support material on anode, whereas magnetron sputtered nanostructured etched nitrogenated carbon (CNx) served the same role on cathode. By using this configuration, we were able to significantly decrease the amount of noble metals (to thickness of just tens of nanometers), while keeping the performance comparable to that of average state-of-the-art catalysts. Complex characterization of prepared supported catalysts includes in-cell performance and durability tests, electrochemical impedance spectroscopy (EIS) as well as scanning electron microscopy (SEM) imaging and X-ray photoelectron spectroscopy (XPS) analysis. Our research proves that magnetron sputtering is a suitable method for thin-film deposition of electrocatalysts. Tested set-up of thin-film supported anode and cathode catalysts with combined loading of just 120 ug.cm⁻² yields remarkable values of specific current. Described approach of thin-film low-loading catalyst deposition might be relevant when noble metal reduction is the topmost priority.Keywords: hydrogen economy, low-loading catalyst, magnetron sputtering, proton exchange membrane water electrolyzer
Procedia PDF Downloads 16320 A Density Function Theory Based Comparative Study of Trans and Cis - Resveratrol
Authors: Subhojyoti Chatterjee, Peter J. Mahon, Feng Wang
Abstract:
Resveratrol (RvL), a phenolic compound, is a key ingredient in wine and tomatoes that has been studied over the years because of its important bioactivities such as anti-oxidant, anti-aging and antimicrobial properties. Out of the two isomeric forms of resveratrol i.e. trans and cis, the health benefit is primarily associated with the trans form. Thus, studying the structural properties of the isomers will not only provide an insight into understanding the RvL isomers, but will also help in designing parameters for differentiation in order to achieve 99.9% purity of trans-RvL. In the present study, density function theory (DFT) study is conducted, using the B3LYP/6-311++G** model to explore the through bond and through space intramolecular interactions. Properties such as vibrational spectroscopy (IR and Raman), nuclear magnetic resonance (NMR) spectra, excess orbital energy spectrum (EOES), energy based decomposition analyses (EDA) and Fukui function are calculated. It is discovered that the structure of trans-RvL, although it is C1 non-planar, the backbone non-H atoms are nearly in the same plane; whereas the cis-RvL consists of two major planes of R1 and R2 that are not in the same plane. The absence of planarity gives rise to a H-bond of 2.67Å in cis-RvL. Rotation of the C(5)-C(8) single bond in trans-RvL produces higher energy barriers since it may break the (planar) entire conjugated structure; while such rotation in cis-RvL produces multiple minima and maxima depending on the positions of the rings. The calculated FT-IR spectrum shows very different spectral features for trans and cis-RvL in the region 900 – 1500 cm-1, where the spectral peaks at 1138-1158 cm-1 are split in cis-RvL compared to a single peak at 1165 cm-1 in trans-RvL. In the Raman spectra, there is significant enhancement of cis-RvL in the region above 3000cm-1. Further, the carbon chemical environment (13C NMR) of the RvL molecule exhibit a larger chemical shift for cis-RvL compared to trans-RvL (Δδ = 8.18 ppm) for the carbon atom C(11), indicating that the chemical environment of the C group in cis-RvL is more diverse than its other isomer. The energy gap between highest occupied molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO) is 3.95 eV for trans and 4.35 eV for cis-RvL. A more detailed inspection using the recently developed EOES revealed that most of the large energy differences i.e. Δεcis-trans > ±0.30 eV, in their orbitals are contributed from the outer valence shell. They are MO60 (HOMO), MO52-55 and MO46. The active sites that has been captured by Fukui function (f + > 0.08) are associated with the stilbene C=C bond of RvL and cis-RvL is more active at these sites than in trans-RvL, as cis orientation breaks the large conjugation of trans-RvL so that the hydroxyl oxygen’s are more active in cis-RvL. Finally, EDA highlights the interaction energy (ΔEInt) of the phenolic compound, where trans is preferred over the cis-RvL (ΔΔEi = -4.35 kcal.mol-1) isomer. Thus, these quantum mechanics results could help in unwinding the diversified beneficial activities associated with resveratrol.Keywords: resveratrol, FT-IR, Raman, NMR, excess orbital energy spectrum, energy decomposition analysis, Fukui function
Procedia PDF Downloads 19519 Impact of Agricultural Infrastructure on Diffusion of Technology of the Sample Farmers in North 24 Parganas District, West Bengal
Authors: Saikat Majumdar, D. C. Kalita
Abstract:
The Agriculture sector plays an important role in the rural economy of India. It is the backbone of our Indian economy and is the dominant sector in terms of employment and livelihood. Agriculture still contributes significantly to export earnings and is an important source of raw materials as well as of demand for many industrial products particularly fertilizers, pesticides, agricultural implements and a variety of consumer goods, etc. The performance of the agricultural sector influences the growth of Indian economy. According to the 2011 Agricultural Census of India, an estimated 61.5 percentage of rural populations are dependent on agriculture. Proper Agricultural infrastructure has the potential to transform the existing traditional agriculture into a most modern, commercial and dynamic farming system in India through its diffusion of technology. The rate of adoption of modern technology reflects the progress of development in agricultural sector. The adoption of any improved agricultural technology is also dependent on the development of road infrastructure or road network. The present study was consisting of 300 sample farmers out which 150 samples was taken from the developed area and rest 150 samples was taken from underdeveloped area. The samples farmers under develop and underdeveloped areas were collected by using Multistage Random Sampling procedure. In the first stage, North 24 Parganas District have been selected purposively. Then from the district, one developed and one underdeveloped block was selected randomly. In the third phase, 10 villages have been selected randomly from each block. Finally, from each village 15 sample farmers was selected randomly. The extents of adoption of technology in different areas were calculated through various parameters. These are percentage area under High Yielding Variety Cereals, percentage area under High Yielding Variety pulses, area under hybrids vegetables, irrigated area, mechanically operated area, amount spent on fertilizer and pesticides, etc. in both developed and underdeveloped areas of North 24 Parganas District, West Bengal. The percentage area under High Yielding Variety Cereals in the developed and underdeveloped areas was 34.86 and 22.59. 42.07 percentages and 31.46 percentages for High Yielding Variety pulses respectively. In the case the area under irrigation it was 57.66 and 35.71 percent while for the mechanically operated area it was 10.60 and 3.13 percent respectively in developed and underdeveloped areas of North 24 Parganas district, West Bengal. It clearly showed that the extent of adoption of technology was significantly higher in the developed area over underdeveloped area. Better road network system helps the farmers in increasing his farm income, farm assets, cropping intensity, marketed surplus and the rate of adoption of new technology. With this background, an attempt is made in this paper to study the impact of Agricultural Infrastructure on the adoption of modern technology in agriculture in North 24 Parganas District, West Bengal.Keywords: agricultural infrastructure, adoption of technology, farm income, road network
Procedia PDF Downloads 10218 Graphene-Graphene Oxide Dopping Effect on the Mechanical Properties of Polyamide Composites
Authors: Daniel Sava, Dragos Gudovan, Iulia Alexandra Gudovan, Ioana Ardelean, Maria Sonmez, Denisa Ficai, Laurentia Alexandrescu, Ecaterina Andronescu
Abstract:
