Search results for: Duncan-Chang deformation parameters
9402 An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending
Authors: Yang Zheng, Wei Sun
Abstract:
This paper describes a new approach which can be used to interpret the experimental creep deformation data obtained from miniaturized thin plate bending specimen test to the corresponding uniaxial data based on an inversed application of the reference stress method. The geometry of the thin plate is fully defined by the span of the support, l, the width, b, and the thickness, d. Firstly, analytical solutions for the steady-state, load-line creep deformation rate of the thin plates for a Norton’s power law under plane stress (b → 0) and plane strain (b → ∞) conditions were obtained, from which it can be seen that the load-line deformation rate of the thin plate under plane-stress conditions is much higher than that under the plane-strain conditions. Since analytical solution is not available for the plates with random b-values, finite element (FE) analyses are used to obtain the solutions. Based on the FE results obtained for various b/l ratios and creep exponent, n, as well as the analytical solutions under plane stress and plane strain conditions, an approximate, numerical solutions for the deformation rate are obtained by curve fitting. Using these solutions, a reference stress method is utilised to establish the conversion relationships between the applied load and the equivalent uniaxial stress and between the creep deformations of thin plate and the equivalent uniaxial creep strains. Finally, the accuracy of the empirical solution was assessed by using a set of “theoretical” experimental data.Keywords: bending, creep, thin plate, materials engineering
Procedia PDF Downloads 4779401 A Digital Representation of a Microstructure and Determining Its Mechanical Behavior
Authors: Burak Bal
Abstract:
Mechanical characterization tests might come with a remarkable cost of time and money for both companies and academics. The inquiry to transform laboratory experiments to the computational media is getting a trend; accordingly, the literature supplies many analytical ways to explain the mechanics of deformation. In our work, we focused on the crystal plasticity finite element modeling (CPFEM) analysis on various materials in various crystal structures to predict the stress-strain curve without tensile tests. For FEM analysis, which we used in this study was ABAQUS, a standard user-defined material subroutine (UMAT) was prepared. The geometry of a specimen was created via DREAM 3D software with the inputs of Euler angles taken by Electron Back-Scattered Diffraction (EBSD) technique as orientation, or misorientation angles. The synthetic crystal created with DREAM 3D is also meshed in a way the grains inside the crystal meshed separately, and the computer can realize interaction of inter, and intra grain structures. The mechanical deformation parameters obtained from the literature put into the Fortran based UMAT code to describe how material will response to the load applied from specific direction. The mechanical response of a synthetic crystal created with DREAM 3D agrees well with the material response in the literature.Keywords: crystal plasticity finite element modeling, ABAQUS, Dream.3D, microstructure
Procedia PDF Downloads 1579400 Deformation and Strength of Heat-Shielding Materials in a Long-Term Storage of Aircraft
Authors: Lyudmila L. Gracheva
Abstract:
Thermal shield is a multi-layer structure that consists of layers made of different materials. The use of composite materials (CM) reinforced with carbon fibers in rocket technologies (shells, bearings, wings, fairings, inter-step compartments, etc.) is due to a possibility of reducing the weight while increasing a structural strength. Structures made of a unidirectional carbon fiber reinforced plastic based on an epoxy resin are used as load-bearing skins for aircraft fairings. The results of an experimental study of the physical and mechanical properties of epoxy carbon fiber reinforced plastics depending on temperature for different storage times of products are presented. With an increasing temperature, the physical and mechanical properties of CM are determined by the thermal and deformation properties of the components and the geometry of their distribution. Samples for the study were cut from natural skins of the head fairings.Keywords: composite material, thermal deformation, carbon fiber, heat shield, epoxy resin, thermal expansion
Procedia PDF Downloads 609399 Experimental and Theoretical Investigation of Slow Reversible Deformation of Concrete in Surface-Active Media
Authors: Nika Botchorishvili, Olgha Giorgishvili
Abstract:
Many-year investigations of the nature of damping creep of rigid bodies and materials led to the discovery of the fundamental character of this phenomenon. It occurs only when a rigid body comes in contact with a surface-active medium (liquid or gaseous), which brings about a decrease of the free surface energy of a rigid body as a result of adsorption, chemo-sorption or wetting. The reversibility of the process consists of a gradual disappearance of creep deformation when the action of a surface-active medium stops. To clarify the essence of processes, a physical model is constructed by using Griffith’s scheme and the well-known representation formulas of deformation origination and failure processes. The total creep deformation is caused by the formation and opening of microcracks throughout the material volume under the action of load. This supposedly happens in macroscopically homogeneous silicate and organic glasses, while in polycrystals (tuff, gypsum, steel) contacting with a surface-active medium micro crack are formed mainly on the grain boundaries. The creep of rubber is due to its swelling activated by stress. Acknowledgment: All experiments are financially supported by Shota Rustaveli National Science Foundation of Georgia. Study of Properties of Concretes (Both Ordinary and Compacted) Made of Local Building Materials and Containing Admixtures, and Their Further Introduction in Construction Operations and Road Building. DP2016_26. 22.12.2016.Keywords: process reversibility, surface-active medium, Rebinder’s effect, micro crack, creep
Procedia PDF Downloads 1389398 Multiscale Cohesive Zone Modeling of Composite Microstructure
