Search results for: soil characterization
3659 Amplitude Versus Offset (AVO) Modeling as a Tool for Seismic Reservoir Characterization of the Semliki Basin
Authors: Hillary Mwongyera
Abstract:
The Semliki basin has become a frontier for petroleum exploration in recent years. Exploration efforts have resulted into extensive seismic data acquisition and drilling of three wells namely; Turaco 1, Turaco 2 and Turaco 3. A petrophysical analysis of the Turaco 1 well was carried out to identify two reservoir zones on which AVO modeling was performed. A combination of seismic modeling and rock physics modeling was applied during reservoir characterization and monitoring to determine variations of seismic responses with amplitude characteristics. AVO intercept gradient analysis applied on AVO synthetic CDP gathers classified AVO anomalies associated with both reservoir zones as Class 1 AVO anomalies. Fluid replacement modeling was carried out on both reservoir zones using homogeneous mixing and patchy saturation patterns to determine effects of fluid substitution on rock property interactions. For both homogeneous mixing and saturation patterns, density (ρ) showed an increasing trend with increasing brine substitution while Shear wave velocity (Vs) decreased with increasing brine substitution. A study of compressional wave velocity (Vp) with increasing brine substitution for both homogeneous mixing and patchy saturation gave quite interesting results. During patchy saturation, Vp increased with increasing brine substitution. During homogeneous mixing however, Vp showed a slightly decreasing trend with increasing brine substitution but increased tremendously towards and at full brine saturation. A sensitivity analysis carried out showed that density was a very sensitive rock property responding to brine saturation except at full brine saturation during homogeneous mixing where Vp showed greater sensitivity with brine saturation. Rock physics modeling was performed to predict diagnostics of reservoir quality using an inverse deterministic approach which showed low shale content and a high degree of shale stiffness within reservoir zones.Keywords: Amplitude Versus Offset (AVO), fluid replacement modelling, reservoir characterization, AVO attributes, rock physics modelling, reservoir monitoring
Procedia PDF Downloads 5313658 Molecular Characterization and Phylogenetic Analysis of Influenza a(H3N2) Virus Circulating during the 2010-2011 in Riyadh, Saudi Arabia
Authors: Ghazanfar Ali, Fahad N Almajhdi
Abstract:
This study provides data on the viral diagnosis and molecular epidemiology of influenza A(H3N2) virus isolated in Riyadh, Saudi Arabia. Nasopharyngeal aspirates from 80 clinically infected patients in the peak of the 2010-2011 winter seasons were processed for viral diagnosis by RT-PCR. Sequencing of entire HA and NA genes of representative isolates and molecular epidemiological analysis were performed. A total of 06 patients were positive for influenza A, B and respiratory syncytial viruses by RT-PCR assays; out of these only one sample was positive for influenza A(H3N2) by RT-PCR. Phylogenetic analysis of the HA and NA gene sequences showed identities higher than 99-98.8 % in both genes. They were also similar to reference isolates in HA sequences (99 % identity) and in NA sequences (99 % identity). Amino acid sequences predicted for the HA gene were highly identical to reference strains. The NA amino acid substitutions identified did not include the oseltamivir-resistant H275Y substitution. Conclusion: Viral isolation and RT-PCR together were useful for diagnosis of the influenza A (H3N2) virus. Variations in HA and NA sequences are similar to those identified in worldwide reference isolates and no drug resistance was found.Keywords: influenza A (H3N2), genetic characterization, viral isolation, RT-PCR, Saudi Arabia
Procedia PDF Downloads 2623657 Preparation, Physical and Photoelectrochemical Characterization of Ag/CuCo₂O₄: Application to Solar Light Oxidation of Methyl Orange
Authors: Radia Bagtache, Karima Boudjedien, Ahmed Malek Djaballah, Mohamed Trari
Abstract:
The compounds with a spinel structure have received special attention because of their numerous applications in electronics, magnetism, catalysis, electrocatalysis, photocatalysis, etc. Among these oxides, CuCo₂O₄ was selected because of its optimal band gap, very close to the ideal value for solar devices, its low cost, and a potential candidate in the field of energy storage. Herein, we reported the junction Ag/CuCo₂O₄ (5/95 % wt.) prepared by co-precipitation, characterized physically and photo electrochemically. Moreover, its performance was evaluated for the oxidation of methyl orange (MO) under solar light. The X-ray diffraction exhibited narrow peaks ascribed to the spinel CuCo₂O₄ and Ag. The SEM analysis displayed grains with regular shapes. The band gap of CuCo₂O₄ (1.38 eV) was deducted from the diffuse reflectance, and this value decreased down to 1.15 eV due to the synergy effect in the junction. The current-potential (J-E) curve plotted in Na₂SO₄ electrolyte showed a medium hysteresis, characteristic of good chemical stability. The capacitance-2 – potential (C⁻² – E) graph displayed that the spinel behaves as a p-type semiconductor, a property supported by chrono-amperometry. The conduction band, located at 4.05 eV (-0.94 VNHE), was made up of Co³⁺: 3d orbital. The result showed a total discoloration of MO after 2 h of illumination under solar light.Keywords: junction Ag/CuCo₂O₄, semiconductor, environment, sunlight, characterization, depollution