Graphene and graphene oxide have been intensively studied due to the very good properties, which are intrinsic to the material or come from the easy doping of those with other functional groups. Graphene and graphene oxide have known a broad band of useful applications, in electronic devices, drug delivery systems, medical devices, sensors and opto-electronics, coating materials, sorbents of different agents for environmental applications, etc. The board range of applications does not come only from the use of graphene or graphene oxide alone, or by its prior functionalization with different moieties, but also it is a building block and an important component in many composite devices, its addition coming with new functionalities on the final composite or strengthening the ones that are already existent on the parent product. An attempt to improve the mechanical properties of polyamide elastomers by compounding with graphene oxide in the parent polymer composition was attempted. The addition of the graphene oxide contributes to the properties of the final product, improving the hardness and aging resistance. Graphene oxide has a lower hardness and textile strength, and if the amount of graphene oxide in the final product is not correctly estimated, it can lead to mechanical properties which are comparable to the starting material or even worse, the graphene oxide agglomerates becoming a tearing point in the final material if the amount added is too high (in a value greater than 3% towards the parent material measured in mass percentages). Two different types of tests were done on the obtained materials, the hardness standard test and the tensile strength standard test, and they were made on the obtained materials before and after the aging process. For the aging process, an accelerated aging was used in order to simulate the effect of natural aging over a long period of time. The accelerated aging was made in extreme heat. For all materials, FT-IR spectra were recorded using FT-IR spectroscopy. From the FT-IR spectra only the bands corresponding to the polyamide were intense, while the characteristic bands for graphene oxide were very small in comparison due to the very small amounts introduced in the final composite along with the low absorptivity of the graphene backbone and limited number of functional groups. In conclusion, some compositions showed very promising results, both in tensile strength test and in hardness tests. The best ratio of graphene to elastomer was between 0.6 and 0.8%, this addition extending the life of the product. Acknowledgements: The present work was possible due to the EU-funding grant POSCCE-A2O2.2.1-2013-1, Project No. 638/12.03.2014, code SMIS-CSNR 48652. The financial contribution received from the national project ‘New nanostructured polymeric composites for centre pivot liners, centre plate and other components for the railway industry (RONERANANOSTRUCT)’, No: 18 PTE (PN-III-P2-2.1-PTE-2016-0146) is also acknowledged.Keywords: graphene, graphene oxide, mechanical properties, dopping effect
Procedia PDF Downloads 31617 Evaluation of the Performance Measures of Two-Lane Roundabout and Turbo Roundabout with Varying Truck Percentages
Authors: Evangelos Kaisar, Anika Tabassum, Taraneh Ardalan, Majed Al-Ghandour
Abstract:
The economy of any country is dependent on its ability to accommodate the movement and delivery of goods. The demand for goods movement and services increases truck traffic on highways and inside the cities. The livability of most cities is directly affected by the congestion and environmental impacts of trucks, which are the backbone of the urban freight system. Better operation of heavy vehicles on highways and arterials could lead to the network’s efficiency and reliability. In many cases, roundabouts can respond better than at-level intersections to enable traffic operations with increased safety for both cars and heavy vehicles. Recently emerged, the concept of turbo-roundabout is a viable alternative to the two-lane roundabout aiming to improve traffic efficiency. The primary objective of this study is to evaluate the operation and performance level of an at-grade intersection, a conventional two-lane roundabout, and a basic turbo roundabout for freight movements. To analyze and evaluate the performances of the signalized intersections and the roundabouts, micro simulation models were developed PTV VISSIM. The networks chosen for this analysis in this study are to experiment and evaluate changes in the performance of the movement of vehicles with different geometric and flow scenarios. There are several scenarios that were examined when attempting to assess the impacts of various geometric designs on vehicle movements. The overall traffic efficiency depends on the geometric layout of the intersections, which consists of traffic congestion rate, hourly volume, frequency of heavy vehicles, type of road, and the ratio of major-street versus side-street traffic. The traffic performance was determined by evaluating the delay time, number of stops, and queue length of each intersection for varying truck percentages. The results indicate that turbo-roundabouts can replace signalized intersections and two-lane roundabouts only when the traffic demand is low, even with high truck volume. More specifically, it is clear that two-lane roundabouts are seen to have shorter queue lengths compared to signalized intersections and turbo-roundabouts. For instance, considering the scenario where the volume is highest, and the truck movement and left turn movement are maximum, the signalized intersection has 3 times, and the turbo-roundabout has 5 times longer queue length than a two-lane roundabout in major roads. Similarly, on minor roads, signalized intersections and turbo-roundabouts have 11 times longer queue lengths than two-lane roundabouts for the same scenario. As explained from all the developed scenarios, while the traffic demand lowers, the queue lengths of turbo-roundabouts shorten. This proves that turbo roundabouts perform well for low and medium traffic demand. The results indicate that turbo-roundabouts can replace signalized intersections and two-lane roundabouts only when the traffic demand is low, even with high truck volume. Finally, this study provides recommendations on the conditions under which different intersections perform better than each other.Keywords: At-grade intersection, simulation, turbo-roundabout, two-lane roundabout
Procedia PDF Downloads 15116 Developing Computational Thinking in Early Childhood Education
Authors: Kalliopi Kanaki, Michael Kalogiannakis
Abstract:
Nowadays, in the digital era, the early acquisition of basic programming skills and knowledge is encouraged, as it facilitates students’ exposure to computational thinking and empowers their creativity, problem-solving skills, and cognitive development. More and more researchers and educators investigate the introduction of computational thinking in K-12 since it is expected to be a fundamental skill for everyone by the middle of the 21st century, just like reading, writing and arithmetic are at the moment. In this paper, a doctoral research in the process is presented, which investigates the infusion of computational thinking into science curriculum in early childhood education. The whole attempt aims to develop young children’s computational thinking by introducing them to the fundamental concepts of object-oriented programming in an enjoyable, yet educational framework. The backbone of the research is the digital environment PhysGramming (an abbreviation of Physical Science Programming), which provides children the opportunity to create their own digital games, turning them from passive consumers to active creators of technology. PhysGramming deploys an innovative hybrid schema of visual and text-based programming techniques, with emphasis on object-orientation. Through PhysGramming, young students are familiarized with basic object-oriented programming concepts, such as classes, objects, and attributes, while, at the same time, get a view of object-oriented programming syntax. Nevertheless, the most noteworthy feature of PhysGramming is that children create their own digital games within the context of physical science courses, in a way that provides familiarization with the basic principles of object-oriented programming and computational thinking, even though no specific reference is made to these principles. Attuned to the ethical guidelines of educational research, interventions were conducted in two classes of second grade. The interventions were designed with respect to the thematic units of the curriculum of physical science courses, as a part of the learning activities of the class. PhysGramming was integrated into the classroom, after short introductory sessions. During the interventions, 6-7 years old children worked in pairs on computers and created their own digital games (group games, matching games, and puzzles). The authors participated in these interventions as observers in order to achieve a realistic evaluation of the proposed educational framework concerning its applicability in the classroom and its educational and pedagogical perspectives. To better examine if the objectives of the research are met, the investigation was focused on six criteria; the educational value of PhysGramming, its engaging and enjoyable characteristics, its child-friendliness, its appropriateness for the purpose that is proposed, its ability to monitor the user’s progress and its individualizing features. In this paper, the functionality of PhysGramming and the philosophy of its integration in the classroom are both described in detail. Information about the implemented interventions and the results obtained is also provided. Finally, several limitations of the research conducted that deserve attention are denoted.Keywords: computational thinking, early childhood education, object-oriented programming, physical science courses