Authors: Vincent Iacobellis, Kamran Behdinan
Abstract:
A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation.Keywords: cohesive zone model, fiber-matrix interface, microscale damage, multiscale modeling
Procedia PDF Downloads 4929397 Analytical Evaluation on Hysteresis Performance of Circular Shear Panel Damper
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
The idea of adding metallic energy dissipaters to a structure to absorb a large part of the seismic energy began four decades ago. There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of both stiffened and non stiffened circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. Diameter-to-thickness ratio is employed as main parameter to investigate the hysteresis performance of stiffened and unstiffened circular shear panel. Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. Hence, the hysteresis behavior is identified, specimens which deform without strength degradation so it will be used as passive energy dissipating device in civil engineering structures.Keywords: circular shear panel damper, FE analysis, hysteretic behavior, large deformation
Procedia PDF Downloads 3909396 Using T-Splines to Model Point Clouds from Terrestrial Laser Scanner
Authors: G. Kermarrec, J. Hartmann
Abstract:
Spline surfaces are a major representation of freeform surfaces in the computer-aided graphic industry and were recently introduced in the field of geodesy for processing point clouds from terrestrial laser scanner (TLS). The surface fitting consists of approximating a trustworthy mathematical surface to a large numbered 3D point cloud. The standard B-spline surfaces lack of local refinement due to the tensor-product construction. The consequences are oscillating geometry, particularly in the transition from low-to-high curvature parts for scattered point clouds with missing data. More economic alternatives in terms of parameters on how to handle point clouds with a huge amount of observations are the recently introduced T-splines. As long as the partition of unity is guaranteed, their computational complexity is low, and they are flexible. T-splines are implemented in a commercial package called Rhino, a 3D modeler which is widely used in computer aided design to create and animate NURBS objects. We have applied T-splines surface fitting to terrestrial laser scanner point clouds from a bridge under load and a sheet pile wall with noisy observations. We will highlight their potential for modelling details with high trustworthiness, paving the way for further applications in terms of deformation analysis.Keywords: deformation analysis, surface modelling, terrestrial laser scanner, T-splines
Procedia PDF Downloads 1449395 Effect of Hot Extrusion on the Mechanical and Corrosion Properties of Mg-Zn-Ca and Mg-Zn-Ca-Mn Alloys for Medical Application
Authors: V. E. Bazhenov, A. V. Li, A. A. Komissarov, A. V. Koltygin, S. A. Tavolzhanskii, O. O. Voropaeva, A. M. Mukhametshina, A. A. Tokar, V. A. Bautin
Abstract:
Magnesium-based alloys are considered as effective materials in the development of biodegradable implants. The magnesium alloys containing Mg, Zn, Ca as an alloying element are the subject of the particular interest. These elements are the nutrients for the human body, which provide their high biocompatibility. In this work, we investigated the effect of severe plastic deformation (SPD) on the mechanical and corrosion properties of Mg-Zn-Ca and Mg-Zn-Ca-Mn alloys containing from 2 to 4 wt.% Zn; 0.7 wt.% Ca and up to 1 wt.% Mn. Hot extrusion was used as a method of intensive plastic deformation. The temperature of hot extrusion was set to 220 °C and 300 °C. Metallographic analysis after hot extrusion shows that the grain size in the studied alloys depends on the deformation temperature. The grain size for all of investigated alloys is in the range from 3 to 7 microns, and 3 μm corresponds to the extrusion temperature of 220 °C. Analysis of mechanical properties after extrusion shows that extrusion at a temperature of 220 °C and alloying with Mn increase the strength characteristics and decrease the ductility of studied alloys. A slight anisotropy of properties in the longitudinal and transverse directions was also observed. Measurements of corrosion properties revealed that the addition of Mn to Mg-Zn-Ca alloys reduces the corrosion rate. On the other hand, increasing the Zn content in alloys increases the corrosion rate. The extrusion temperature practically does not affect the corrosion rate. Acknowledgement: The authors gratefully acknowledge the financial support of the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (No K2-2019-008), implemented by a governmental decree dated 16th of March 2013, N 211.Keywords: biocompatibility, hot extrusion, magnesium alloys, severe plastic deformation, properties
Procedia PDF Downloads 1139394 Elastoplastic Modified Stillinger Weber-Potential Based Discretized Virtual Internal Bond and Its Application to the Dynamic Fracture Propagation
Authors: Dina Kon Mushid, Kabutakapua Kakanda, Dibu Dave Mbako
Abstract:
The failure of material usually involves elastoplastic deformation and fracturing. Continuum mechanics can effectively deal with plastic deformation by using a yield function and the flow rule. At the same time, it has some limitations in dealing with the fracture problem since it is a theory based on the continuous field hypothesis. The lattice model can simulate the fracture problem very well, but it is inadequate for dealing with plastic deformation. Based on the discretized virtual internal bond model (DVIB), this paper proposes a lattice model that can account for plasticity. DVIB is a lattice method that considers material to comprise bond cells. Each bond cell may have any geometry with a finite number of bonds. The two-body or multi-body potential can characterize the strain energy of a bond cell. The two-body potential leads to the fixed Poisson ratio, while the multi-body potential can overcome the limitation of the fixed Poisson ratio. In the present paper, the modified Stillinger-Weber (SW), a multi-body potential, is employed to characterize the bond cell energy. The SW potential is composed of two parts. One part is the two-body potential that describes the interatomic interactions between particles. Another is the three-body potential that represents the bond