Procedia PDF Downloads 12015 Sustainable Living Where the Immaterial Matters
Authors: Maria Hadjisoteriou, Yiorgos Hadjichristou
Abstract:
This paper aims to explore and provoke a debate, through the work of the design studio, “living where the immaterial matters” of the architecture department of the University of Nicosia, on the role that the “immaterial matter” can play in enhancing innovative sustainable architecture and viewing the cities as sustainable organisms that always grow and alter. The blurring, juxtaposing binary of immaterial and matter, as the theoretical backbone of the Unit is counterbalanced by the practicalities of the contested sites of the last divided capital Nicosia with its ambiguous green line and the ghost city of Famagusta in the island of Cyprus. Jonathan Hill argues that the ‘immaterial is as important to architecture as the material concluding that ‘Immaterial–Material’ weaves the two together, so that they are in conjunction not opposition’. This understanding of the relationship of the immaterial vs material set the premises and the departing point of our argument, and talks about new recipes for creating hybrid public space that can lead to the unpredictability of a complex and interactive, sustainable city. We hierarchized the human experience as a priority. We distinguish the notion of space and place referring to Heidegger’s ‘building dwelling thinking’: ‘a distinction between space and place, where spaces gain authority not from ‘space’ appreciated mathematically but ‘place’ appreciated through human experience’. Following the above, architecture and the city are seen as one organism. The notions of boundaries, porous borders, fluidity, mobility, and spaces of flows are the lenses of the investigation of the unit’s methodology, leading to the notion of a new hybrid urban environment, where the main constituent elements are in a flux relationship. The material and the immaterial flows of the town are seen interrelated and interwoven with the material buildings and their immaterial contents, yielding to new sustainable human built environments. The above premises consequently led to choices of controversial sites. Indisputably a provoking site was the ghost town of Famagusta where the time froze back in 1974. Inspired by the fact that the nature took over the a literally dormant, decaying city, a sustainable rebirthing was seen as an opportunity where both nature and built environment, material and immaterial are interwoven in a new emergent urban environment. Similarly, we saw the dividing ‘green line’ of Nicosia completely failing to prevent the trespassing of images, sounds and whispers, smells and symbols that define the two prevailing cultures and becoming a porous creative entity which tends to start reuniting instead of separating , generating sustainable cultures and built environments. The authors would like to contribute to the debate by introducing a question about a new recipe of cooking the built environment. Can we talk about a new ‘urban recipe’: ‘cooking architecture and city’ to deliver an ever changing urban sustainable organism, whose identity will mainly depend on the interrelationship of the immaterial and material constituents?Keywords: blurring zones, porous borders, spaces of flow, urban recipe
Procedia PDF Downloads 42114 Molecular Dynamics Simulation Study of Sulfonated Polybenzimidazole Polymers as Promising Forward Osmosis Membranes
Authors: Seyedeh Pardis Hosseini
Abstract:
With increased levels of clean and affordable water scarcity crises in many countries, wastewater treatment has been chosen as a viable method to produce freshwater for various consumptions. Even though reverse osmosis dominates the wastewater treatment market, forward osmosis (FO) processes have significant advantages, such as potentially using a renewable and low-grade energy source and improving water quality. FO is an osmotically driven membrane process that uses a high concentrated draw solution and a relatively low concentrated feed solution across a semi-permeable membrane. Among many novel FO membranes that have been introduced over the past decades, polybenzimidazole (PBI) membranes, a class of aromatic heterocyclic-based polymers, have shown high thermal and chemical stability because of their unique chemical structure. However, the studies reviewed indicate that the hydrophilicity of PBI membranes is comparatively low. Hence, there is an urgent need to develop novel FO membranes with modified PBI polymers to promote hydrophilicity. A few studies have been undertaken to improve the PBI hydrophilicity by fabricating mixed matrix polymeric membranes and surface modification. Thereby, in this study, two different sulfonated polybenzimidazole (SPBI) polymers with the same backbone but different functional groups, namely arylsulfonate PBI (PBI-AS) and propylsulfonate PBI (PBI-PS), are introduced as FO membranes and studied via the molecular dynamics (MD) simulation method. The FO simulation box consists of three distinct regions: a saltwater region, a membrane region, and a pure-water region. The pure-water region is situated at the upper part of the simulation box, while the saltwater region, which contains an aqueous salt solution of Na+ and Cl− ions along with water molecules, occupies the lower part of the simulation box. Specifically, the saltwater region includes 710 water molecules and 24 Na+ and 24 Cl− ions, resulting in a combined concentration of 10 weight percent (wt%). The pure-water region comprises 788 water molecules. Both the saltwater and pure-water regions have a density of 1.0 g/cm³. The membrane region, positioned between the saltwater and pure-water regions, is constructed from three types of polymers: PBI, PBI-AS, and PBI-PS, each consisting of three polymer chains with 30 monomers per chain. The structural and thermophysical properties of the polymers, water molecules, and Na+ and Cl− ions were analyzed using the COMPASS forcefield. All simulations were conducted using the BIOVIA Materials Studio 2020 software. By monitoring the variation in the number of water molecules over the simulation time within the saltwater region, the water permeability of the polymer membranes was calculated and subsequently compared. The results indicated that SPBI polymers exhibited higher water permeability compared to PBI polymers. This enhanced permeability can be attributed to the structural and compositional differences between SPBI and PBI polymers, which likely facilitate more efficient water transport through the membrane. Consequently, the adoption of SPBI polymers in the FO process is anticipated to result in significantly improved performance. This improvement could lead to higher water flux rates, better salt rejection, and overall more efficient use of resources in desalination and water purification applications.Keywords: forward osmosis, molecular dynamics simulation, sulfonated polybenzimidazole, water permeability
Procedia PDF Downloads 2913 Characterization of Potato Starch/Guar Gum Composite Film Modified by Ecofriendly Cross-Linkers
Authors: Sujosh Nandi, Proshanta Guha
Abstract:
Synthetic plastics are preferred for food packaging due to high strength, stretch-ability, good water vapor and gas barrier properties, transparency and low cost. However, environmental pollution generated by these synthetic plastics is a major concern of modern human civilization. Therefore, use of biodegradable polymers as a substitute for synthetic non-biodegradable polymers are encouraged to be used even after considering drawbacks related to mechanical and barrier properties of the films. Starch is considered one of the potential raw material for the biodegradable polymer, encounters poor water barrier property and mechanical properties due to its hydrophilic nature. That apart, recrystallization of starch molecules occurs during aging which decreases flexibility and increases elastic modulus of the film. The recrystallization process can be minimized by blending of other hydrocolloids having similar structural compatibility, into the starch matrix. Therefore, incorporation of guar gum having a similar structural backbone, into the starch matrix can introduce a potential film into the realm of biodegradable polymer. However, hydrophilic nature of both starch and guar gum, water barrier property of the film is low. One of the prospective solution to enhance this could be modification of the potato starch/guar gum (PSGG) composite film using cross-linker. Over the years, several cross-linking agents such as phosphorus oxychloride, sodium trimetaphosphate, etc. have been used to improve water vapor permeability (WVP) of the films. However, these chemical cross-linking agents are toxic, expensive and take longer time to degrade. Therefore, naturally available carboxylic acid (tartaric acid, malonic acid, succinic acid, etc.) had been used as a cross-linker and found that water barrier property enhanced substantially. As per our knowledge, no works have been reported with tartaric acid and succinic acid as a cross-linking agent blended with the PSGG films. Therefore, the objective of the present study was to examine the changes in water vapor barrier property and mechanical properties of the PSGG films after cross-linked with tartaric acid (TA) and succinic acid (SA). The cross-linkers were blended with PSGG film-forming solution at four different concentrations (4, 8, 12 & 16%) and cast on teflon plate at 37°C for 20 h. From the fourier-transform infrared spectroscopy (FTIR) study of the developed films, a band at 1720cm-1 was observed which is attributed to the formation of ester group in the developed films. On the other hand, it was observed that tensile strength (TS) of the cross-linked film decreased compared to non-cross linked films, whereas strain at break increased by several folds. Moreover, the results depicted that tensile strength diminished with increasing the concentration of TA or SA and lowest TS (1.62 MPa) was observed for 16% SA. That apart, maximum strain at break was also observed for TA at 16% and the reason behind this could be a lesser degree of crystallinity of the TA cross-linked films compared to SA. However, water vapor permeability of succinic acid cross-linked film was reduced significantly, but it was enhanced significantly by addition of tartaric acid.Keywords: cross linking agent, guar gum, organic acids, potato starch
Procedia PDF Downloads 11512 A Vision Making Exercise for Twente Region; Development and Assesment
Authors: Gelareh Ghaderi
Abstract:
the overall objective of this study is to develop two alternative plans of spatial and infrastructural development for the Netwerkstad Twente (Twente region) until 2040 and to assess the impacts of those two alternative plans. This region is located on the eastern border of the Netherlands, and it comprises of five municipalities. Based on the strengths and opportunities of the five municipalities of the Netwerkstad Twente, and in order develop the region internationally, strengthen the job market and retain skilled and knowledgeable young population, two alternative visions have been developed; environmental oriented vision, and economical oriented vision. Environmental oriented vision is based mostly on preserving beautiful landscapes. Twente would be recognized as an educational center, driven by green technologies and environment-friendly economy. Market-oriented vision is based on attracting and developing different economic activities in the region based on visions of the five cities of Netwerkstad Twente, in order to improve the competitiveness of the region in national and international scale. On the basis of the two developed visions and strategies for achieving the visions, land use and infrastructural development are modeled and assessed. Based on the SWOT analysis, criteria were formulated and employed in modeling the two contrasting land use visions by the year 2040. Land use modeling consists of determination of future land use demand, assessment of suitability land (Suitability analysis), and allocation of land uses on suitable land. Suitability analysis aims to determine the available supply of land for future development as well as assessing their suitability for specific type of land uses on the basis of the formulated set of criteria. Suitability analysis was operated using CommunityViz, a Planning Support System application for spatially explicit land suitability and allocation. Netwerkstad Twente has highly developed transportation infrastructure, consists of highways network, national road network, regional road network, street network, local road network, railway network and bike-path network. Based on the assumptions of speed limitations on different types of roads provided, infrastructure accessibility level of predicted land use parcels by four different transport modes is investigated. For evaluation of the two development scenarios, the Multi-criteria Evaluation (MCE) method is used. The first step was to determine criteria used for evaluation of each vision. All factors were categorized as economical, ecological and social. Results of Multi-criteria Evaluation show that Environmental oriented cities scenario has higher overall score. Environment-oriented scenario has impressive scores in relation to economical and ecological factors. This is due to the fact that a large percentage of housing tends towards compact housing. Twente region has immense potential, and the success of this project will define the Eastern part of The Netherlands and create a real competitive local economy with innovations and attractive environment as its backbone.Keywords: economical oriented vision, environmental oriented vision, infrastructure, land use, multi criteria assesment, vision
Procedia PDF Downloads 22811 Family Firm Internationalization: Identification of Alternative Success Pathways
Authors: Sascha Kraus, Wolfgang Hora, Philipp Stieg, Thomas Niemand, Ferdinand Thies, Matthias Filser
Abstract:
In most countries, small and medium-sized enterprises (SME) are the backbone of the economy due to their impact on job creation, innovation and wealth creation. Moreover, the ongoing globalization makes it inevitable – even for SME that traditionally focused on their domestic markets – to internationalize their business activities to realize further growth and survive in international markets. Thus, internationalization has become one of the most common growth strategies for SME and has received increasing scholarly attention over the last two decades. One the downside internationalization can be also regarded as the most complex strategy that a firm can undertake. Particularly for family firms, that are often characterized by limited financial capital, a risk-averse nature and limited growth aspirations, it could be argued that family firms are more likely to face greater challenges when taking the pathway to internationalization. Especially the triangulation of family, ownership, and management (so-called ‘familiness’) manifests in a unique behavior and decision-making process which is often characterized by the importance given to noneconomic goals and distinguishes a family firm from other businesses. Taking this into account, the concept of socio-emotional wealth (SEW) has been evolved to describe the behavior of family firms. In order to investigate how different internal and external firm characteristics shape internationalization success of family firms, we drew on a sample consisting of 297 small and medium-sized family firms from Germany, Austria, Switzerland, and Liechtenstein. Thus, we include SEW as essential family firm characteristic and added the two major intra-organizational characteristics, entrepreneurial orientation (EO), absorptive capacity (AC) as well as collaboration intensity (CI) and relational knowledge (RK) as two major external network characteristics. Based on previous research we assume that these characteristics are important to explain internationalization success of family firm SME. Regarding the data analysis, we applied a Fuzzy Set Qualitative Comparative Analysis (fsQCA), an approach that allows identifying configurations of firm characteristics, specifically used to study complex causal relationships where traditional regression techniques reach their limits. Results indicate that several combinations of these family firm characteristics can lead to international success, with no permanently required key characteristic. Instead, there are many roads to walk down for family firms to achieve internationalization success. Consequently, our data states that family owned SME are heterogeneous and internationalization is a complex and dynamic process. Results further show that network related characteristics occur in all sets, thus represent an essential element in the internationalization process of family owned SME. The contribution of our study is twofold, as we investigate different forms of international expansion for family firms and how to improve them. First, we are able to broaden the understanding of the intersection between family firm and SME internationalization with respect to major intra-organizational and network-related variables. Second, from a practical perspective, we offer family firm owners a basis for setting up internal capabilities to achieve international success.Keywords: entrepreneurial orientation, family firm, fsQCA, internationalization, socio-emotional wealth