angle interactions between particles. Because the SW interaction can represent the bond stretch and bond angle contribution, the SW potential-based DVIB (SW-DVIB) can represent the various Poisson ratios. To embed the plasticity in the SW-DVIB, the plasticity is considered in the two-body part of the SW potential. It is done by reducing the bond stiffness to a lower level once the bond reaches the yielding point. While before the bond reaches the yielding point, the bond is elastic. When the bond deformation exceeds the yielding point, the bond stiffness is softened to a lower value. When unloaded, irreversible deformation occurs. With the bond length increasing to a critical value, termed the failure bond length, the bond fails. The critical failure bond length is related to the cell size and the macro fracture energy. By this means, the fracture energy is conserved so that the cell size sensitivity problem is relieved to a great extent. In addition, the plasticity and the fracture are also unified at the bond level. To make the DVIB able to simulate different Poisson ratios, the three-body part of the SW potential is kept elasto-brittle. The bond angle can bear the moment before the bond angle increment is smaller than a critical value. By this method, the SW-DVIB can simulate the plastic deformation and the fracturing process of material with various Poisson ratios. The elastoplastic SW-DVIB is used to simulate the plastic deformation of a material, the plastic fracturing process, and the tunnel plastic deformation. It has been shown that the current SW-DVIB method is straightforward in simulating both elastoplastic deformation and plastic fracture.Keywords: lattice model, discretized virtual internal bond, elastoplastic deformation, fracture, modified stillinger-weber potential
Procedia PDF Downloads 1029393 An Interpolation Tool for Data Transfer in Two-Dimensional Ice Accretion Problems
Authors: Marta Cordero-Gracia, Mariola Gomez, Olivier Blesbois, Marina Carrion
Abstract:
One of the difficulties in icing simulations is for extended periods of exposure, when very large ice shapes are created. As well as being large, they can have complex shapes, such as a double horn. For icing simulations, these configurations are currently computed in several steps. The icing step is stopped when the ice shapes become too large, at which point a new mesh has to be created to allow for further CFD and ice growth simulations to be performed. This can be very costly, and is a limiting factor in the simulations that can be performed. A way to avoid the costly human intervention in the re-meshing step of multistep icing computation is to use mesh deformation instead of re-meshing. The aim of the present work is to apply an interpolation method based on Radial Basis Functions (RBF) to transfer deformations from surface mesh to volume mesh. This deformation tool has been developed specifically for icing problems. It is able to deal with localized, sharp and large deformations, unlike the tools traditionally used for more smooth wing deformations. This tool will be presented along with validation on typical two-dimensional icing shapes.Keywords: ice accretion, interpolation, mesh deformation, radial basis functions
Procedia PDF Downloads 3179392 Reproducibility of Shear Strength Parameters Determined from CU Triaxial Tests: Evaluation of Results from Regression of Different Failure Stress Combinations
Authors: Henok Marie Shiferaw, Barbara Schneider-Muntau
Abstract:
Test repeatability and data reproducibility are a concern in many geotechnical laboratory tests due to inherent soil variability, inhomogeneous sample preparation and measurement inaccuracy. Test results on comparable test specimens vary to a considerable extent. Thus, also the derived shear strength parameters from triaxial tests are affected. In this contribution, we present the reproducibility of effective shear strength parameters from consolidated undrained triaxial tests on plain soil and cement-treated soil specimens. Six remolded test specimens were prepared for the plain soil and for the cement-treated soil. Conventional three levels of consolidation pressure testing were considered with an effective consolidation pressure of 100 kPa, 200 kPa and 300 kPa, respectively. At each effective consolidation pressure, two tests were done on comparable test specimens. Focus was laid on the same mean dry density and same water content during sample preparation for the two specimens. The cement-treated specimens were tested after 28 days of curing. Shearing of test specimens was carried out at a deformation rate of 0.4 mm/min after sample saturation at a back pressure of 900 kPa, followed by consolidation. The effective peak and residual shear strength parameters were then estimated from regression analysis of 21 different combinations of the failure stresses from the six tests conducted for both the plain soil and cement-treated soil samples. The 21 different stress combinations were constructed by picking three, four, five and six failure tresses at once at different combinations. Results indicate that the effective shear strength parameters estimated from the regression of different combinations of the failure stresses vary. Effective critical friction angle was found to be more consistent than effective peak friction angle with a smaller standard deviation. The reproducibility of the shear strength parameters for the cement-treated specimens was even lower than that of the untreated specimens.Keywords: shear strength parameters, test repeatability, data reproducibility, triaxial soil testing, cement improvement of soils
Procedia PDF Downloads 389391 Safety-critical Alarming Strategy Based on Statistically Defined Slope Deformation Behaviour Model Case Study: Upright-dipping Highwall in a Coal Mining Area
Authors: Lintang Putra Sadewa, Ilham Prasetya Budhi
Abstract:
Slope monitoring program has now become a mandatory campaign for any open pit mines around the world to operate safely. Utilizing various slope monitoring instruments and strategies, miners are now able to deliver precise decisions in mitigating the risk of slope failures which can be catastrophic. Currently, the most sophisticated slope monitoring technology available is the Slope Stability Radar (SSR), whichcan measure wall deformation in submillimeter accuracy. One of its eminent features is that SSRcan provide a timely warning by automatically raise an alarm when a predetermined rate-of-movement threshold is reached. However, establishing proper alarm thresholds is arguably one of the onerous challenges faced in any slope monitoring program. The difficulty mainly lies in the number of considerations that must be taken when generating a threshold becausean alarm must be effectivethat it should limit the occurrences of false alarms while alsobeing able to capture any real wall deformations. In this sense, experience shows that a site-specific alarm thresholdtendsto produce more reliable results because it considers site distinctive variables. This study will attempt to determinealarming thresholds for safety-critical monitoring based on an empirical model of slope deformation behaviour that is defined statistically fromdeformation data captured by the Slope Stability Radar (SSR). The study area comprises of upright-dipping highwall setting in a coal mining area with intense mining activities, andthe deformation data used for the study were recorded by the SSR throughout the year 2022. The model is site-specific in nature thus, valuable information extracted from the model (e.g., time-to-failure, onset-of-acceleration, and velocity) will be applicable in setting up site-specific alarm thresholds and will give a clear understanding of how deformation trends evolve over the area.Keywords: safety-critical monitoring, alarming strategy, slope deformation behaviour model, coal mining
Procedia PDF Downloads 939390 Residual Plastic Deformation Capacity in Reinforced Concrete Beams Subjected to Drop Weight Impact Test
Authors: Morgan Johansson, Joosef Leppanen, Mathias Flansbjer, Fabio Lozano, Josef Makdesi
Abstract:
Concrete is commonly used for protective structures and how impact loading affects different types of concrete structures is an important issue. Often the knowledge gained from static loading is also used in the design of impulse loaded structures. A large plastic deformation capacity is essential to obtain a large energy absorption in an impulse loaded structure. However, the structural response of an impact loaded concrete beam may be very different compared to a statically loaded beam. Consequently, the plastic deformation capacity and failure modes of the concrete structure can be different when subjected to dynamic loads; and hence it is not sure that the observations obtained from static loading are also valid for dynamic loading. The aim of this paper is to investigate the residual plastic deformation capacity in reinforced concrete beams subjected to drop weight impact tests. A test-series consisting of 18 simply supported beams (0.1 x 0.1 x 1.18 m, ρs = 0.7%) with a span length of 1.0 m and subjected to a point load in the beam mid-point, was carried out. 2x6 beams were first subjected to drop weight impact tests, and thereafter statically tested until failure. The drop in weight had a mass of 10 kg and was dropped from 2.5 m or 5.0 m. During the impact tests, a high-speed camera was used with 5 000 fps and for the static tests, a camera was used with 0.5 fps. Digital image correlation (DIC) analyses were conducted and from these the velocities of the beam and the drop weight, as well as the deformations and crack propagation of the beam, were effectively measured. Additionally, for the static tests, the applied load and midspan deformation were measured. The load-deformation relations for the beams subjected to an impact load were compared with 6 reference beams that were subjected to static loading only. The crack pattern obtained were compared using DIC, and it was concluded that the resulting crack formation depended much on the test method used. For the static tests, only bending cracks occurred. For the impact loaded beams, though, distinctive diagonal shear cracks also formed below the zone of impact and less wide shear cracks were observed in the region half-way to the support. Furthermore, due to wave propagation effects, bending cracks developed in the upper part of the beam during initial loading. The results showed that the plastic deformation capacity increased for beams subjected to drop weight impact tests from a high drop height of 5.0 m. For beams subjected to an impact from a low drop height of 2.5 m, though, the plastic deformation capacity was in the same order of magnitude as for the statically loaded reference beams. The beams tested were designed to fail due to bending when subjected to a static load. However, for the impact tested beams, one beam exhibited a shear failure at a significantly reduced load level when it was tested statically; indicating that there might be a risk of reduced residual load capacity for impact loaded structures.Keywords: digital image correlation (DIC), drop weight impact, experiments, plastic deformation capacity, reinforced concrete
Procedia PDF Downloads 1539389 Numerical Investigation of Material Behavior During Non-Equal Channel Multi Angular Extrusion
Authors: Mohamed S. El-Asfoury, Ahmed Abdel-Moneim, Mohamed N. A. Nasr
Abstract:
The current study uses finite element modeling to investigate and analyze a modified form of the from the conventional equal channel multi-angular pressing (ECMAP), using non-equal channels, on the workpiece material plastic deformation. The modified process non-equal channel multi-angular extrusion (NECMAE) is modeled using two-dimensional plane strain finite element model built using the commercial software ABAQUS. The workpiece material used is pure aluminum. The model was first validated by comparing its results to analytical solutions for single-pass equal channel angular extrusion (ECAP), as well as previously published data. After that, the model was used to examine the effects of different % of reductions of the area (for the second stage) on material plastic deformation, corner gap, and required the load. Three levels of reduction in the area were modeled; 10%, 30%, and 50%, and compared to single-pass and double-pass ECAP. Cases with a higher reduction in the area were found to have smaller corner gaps, higher and much uniform plastic deformation, as well as higher required loads. The current results are mainly attributed to the back pressure effects exerted by the second stage, as well as strain hardening effects experienced during the first stage.Keywords: non-equal channel angular extrusion, multi-pass, sever plastic deformation, back pressure, Finite Element Modelling (FEM)