Procedia PDF Downloads 24210 Catalytic Dehydrogenation of Formic Acid into H2/CO2 Gas: A Novel Approach
Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy
Abstract:
Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of biomass platform, comprising a potential pool of hydrogen energy that stands as a new energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need of in-situ H2 production, which plays a key role in the hydrogenation reactions of biomass into higher value components. It is reported elsewhere in literature that catalytic decomposition of FA is usually performed in poorly designed setup using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. it work suggests an approach that integrates designing a novel catalyst featuring magnetic property with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H2 gas from FA. Using ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under inert medium. Through a novel approach, FA is charged into the reactor via high-pressure positive displacement pump at steady state conditions. The produced gas (H2+CO2) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The novelty of this work lies in designing a very responsive catalyst, pumping consistent amount of FA into a sealed reactor running at steady state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at lower temperature range (35-50°C) yielded more gas while the catalyst loading and Pd doping wt.% were found to be the most significant factors with a P-values 0.026 & 0.031, respectively.Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles
Procedia PDF Downloads 549 Catalytic Decomposition of Formic Acid into H₂/CO₂ Gas: A Distinct Approach
Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy
Abstract:
Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of the biomass platform, comprising a potential pool of hydrogen energy that stands as a distinct energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need for in-situ H₂ production, which plays a key role in the hydrogenation reactions of biomass into higher-value components. It is reported elsewhere in the literature that catalytic decomposition of FA is usually performed in poorly designed setups using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. Our work suggests an approach that integrates designing a distinct catalyst featuring magnetic properties with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for the dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H₂ gas from FA. Using an ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under an inert medium. Through a distinct approach, FA is charged into the reactor via a high-pressure positive displacement pump at steady-state conditions. The produced gas (H₂+CO₂) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The uniqueness of this work lies in designing a very responsive catalyst, pumping a consistent amount of FA into a sealed reactor running at steady-state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at a lower temperature range (35-50°C) yielded more gas, while the catalyst loading and Pd doping wt.% were found to be the most significant factors with P-values 0.026 & 0.031, respectively.Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles
Procedia PDF Downloads 578 Shifting Paradigms for Micro, Small, and Medium Enterprises in the Global Construction Market: The Crucial Roles of Technology and Sustainability
Authors: Sohrab Donyavi
Abstract:
The global construction market is experiencing significant shifts, particularly for micro, small, and medium enterprises (MSMEs), driven by the dual imperatives of technological advancement and sustainability. MSMEs play a crucial role in the construction industry, often being the backbone of economic development and fostering entrepreneurial skills. However, their dominance has also led to industry fragmentation and challenges such as technological lag and declining profit margins, which threaten their global competitiveness. This paper explores the integration of technology and sustainability in reshaping the paradigms for MSMEs in the construction sector. The adoption of advanced technologies, such as building information modeling (BIM) and AI, are pivotal for promoting sustainable construction practices. These tools enable MSMEs to design and construct environmentally responsible buildings, thereby contributing to the industry's sustainability goals. The research highlights that achieving sustainability in construction involves significant efforts in conservation, recycling, and the development of new materials and technologies. This approach aligns with the broader goal of integrating economic, environmental, and social aims into firm objectives to create long-term value while ensuring the protection of natural resources for future generations. Critical factors for implementing sustainable oriented innovation (SOI) practices in MSMEs include top management support, government initiatives, and financial resources. These factors are essential for fostering an environment conducive to innovation and sustainability. Furthermore, the empowerment of MSMEs through improved governance, market-oriented programs, sustainable productivity growth, and access to financing is vital. In developing regions like Indonesia, these strategies are crucial for enabling MSMEs to thrive in the face of globalization. The tendency of large firms to grow larger with the help of technology and globalization has led to the emergence of a high-technology oligopoly, posing a significant challenge to traditional construction practices. This shift necessitates that MSMEs adapt by leveraging technology and embracing sustainable practices to remain competitive. The research underscores the importance of integrating technology and sustainability not only as a competitive strategy but also as a means to contribute to the global effort of environmental conservation and sustainable development. This paper concludes that the successful integration of technology and sustainability in MSMEs requires a multifaceted approach. It involves the adoption of advanced technological tools, strong support from top management, proactive government policies, and access to financial resources. By addressing these factors, MSMEs can overcome the challenges of industry fragmentation, technological lag, and declining profit margins. Ultimately, this integration will enable MSMEs to play a pivotal role in driving the construction industry towards a more sustainable and technologically advanced future. The findings and recommendations are based on a comprehensive case study utilizing semi-structured interviews, observations, questionnaires, and document reviews.Keywords: MSMEs, construction, technology, sustainability, innovation
Procedia PDF Downloads 417 A Comprehensive Planning Model for Amalgamation of Intensification and Green Infrastructure
Authors: Sara Saboonian, Pierre Filion
Abstract:
The dispersed-suburban model has been the dominant one across North America for the past seventy years, characterized by automobile reliance, low density, and land-use specialization. Two planning models have emerged as possible alternatives to address the ills inflicted by this development pattern. First, there is intensification, which promotes efficient infrastructure by connecting high-density, multi-functional, and walkable nodes with public transit services within the suburban landscape. Second is green infrastructure, which provides environmental health and human well-being by preserving and restoring ecosystem services. This research studies incompatibilities and the possibility of amalgamating the two alternatives in an attempt to develop a comprehensive alternative to suburban model that advocates density, multi-functionality and transit- and pedestrian-conduciveness, with measures capable of mitigating the adverse environmental impacts of compactness. The research investigates three Canadian urban growth centers, where intensification is the current planning practice, and the awareness of green infrastructure benefits is on the rise. However, these three centers are contrasted by their development stage, the presence or absence of protected natural land, their environmental approach, and their adverse environmental consequences according to the planning cannons of different periods. The methods include reviewing the literature on green infrastructure planning, criticizing the Ontario provincial plans for intensification, surveying residents’ preferences for alternative models, and interviewing officials who deal with the local planning for the centers. Moreover, the research draws on recalling debates between New Urbanism and Landscape/Ecological Urbanism. The case studies expose the difficulties in creating urban growth centres that accommodate green infrastructure while adhering to intensification principles. First, the dominant status of intensification and the obstacles confronting intensification have monopolized the planners’ concerns. Second, the tension between green infrastructure and intensification explains the absence of the green infrastructure typologies that correspond to intensification-compatible forms and dynamics. Finally, the lack of highlighted social-economic benefits of green infrastructure reduces residents’ participation. Moreover, the results from the research provide insight into predominating urbanization theories, New Urbanism and Landscape/Ecological Urbanism. In order to understand political, planning, and ecological dynamics of such blending, dexterous context-specific planning is required. Findings suggest the influence of the following factors on amalgamating intensification and green infrastructure. Initially, producing ecosystem services-based justifications for green infrastructure development in the intensification context provides an expert-driven backbone for the implementation programs. This knowledge-base should be translated to effectively imbue different urban stakeholders. Moreover, due to the limited greenfields in intensified areas, spatial distribution and development of multi-level corridors such as pedestrian-hospitable settings and transportation networks along green infrastructure measures are required. Finally, to ensure the long-term integrity of implemented green infrastructure measures, significant investment in public engagement and education, as well as clarification of management responsibilities is essential.Keywords: ecosystem services, green infrastructure, intensification, planning
Procedia PDF Downloads 3566 Thermally Stable Crystalline Triazine-Based Organic Polymeric Nanodendrites for Mercury(2+) Ion Sensing
Authors: Dimitra Das, Anuradha Mitra, Kalyan Kumar Chattopadhyay
Abstract:
Organic polymers, constructed from light elements like carbon, hydrogen, nitrogen, oxygen, sulphur, and boron atoms, are the emergent class of non-toxic, metal-free, environmental benign advanced materials. Covalent triazine-based polymers with a functional triazine group are significant class of organic materials due to their remarkable stability arising out of strong covalent bonds. They can conventionally form hydrogen bonds, favour π–π contacts, and they were recently revealed to be involved in interesting anion–π interactions. The present work mainly focuses upon the development of a single-crystalline, highly cross-linked triazine-based nitrogen-rich organic polymer with nanodendritic morphology and significant thermal stability. The polymer has been synthesized through hydrothermal treatment of melamine and ethylene glycol resulting in cross-polymerization via condensation-polymerization reaction. The crystal structure of the polymer has been evaluated by employing Rietveld whole profile fitting method. The polymer has been found to be composed of monoclinic melamine having space group P21/a. A detailed insight into the chemical structure of the as synthesized polymer has been elucidated by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopic analysis. X-Ray Photoelectron Spectroscopic (XPS) analysis has also been carried out for further understanding of the different types of linkages required to create the backbone of the polymer. The unique rod-like morphology of the triazine based polymer has been revealed from the images obtained from Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). Interestingly, this polymer has been found to selectively detect mercury (Hg²⁺) ions at an extremely low concentration through fluorescent quenching with detection limit as low as 0.03 ppb. The high toxicity of mercury ions (Hg²⁺) arise from its strong affinity towards the sulphur atoms of biological building blocks. Even a trace quantity of this metal is dangerous for human health. Furthermore, owing to its small ionic radius and high solvation energy, Hg²⁺ ions remain encapsulated by water molecules making its detection a challenging task. There are some existing reports on fluorescent-based heavy metal ion sensors using covalent organic frameworks (COFs) but reports on mercury sensing using triazine based polymers are rather undeveloped. Thus, the importance of ultra-trace detection of Hg²⁺ ions with high level of selectivity and sensitivity has contemporary significance. A plausible sensing phenomenon by the polymer has been proposed to understand the applicability of the material as a potential sensor. The impressive sensitivity of the polymer sample towards Hg²⁺ is the very first report in the field of highly crystalline triazine based polymers (without the introduction of any sulphur groups or functionalization) towards mercury ion detection through photoluminescence quenching technique. This crystalline metal-free organic polymer being cheap, non-toxic and scalable has current relevance and could be a promising candidate for Hg²⁺ ion sensing at commercial level.Keywords: fluorescence quenching , mercury ion sensing, single-crystalline, triazine-based polymer
Procedia PDF Downloads 1375 A Study on Economic Impacts of Entrepreneurial Firms and Self-Employment: Minority Ethnics in Putatan, Penampang, Inanam, Menggatal, Uitm, Tongod, Sabah, Malaysia
Authors: Lizinis Cassendra Frederick Dony, Jirom Jeremy Frederick Dony, Andrew Nicholas, Dewi Binti Tajuddin
Abstract:
Starting and surviving a business is influenced by various entrepreneurship socio-economics activities. The study revealed that some of the entrepreneurs are not registered under SME but running own business as an intermediary with the private organization entrusted as “Self-Employed.” SME is known as “Small Medium Enterprise” contributes growth in Malaysia. Therefore, the entrepreneurialism business interest and entrepreneurial intention enhancing new spurring production, expanding employment opportunities, increasing productivity, promoting exports, stimulating innovation and providing new avenue in the business market place. This study has identified the unique contribution to the full understanding of complex mechanisms through entrepreneurship obstacles and education impacts on happiness and well-being to society. Moreover, “Ethnic” term has defined as a curious meaning refers to a classification of a large group of people customs implies to ancestral, racial, national, tribal, religious, linguistic and cultural origins. It is a social phenomenon.1 According to Sabah data population is amounting to 2,389,494 showed the predominant ethnic group being the Kadazan Dusun (18.4%) followed by Bajau (17.3%) and Malays (15.3%). For the year 2010, data statistic immigrants population report showed the amount to 239,765 people which cover 4% of the Sabahan’s population.2 Sabah has numerous group of talented entrepreneurs. The business environment among the minority ethnics are influenced with the business sentiment competition. The literature on ethnic entrepreneurship recognizes two main type entrepreneurships: the middleman and enclave entrepreneurs. According to Adam Smith,3 there are evidently some principles disposition to admire and maintain the distinction business rank status and cause most universal business sentiments. Due to credit barriers competition, the minority ethnics are losing the business market and since 2014, many illegal immigrants have been found to be using permits of the locals to operate businesses in Malaysia.4 The development of small business entrepreneurship among the minority ethnics in Sabah evidenced based variety of complex perception and differences concepts. The studies also confirmed the effects of heterogeneity on group decision and thinking caused partly by excessive pre-occupation with maintaining cohesiveness and the presence of cultural diversity in groups should reduce its probability.5 The researchers proposed that there are seven success determinants particularly to determine the involvement of minority ethnics comparing to the involvement of the immigrants in Sabah. Although, (SMEs) have always been considered the backbone of the economy development, the minority ethnics are often categorized it as the “second-choice.’ The study showed that illegal immigrants entrepreneur imposed a burden on Sabahan social programs as well as the prison, court and health care systems. The tension between the need for cheap labor and the impulse to protect Malaysian in Sabah workers, entrepreneurs and taxpayers, among the subjects discussed in this study. This is clearly can be advantages and disadvantages to the Sabah economic development.Keywords: entrepreneurial firms, self-employed, immigrants, minority ethnic, economic impacts
Procedia PDF Downloads 4144 Supporting 'vulnerable' Students to Complete Their Studies During the Economic Crisis in Greece: The Umbrella Program of International Hellenic University
Authors: Rigas Kotsakis, Nikolaos Tsigilis, Vasilis Grammatikopoulos, Evridiki Zachopoulou
Abstract:
During the last decade, Greece has faced an unprecedented financial crisis, affecting various aspects and functionalities of Higher Education. Besides the restricted funding of academic institutions, the students and their families encountered economical difficulties that undoubtedly influenced the effective completion of their studies. In this context, a fairly large number of students in Alexander campus of International Hellenic University (IHU) delay, interrupt, or even abandon their studies, especially when they come from low-income families, belong to sensitive social or special needs groups, they have different cultural origins, etc. For this reason, a European project, named “Umbrella”, was initiated aiming at providing the necessary psychological support and counseling, especially to disadvantaged students, towards the completion of their studies. To this end, a network of various academic members (academic staff and students) from IHU, namely iMentor, were implicated in different roles. Specifically, experienced academic staff trained students to serve as intermediate links for the integration and educational support of students that fall into the aforementioned sensitive social groups and face problems for the completion of their studies. The main idea of the project is held upon its person-centered character, which facilitates direct student-to-student communication without the intervention of the teaching staff. The backbone of the iMentors network are senior students that face no problem in their academic life and volunteered for this project. It should be noted that there is a provision from the Umbrella structure for substantial and ethical rewards for their engagement. In this context, a well-defined, stringent methodology was implemented for the evaluation of the extent of the problem in IHU and the detection of the profile of the “candidate” disadvantaged students. The first phase included two steps, (a) data collection and (b) data cleansing/ preprocessing. The first step involved the data collection process from the Secretary Services of all Schools in IHU, from 1980 to 2019, which resulted in 96.418 records. The data set included the School name, the semester of studies, a student enrolling criteria, the nationality, the graduation year or the current, up-to-date academic state (still studying, delayed, dropped off, etc.). The second step of the employed methodology involved the data cleansing/preprocessing because of the existence of “noisy” data, missing and erroneous values, etc. Furthermore, several assumptions and grouping actions were imposed to achieve data homogeneity and an easy-to-interpret subsequent statistical analysis. Specifically, the duration of 40 years recording was limited to the last 15 years (2004-2019). In 2004 the Greek Technological Institutions were evolved into Higher Education Universities, leading into a stable and unified frame of graduate studies. In addition, the data concerning active students were excluded from the analysis since the initial processing effort was focused on the detection of factors/variables that differentiated graduate and deleted students. The final working dataset included 21.432 records with only two categories of students, those that have a degree and those who abandoned their studies. Findings of the first phase are presented across faculties and further discussed.Keywords: higher education, students support, economic crisis, mentoring
Procedia PDF Downloads 1153 Post Liberal Perspective on Minorities Visibility in Contemporary Visual Culture: The Case of Mizrahi Jews
Authors: Merav Alush Levron, Sivan Rajuan Shtang
Abstract:
From as early as their emergence in Europe and the US, postmodern and post-colonial paradigm have formed the backbone of the visual culture field of study. The self-representation project of political minorities is studied, described and explained within the premises and perspectives drawn from these paradigms, addressing the key issues they had raised: modernism’s crisis of representation. The struggle for self-representation, agency and multicultural visibility sought to challenge the liberal pretense of universality and equality, hitting at its different blind spots, on issues such as class, gender, race, sex, and nationality. This struggle yielded subversive identity and hybrid performances, including reclaiming, mimicry and masquerading. These performances sought to defy the uniform, universal self, which forms the basis for the liberal, rational, enlightened subject. The argument of this research runs that this politics of representation itself is confined within liberal thought. Alongside post-colonialism and multiculturalism’s contribution in undermining oppressive structures of power, generating diversity in cultural visibility, and exposing the failure of liberal colorblindness, this subversion is constituted in the visual field by way of confrontation, flying in the face of the universal law and relying on its ongoing comparison and attribution to this law. Relying on Deleuze and Guattari, this research set out to draw theoretic and empiric attention to an alternative, post-liberal occurrence which has been taking place in the visual field in parallel to the contra-hegemonic phase and as a product of political reality in the aftermath of the crisis of representation. It is no longer a counter-representation; rather, it is a motion of organic minor desire, progressing in the form of flows and generating what Deleuze and Guattari termed deterritorialization of social structures. This discussion shall have its focus on current post-liberal performances of ‘Mizrahim’ (Jewish Israelis of Arab and Muslim extraction) in the visual field in Israel. In television, video art and photography, these performances challenge the issue of representation and generate concrete peripheral Mizrahiness, realized in the visual organization of the photographic frame. Mizrahiness then transforms from ‘confrontational’ representation into a 'presence', flooding the visual sphere in our plain sight, in a process of 'becoming'. The Mizrahi desire is exerted on the plains of sound, spoken language, the body and the space where they appear. It removes from these plains the coding and stratification engendered by European dominance and rational, liberal enlightenment. This stratification, adhering to the hegemonic surface, is flooded not by way of resisting false consciousness or employing hybridity, but by way of the Mizrahi identity’s own productive, material immanent yearning. The Mizrahi desire reverberates with Mizrahi peripheral 'worlds of meaning', where post-colonial interpretation almost invariably identifies a product of internalized oppression, and a recurrence thereof, rather than a source in itself - an ‘offshoot, never a wellspring’, as Nissim Mizrachi clarifies in his recent pioneering work. The peripheral Mizrahi performance ‘unhook itself’, in Deleuze and Guattari words, from the point of subjectification and interpretation and does not correspond with the partialness, absence, and split that mark post-colonial identities.Keywords: desire, minority, Mizrahi Jews, post-colonialism, post-liberalism, visibility, Deleuze and Guattari