Procedia PDF Downloads 4259388 The Effect of Deformation Activation Volume, Strain Rate Sensitivity and Processing Temperature of Grain Size Variants
Authors: P. B. Sob, A. A. Alugongo, T. B. Tengen
Abstract:
The activation volume of 6082T6 aluminum is investigated at different temperatures on grain size variants. The deformation activation volume was computed on the basis of the relationship between the Boltzmann’s constant k, the testing temperatures, the material strain rate sensitivity and the material yield stress of grain size variants. The material strain rate sensitivity is computed as a function of yield stress and strain rate of grain size variants. The effect of the material strain rate sensitivity and the deformation activation volume of 6082T6 aluminum at different temperatures of 3-D grain are discussed. It is shown that the strain rate sensitivities and activation volume are negative for the grain size variants during the deformation of nanostructured materials. It is also observed that the activation volume vary in different ways with the equivalent radius, semi minor axis radius, semi major axis radius and major axis radius. From the obtained results it is shown that the variation of activation volume increased and decreased with the testing temperature. It was revealed that, increased in strain rate sensitivity led to decrease in activation volume whereas increased in activation volume led to decrease in strain rate sensitivity.Keywords: nanostructured materials, grain size variants, temperature, yield stress, strain rate sensitivity, activation volume
Procedia PDF Downloads 2529387 Dem Based Surface Deformation in Jhelum Valley: Insights from River Profile Analysis
Authors: Syed Amer Mahmood, Rao Mansor Ali Khan
Abstract:
This study deals with the remote sensing analysis of tectonic deformation and its implications to understand the regional uplift conditions in the lower Jhelum and eastern Potwar. Identification and mapping of active structures is an important issue in order to assess seismic hazards and to understand the Quaternary deformation of the region. Digital elevation models (DEMs) provide an opportunity to quantify land surface geometry in terms of elevation and its derivatives. Tectonic movement along the faults is often reflected by characteristic geomorphological features such as elevation, stream offsets, slope breaks and the contributing drainage area. The river profile analysis in this region using SRTM digital elevation model gives information about the tectonic influence on the local drainage network. The steepness and concavity indices have been calculated by power law of scaling relations under steady state conditions. An uplift rate map is prepared after carefully analysing the local drainage network showing uplift rates in mm/year. The active faults in the region control local drainages and the deflection of stream channels is a further evidence of the recent fault activity. The results show variable relative uplift conditions along MBT and Riasi and represent a wonderful example of the recency of uplift, as well as the influence of active tectonics on the evolution of young orogens.Keywords: quaternary deformation, SRTM DEM, geomorphometric indices, active tectonics and MBT
Procedia PDF Downloads 3499386 The Realization of a System’s State Space Based on Markov Parameters by Using Flexible Neural Networks
Authors: Ali Isapour, Ramin Nateghi
Abstract:
— Markov parameters are unique parameters of the system and remain unchanged under similarity transformations. Markov parameters from a power series that is convergent only if the system matrix’s eigenvalues are inside the unity circle. Therefore, Markov parameters of a stable discrete-time system are convergent. In this study, we aim to realize the system based on Markov parameters by using Artificial Neural Networks (ANN), and this end, we use Flexible Neural Networks. Realization means determining the elements of matrices A, B, C, and D.Keywords: Markov parameters, realization, activation function, flexible neural network
Procedia PDF Downloads 1979385 Stability of Pump Station Cavern in Chagrin Shale with Time
Authors: Mohammad Moridzadeh, Mohammad Djavid, Barry Doyle
Abstract:
An assessment of the long-term stability of a cavern in Chagrin shale excavated by the sequential excavation method was performed during and after construction. During the excavation of the cavern, deformations of rock mass were measured at the surface of excavation and within the rock mass by surface and deep measurement instruments. Rock deformations were measured during construction which appeared to result from the as-built excavation sequence that had potentially disturbed the rock and its behavior. Also some additional time dependent rock deformations were observed during and post excavation. Several opinions have been expressed to explain this time dependent deformation including stress changes induced by excavation, strain softening (or creep) in the beddings with and without clay and creep of the shaley rock under compressive stresses. In order to analyze and replicate rock behavior observed during excavation, including current and post excavation elastic, plastic, and time dependent deformation, Finite Element Analysis (FEA) was performed. The analysis was also intended to estimate long term deformation of the rock mass around the excavation. Rock mass behavior including time dependent deformation was measured by means of rock surface convergence points, MPBXs, extended creep testing on the long anchors, and load history data from load cells attached to several long anchors. Direct creep testing of Chagrin Shale was performed on core samples from the wall of the Pump Room. Results of these measurements were used to calibrate the FEA of the excavation. These analyses incorporate time dependent constitutive modeling for the rock to evaluate the potential long term movement in the roof, walls, and invert of the cavern. The modeling was performed due to the concerns regarding the unanticipated behavior of the rock mass as well as the forecast of long term deformation and stability of rock around the excavation.Keywords: Cavern, Chagrin shale, creep, finite element.
Procedia PDF Downloads 3539384 Thermal Buckling Response of Cylindrical Panels with Higher Order Shear Deformation Theory—a Case Study with Angle-Ply Laminations
Authors: Humayun R. H. Kabir
Abstract:
An analytical solution before used for static and free-vibration response has been extended for thermal buckling response on cylindrical panel with anti-symmetric laminations. The partial differential equations that govern kinematic behavior of shells produce five coupled differential equations. The basic displacement and rotational unknowns are similar to first order shear deformation theory---three displacement in spatial space, and two rotations about in-plane axes. No drilling degree of freedom is considered. Boundary conditions are considered as complete hinge in all edges so that the panel respond on thermal inductions. Two sets of double Fourier series are considered in the analytical solution process. The sets are selected that satisfy mixed type of natural boundary conditions. Numerical results are presented for the first 10 eigenvalues, and first 10 mode shapes for Ux, Uy, and Uz components. The numerical results are compared with a finite element based solution.Keywords: higher order shear deformation, composite, thermal buckling, angle-ply laminations
Procedia PDF Downloads 3789383 Ranking of Managerial Parameters Impacting upon Performance of Football Referees in Iran
Authors: Mohammad Reza Boromand, Masoud Moradi, Amin Eskandari
Abstract:
The present study attempts to determine ranking of managerial parameters impacting upon performance of football referees in Iran. The population consisted of all referees in Leagues 1, 2 and 3 as well as super league of Iran (N=273), of which we selected 160 referees and assistant referees in 2013-2014. A research-designed questionnaire was used for data collection which was divided into two sections: (1) Demographic details (age range, Marital status, employment, refereeing experience, education level, refereeing level and proficiency) and (2) items related to parameters impacting upon performance of referees (structural parameters, operational parameters, environmental parameters, temporal parameters, economic parameters, facilities and tools, personal performance and performance evaluation). Internal consistency was calculated by Cronbach's alpha (r=0.85). For data analysis, we performed Freedman's Test and used SPSS software (α>0.05), along with descriptive statistics. The findings showed the following ranking for the above-mentioned managerial parameters: Facilities and tools, personal performance, economic parameters, structural parameters, operational parameters, environmental parameters, temporal parameters, and performance evaluation.Keywords: Iran, football referees, managerial parameters, performance
Procedia PDF Downloads 5749382 Optimization Analysis of Controlled Cooling Process for H-Shape Steam Beams
Authors: Jiin-Yuh Jang, Yu-Feng Gan
Abstract:
In order to improve the comprehensive mechanical properties of the steel, the cooling rate, and the temperature distribution must be controlled in the cooling process. A three-dimensional numerical model for the prediction of the heat transfer coefficient distribution of H-beam in the controlled cooling process was performed in order to obtain the uniform temperature distribution and minimize the maximum stress and the maximum deformation after the controlled cooling. An algorithm developed with a simplified conjugated-gradient method was used as an optimizer to optimize the heat transfer coefficient distribution. The numerical results showed that, for the case of air cooling 5 seconds followed by water cooling 6 seconds with uniform the heat transfer coefficient, the cooling rate is 15.5 (℃/s), the maximum temperature difference is 85℃, the maximum the stress is 125 MPa, and the maximum deformation is 1.280 mm. After optimize the heat transfer coefficient distribution in control cooling process with the same cooling time, the cooling rate is increased to 20.5 (℃/s), the maximum temperature difference is decreased to 52℃, the maximum stress is decreased to 82MPa and the maximum deformation is decreased to 1.167mm.Keywords: controlled cooling, H-Beam, optimization, thermal stress
Procedia PDF Downloads 3739381 Material Chemistry Level Deformation and Failure in Cementitious Materials
Authors: Ram V. Mohan, John Rivas-Murillo, Ahmed Mohamed, Wayne D. Hodo
Abstract:
Cementitious materials, an excellent example of highly complex, heterogeneous material systems, are cement-based systems that include cement paste, mortar, and concrete that are heavily used in civil infrastructure; though commonly used are one of the most complex in terms of the material morphology and structure than most materials, for example, crystalline metals. Processes and features occurring at the nanometer sized morphological structures affect the performance, deformation/failure behavior at larger length scales. In addition, cementitious materials undergo chemical and morphological changes gaining strength during the transient hydration process. Hydration in cement is a very complex process creating complex microstructures and the associated molecular structures that vary with hydration. A fundamental understanding can be gained through multi-scale level modeling for the behavior and properties of cementitious materials starting from the material chemistry level atomistic scale to further explore their role and the manifested effects at larger length and engineering scales. This predictive modeling enables the understanding, and studying the influence of material chemistry level changes and nanomaterial additives on the expected resultant material characteristics and deformation behavior. Atomistic-molecular dynamic level modeling is required to couple material science to engineering mechanics. Starting at the molecular level a comprehensive description of the material’s chemistry is required to understand the fundamental properties that govern behavior occurring across each relevant length scale. Material chemistry level models and molecular dynamics modeling and simulations are employed in our work to describe the molecular-level chemistry features of calcium-silicate-hydrate (CSH), one of the key hydrated constituents of cement paste, their associated deformation and failure. The molecular level atomic structure for CSH can be represented by Jennite mineral structure. Jennite has been widely accepted by researchers and is typically used to represent the molecular structure of the CSH gel formed during the hydration of cement clinkers. This paper will focus on our recent work on the shear and compressive deformation and failure behavior of CSH represented by Jennite mineral structure that has been widely accepted by researchers and is typically used to represent the molecular structure of CSH formed during the hydration of cement clinkers. The deformation and failure behavior under shear and compression loading deformation in traditional hydrated CSH; effect of material chemistry changes on the predicted stress-strain behavior, transition from linear to non-linear behavior and identify the on-set of failure based on material chemistry structures of CSH Jennite and changes in its chemistry structure will be discussed.Keywords: cementitious materials, deformation, failure, material chemistry modeling