Procedia PDF Downloads 3242 Effect of Degree of Phosphorylation on Electrospinning and In vitro Cell Behavior of Phosphorylated Polymers as Biomimetic Materials for Tissue Engineering Applications
Authors: Pallab Datta, Jyotirmoy Chatterjee, Santanu Dhara
Abstract:
Over the past few years, phosphorous containing polymers have received widespread attention for applications such as high performance optical fibers, flame retardant materials, drug delivery and tissue engineering. Being pentavalent, phosphorous can exist in different chemical environments in these polymers which increase their versatility. In human biochemistry, phosphorous based compounds exert their functions both in soluble and insoluble form occurring as inorganic or as organophosphorous compounds. Specifically in case of biomacromolecules, phosphates are critical for functions of DNA, ATP, phosphoproteins, phospholipids, phosphoglycans and several coenzymes. Inspired by the role of phosphorous in functional biomacromolecules, design and synthesis of biomimetic materials are thus carried out by several authors to study macromolecular function or as substitutes in clinical tissue regeneration conditions. In addition, many regulatory signals of the body are controlled by phoshphorylation of key proteins present either in form of growth factors or matrix-bound scaffold proteins. This inspires works on synthesis of phospho-peptidomimetic amino acids for understanding key signaling pathways and this is extended to obtain molecules with potentially useful biological properties. Apart from above applications, phosphate groups bound to polymer backbones have also been demonstrated to improve function of osteoblast cells and augment performance of bone grafts. Despite the advantages of phosphate grafting, however, there is limited understanding on effect of degree of phosphorylation on macromolecular physicochemical and/or biological properties. Such investigations are necessary to effectively translate knowledge of macromolecular biochemistry into relevant clinical products since they directly influence processability of these polymers into suitable scaffold structures and control subsequent biological response. Amongst various techniques for fabrication of biomimetic scaffolds, nanofibrous scaffolds fabricated by electrospinning technique offer some special advantages in resembling the attributes of natural extracellular matrix. Understanding changes in physico-chemical properties of polymers as function of phosphorylation is therefore going to be crucial in development of nanofiber scaffolds based on phosphorylated polymers. The aim of the present work is to investigate the effect of phosphorous grafting on the electrospinning behavior of polymers with aim to obtain biomaterials for bone regeneration applications. For this purpose, phosphorylated derivatives of two polymers of widely different electrospinning behaviors were selected as starting materials. Poly(vinyl alcohol) is a conveniently electrospinnable polymer at different conditions and concentrations. On the other hand, electrospinning of chitosan backbone based polymers have been viewed as a critical challenge. The phosphorylated derivatives of these polymers were synthesized, characterized and electrospinning behavior of various solutions containing these derivatives was compared with electrospinning of pure poly (vinyl alcohol). In PVA, phosphorylation adversely impacted electrospinnability while in NMPC, higher phosphate content widened concentration range for nanofiber formation. Culture of MG-63 cells on electrospun nanofibers, revealed that degree of phosphate modification of a polymer significantly improves cell adhesion or osteoblast function of cultured cells. It is concluded that improvement of cell response parameters of nanofiber scaffolds can be attained as a function of controlled degree of phosphate grafting in polymeric biomaterials with implications for bone tissue engineering applications.Keywords: bone regeneration, chitosan, electrospinning, phosphorylation
Procedia PDF Downloads 2221 Highly Robust Crosslinked BIAN-based Binder to Stabilize High-Performance Silicon Anode in Lithium-Ion Secondary Battery
Authors: Agman Gupta, Rajashekar Badam, Noriyoshi Matsumi
Abstract:
Introduction: Recently, silicon has been recognized as one of the potential alternatives as anode active material in Li-ion batteries (LIBs) to replace the conventionally used graphite anodes. Silicon is abundantly present in the nature, it can alloy with lithium metal, and has a higher theoretical capacity (~4200 mAhg-1) that is approximately 10 times higher than graphite. However, because of a large volume expansion (~400%) upon repeated de-/alloying, the pulverization of Si particles causes the exfoliation of electrode laminate leading to the loss of electrical contact and adversely affecting the formation of solid-electrolyte interface (SEI).1 Functional polymers as binders have emerged as a competitive strategy to mitigate these drawbacks and failure mechanism of silicon anodes.1 A variety of aqueous/non-aqueous polymer binders like sodium carboxy-methyl cellulose (CMC-Na), styrene butadiene rubber (SBR), poly(acrylic acid), and other variants like mussel inspired binders have been investigated to overcome these drawbacks.1 However, there are only a few reports that mention the attempt of addressing all the drawbacks associated with silicon anodes effectively using a single novel functional polymer system as a binder. In this regard, here, we report a novel highly robust n-type bisiminoacenaphthenequinone (BIAN)-paraphenylene-based crosslinked polymer as a binder for Si anodes in lithium-ion batteries (Fig. 1). On its application, crosslinked-BIAN binder was evaluated to provide mechanical robustness to the large volume expansion of Si particles, maintain electrical conductivity within the electrode laminate, and facilitate in the formation of a thin SEI by restricting the extent of electrolyte decomposition on the surface of anode. The fabricated anodic half-cells were evaluated electrochemically for their rate capability, cyclability, and discharge capacity. Experimental: The polymerized BIAN (P-BIAN) copolymer was synthesized as per the procedure reported by our group.2 The synthesis of crosslinked P-BIAN: a solution of P-BIAN copolymer (1.497 g, 10 mmol) in N-methylpyrrolidone (NMP) (150 ml) was set-up to stir under reflux in nitrogen atmosphere. To this, 1,6-dibromohexane (5 mmol, 0.77 ml) was added dropwise. The resultant reaction mixture was stirred and refluxed at 150 °C for 24 hours followed by refrigeration for 3 hours at 5 °C. The product was obtained by evaporating the NMP solvent under reduced pressure and drying under vacuum at 120 °C for 12 hours. The obtained product was a black colored sticky compound. It was characterized by 1H-NMR, XPS, and FT-IR techniques. Results and Discussion: The N 1s XPS spectrum of the crosslinked BIAN polymer showed two characteristic peaks corresponding to the sp2 hybridized nitrogen (-C=N-) at 399.6 eV of the diimine backbone in the BP and quaternary nitrogen at 400.7 eV corresponding to the crosslinking of BP via dibromohexane. The DFT evaluation of the crosslinked BIAN binder showed that it has a low lying lowest unoccupied molecular orbital (LUMO) that enables it to get doped in the reducing environment and influence the formation of a thin (SEI). Therefore, due to the mechanically robust crosslinked matrices as well as its influence on the formation of a thin SEI, the crosslinked BIAN binder stabilized the Si anode-based half-cell for over 1000 cycles with a reversible capacity of ~2500 mAhg-1 and ~99% capacity retention as shown in Fig. 2. The dynamic electrochemical impedance spectroscopy (DEIS) characterization of crosslinked BIAN-based anodic half-cell confirmed that the SEI formed was thin in comparison with the conventional binder-based anodes. Acknowledgement: We are thankful to the financial support provided by JST-Mirai Program, Grant Number: JP18077239Keywords: self-healing binder, n-type binder, thin solid-electrolyte interphase (SEI), high-capacity silicon anodes, low-LUMO
Procedia PDF Downloads 172