Procedia PDF Downloads 2919380 Investigating the Nail Walls Performance in Jointed Rock Medium
Authors: Ibrahim Naeimifar, Omid Naeemifar
Abstract:
Evaluation of the excavation-induced ground movements is an important design aspect of support systems in urban areas. Geological and geotechnical conditions of an excavation area have significant effects on excavation-induced ground movements and the related damage. This paper is aimed at studying the performance of excavation walls supported by nails in jointed rock medium. The performance of nailed walls is investigated based on evaluating the excavation-induced ground movements. For this purpose, a set of calibrated 2D finite element models is developed by taking into account the nail-rock-structure interactions, the anisotropic properties of jointed rock, and the staged construction process. The results of this paper highlight effects of different parameters such as joint inclinations, the anisotropy of rocks and nail inclinations on deformation parameters of excavation wall supported by nails.Keywords: finite element, jointed rock, nailing, performance
Procedia PDF Downloads 2919379 Effect of Wind Braces to Earthquake Resistance of Steel Structures
Authors: H. Gokdemir
Abstract:
All structures are subject to vertical and lateral loads. Under these loads, structures make deformations and deformation values of structural elements mustn't exceed their capacity for structural stability. Especially, lateral loads cause critical deformations because of their random directions and magnitudes. Wind load is one of the lateral loads which can act in any direction and any magnitude. Although wind has nearly no effect on reinforced concrete structures, it must be considered for steel structures, roof systems and slender structures like minarets. Therefore, every structure must be able to resist wind loads acting parallel and perpendicular to any side. One of the effective methods for resisting lateral loads is assembling cross steel elements between columns which are called as wind bracing. These cross elements increases lateral rigidity of a structure and prevent exceeding of deformation capacity of the structural system. So, this means cross elements are also effective in resisting earthquake loads too. In this paper; Effects of wind bracing to earthquake resistance of structures are studied. Structure models (with and without wind bracing) are generated and these models are solved under both earthquake and wind loads with different seismic zone parameters. It is concluded by the calculations that; in low-seismic risk zones, wind bracing can easily resist earthquake loads and no additional reinforcement for earthquake loads is necessary. Similarly; in high-seismic risk zones, earthquake cross elements resist wind loads too.Keywords: wind bracings, earthquake, steel structures, vertical and lateral loads
Procedia PDF Downloads 4749378 The Mechanical Properties of In-Situ Consolidated Nanocrystalline Aluminum Alloys
Authors: Khaled M. Youssef, Sara I. Ahmed
Abstract:
In this study, artifacts-free bulk nanocrystalline pure aluminum alloy samples were prepared through mechanical milling under ultra-high purity argon and at both liquid nitrogen and room temperatures. The nanostructure evolution during milling was examined using X-ray diffraction and transmission electron microscope techniques. The in-situ consolidated samples after milling exhibited an average grain size of 18 nm. The tensile properties of this novel material are reported in comparison with coarse-grained aluminum alloys. The 0.2% offset yield strength of the nanocrystalline aluminum was found to be 340 MPa. This value is at least one order of magnitude higher than that of the coarse-grained aluminum alloy. In addition to this extraordinarily high strength, the nanocrystalline aluminum showed a significant tensile ductility, with 6% uniform elongation and 11% elongation-to-failure. The transmission electron microscope observations in this study provide evidence of deformation twinning in the plastically deformed nanocrystalline aluminum. These results highlight a change of the deformation mechanism from a typical dislocation slip to twinning deformation induced by partial dislocation activities.Keywords: nanocrystalline, aluminum, strength, ductility
Procedia PDF Downloads 1859377 Improving the Crashworthiness Characteristics of Long Steel Circular Tubes Subjected to Axial Compression by Inserting a Helical Spring
Authors: Mehdi Tajdari, Farzad Mokhtarnejad, Fatemeh Moradi, Mehdi Najafizadeh
Abstract:
Nowadays, energy absorbing devices have been widely used in all vehicles and moving parts such as railway couches, aircraft, ships and lifts. The aim is to protect these structures from serious damages while subjected to impact loads, or to minimize human injuries while collision is occurred in transportation systems. These energy-absorbing devices can dissipate kinetic energy in a wide variety of ways like friction, facture, plastic bending, crushing, cyclic plastic deformation and metal cutting. On the other hand, various structures may be used as collapsible energy absorbers. Metallic cylindrical tubes have attracted much more attention due to their high stiffness and strength combined with the low weight and ease of manufacturing process. As a matter of fact, favorable crash worthiness characteristics for energy dissipation purposes can be achieved from axial collapse of tubes while they crush progressively in symmetric modes. However, experimental and theoretical results have shown that depending on various parameters such as tube geometry, material properties of tube, boundary and loading conditions, circular tubes buckle in different modes of deformation, namely, diamond and Euler collapsing modes. It is shown that when the tube length is greater than the critical length, the tube deforms in overall Euler buckling mode, which is an inefficient mode of energy absorption and needs to be avoided in crash worthiness applications. This study develops a new method with the aim of improving energy absorption characteristics of long steel circular tubes. Inserting a helical spring into the tubes is proved experimentally to be an efficient solution. In fact when a long tube is subjected to axial compression load, the spring prevents of undesirable Euler or diamond collapsing modes. This is because the spring reinforces the internal wall of tubes and it causes symmetric deformation in tubes. In this research three specimens were prepared and three tests were performed. The dimensions of tubes were selected so that in axial compression load buckling is occurred. In the second and third tests a spring was inserted into tubes and they were subjected to axial compression load in quasi-static and impact loading, respectively. The results showed that in the second and third tests buckling were not happened and the tubes deformed in symmetric modes which are desirable in energy absorption.Keywords: energy absorption, circular tubes, collapsing deformation, crashworthiness
Procedia PDF Downloads 3419376 Vibration Analysis and Optimization Design of Ultrasonic Horn
Authors: Kuen Ming Shu, Ren Kai Ho
Abstract:
Ultrasonic horn has the functions of amplifying amplitude and reducing resonant impedance in ultrasonic system. Its primary function is to amplify deformation or velocity during vibration and focus ultrasonic energy on the small area. It is a crucial component in design of ultrasonic vibration system. There are five common design methods for ultrasonic horns: analytical method, equivalent circuit method, equal mechanical impedance, transfer matrix method, finite element method. In addition, the general optimization design process is to change the geometric parameters to improve a single performance. Therefore, in the general optimization design process, we couldn't find the relation of parameter and objective. However, a good optimization design must be able to establish the relationship between input parameters and output parameters so that the designer can choose between parameters according to different performance objectives and obtain the results of the optimization design. In this study, an ultrasonic horn provided by Maxwide Ultrasonic co., Ltd. was used as the contrast of optimized ultrasonic horn. The ANSYS finite element analysis (FEA) software was used to simulate the distribution of the horn amplitudes and the natural frequency value. The results showed that the frequency for the simulation values and actual measurement values were similar, verifying the accuracy of the simulation values. The ANSYS DesignXplorer was used to perform Response Surface optimization, which could shows the relation of parameter and objective. Therefore, this method can be used to substitute the traditional experience method or the trial-and-error method for design to reduce material costs and design cycles.Keywords: horn, natural frequency, response surface optimization, ultrasonic vibration
Procedia PDF Downloads 1199375 Line Heating Forming: Methodology and Application Using Kriging and Fifth Order Spline Formulations
Authors: Henri Champliaud, Zhengkun Feng, Ngan Van Lê, Javad Gholipour
Abstract:
In this article, a method is presented to effectively estimate the deformed shape of a thick plate due to line heating. The method uses a fifth order spline interpolation, with up to C3 continuity at specific points to compute the shape of the deformed geometry. First and second order derivatives over a surface are the resulting parameters of a given heating line on a plate. These parameters are determined through experiments and/or finite element simulations. Very accurate kriging models are fitted to real or virtual surfaces to build-up a database of maps. Maps of first and second order derivatives are then applied on numerical plate models to evaluate their evolving shapes through a sequence of heating lines. Adding an optimization process to this approach would allow determining the trajectories of heating lines needed to shape complex geometries, such as Francis turbine blades.Keywords: deformation, kriging, fifth order spline interpolation, first, second and third order derivatives, C3 continuity, line heating, plate forming, thermal forming
Procedia PDF Downloads 4599374 Research on Sensing Performance of Polyimide-Based Composite Materials
Authors: Rui Zhao, Dongxu Zhang, Min Wan
Abstract:
Composite materials are widely used in the fields of aviation, aerospace, and transportation due to their lightweight and high strength. Functionalization of composite structures is a hot topic in the future development of composite materials. This article proposed a polyimide-resin based composite material with a sensing function. This material can serve as a sensor to achieve deformation monitoring of metal sheets in room temperature environments. In the deformation process of metal sheets, the slope of the linear fitting line for the corresponding material resistance change rate is different in the elastic stage and the plastic strengthening stage. Therefore, the slope of the material resistance change rate can be used to characterize the deformation stage of the metal sheet. In addition, the resistance change rate of the material exhibited a good negative linear relationship with temperature in a high-temperature environment, and the determination coefficient of the linear fitting line for the change rate of material resistance in the range of 520-650℃ was 0.99. These results indicate that the material has the potential to be applied in the monitoring of mechanical properties of structural materials and temperature monitoring of high-temperature environments.Keywords: polyimide, composite, sensing, resistance change rate
Procedia PDF Downloads 879373 Lamb Waves in Plates Subjected to Uniaxial Stresses
Authors: Munawwar Mohabuth, Andrei Kotousov, Ching-Tai Ng
Abstract:
On the basis of the finite deformation theory, the effect of homogeneous stress on the propagation of Lamb waves in an initially isotropic hyperelastic plate is analysed. The equations governing the propagation of small amplitude waves in the prestressed plate are derived using the theory of small deformations superimposed on large deformations. By enforcing traction free boundary conditions at the upper and lower surfaces of the plate, acoustoelastic dispersion equations for Lamb wave propagation are obtained, which are solved numerically. Results are given for an aluminum plate subjected to a range of applied stresses.Keywords: acoustoelasticity, dispersion, finite deformation, lamb waves
Procedia PDF Downloads 473