Procedia PDF Downloads 703656 Powerful Bacteriocins Produced by Bacillus thuringiensis Strains Isolated from Soil at Northern of Algeria
Authors: R. Gounina-Allouane, I. Moussaoui, N. Boukahel
Abstract:
Bacillus antimicrobial metabolites, especially those of Bacillus thuringiensis (Bt), are of great interest for research because of health risks generated by the excessive use of chemical additives as well as the propagation of resistant microbial strains, caused by the massive treatment with antibiotics. The objective of this study was the selection of Bt strains producing antimicrobial peptides (bacteriocins), and the partial purification of the most powerful bacteriocins, then the determination of their spectra of antimicrobial action. A collection of twenty one Bt strains isolated from soil at Boumerdès (northern of Algeria) was used for screening strains having an antagonistic activity against phylogenetically closed bacteria. Spectra of antagonistic activity of two selected strains was determined against other Bt strains, Gram positive and Gram negative bacterial strains of clinical origin and others from ATCC collection as well as yeasts isolated in human dermatology. Bacteriocins of these two strains were partially purified and their effect on the kinetics of growth of the most sensitive microbial strains was studied. The bacteriocinogenic strains were biochemically characterized and their sensitivity to antibiotics was studied.Keywords: antimicrobial peptides, Bacillus thuringiensis, bacteriocin, partial purification
Procedia PDF Downloads 3583655 Preparation and Characterization of Bioplastic from Sorghum Husks
Authors: Hannatu Abubakar Sani, Abubakar Umar Birnin Yauri, Aliyu Muhammad, Mujahid Salau, Aminu Musa, Hadiza Adamu Kwazo
Abstract:
The increase in the global population and advances in technology have made plastic materials to have wide applications in every aspect of life. However, the non-biodegradability of these petrochemical-based materials and their increasing accumulation in the environment has been a threat to the planet and has been a source of environmental concerns and hence, the driving force in the search for ‘green’ alternatives for which agricultural waste remains the front liner. Sorghum husk, an agricultural waste with potentials as a raw material in the production of bioplastic, was used in this research to prepare bioplastic using sulphuric acid-catalyzed acetylation process. The prepared bioplastic was characterized by X-ray diffraction and Fourier transform infrared spectroscopy (FTIR), and the structure of the prepared bioplastic was confirmed. The Fourier transform infrared spectroscopy (FTIR) spectra of the product displayed the presence of OH, C-H, C=O, and C-O absorption peaks. The bioplastic obtained is biodegradable and is affected by acid, salt, and alkali to a lesser extent. Other tests like solubility and swelling studies were carried out to ensure the commercial properties of these bioplastic materials. Therefore, this revealed that new bioplastics with better environmental and sustainable properties could be produced from agricultural waste, which may have applications in many industries.Keywords: agricultural waste, bioplastic, characterization, Sorghum Husk
Procedia PDF Downloads 1583654 Soil Bioremediation Monitoring Systems Powered by Microbial Fuel Cells
Authors: András Fülöp, Lejla Heilmann, Zsolt Szabó, Ákos Koós
Abstract:
Microbial fuel cells (MFCs) present a sustainable biotechnological solution to future energy demands. The aim of this study was to construct soil based, single cell, membrane-less MFC systems, operated without treatment to continuously power on-site monitoring and control systems during the soil bioremediation processes. Our Pseudomonas aeruginosa 541 isolate is an ideal choice for MFCs, because it is able to produce pyocyanin which behaves as electron-shuttle molecule, furthermore, it also has a significant antimicrobial effect. We tested several materials and structural configurations to obtain long term high power output. Comparing different configurations, a proton exchange membrane-less, 0.6 m long with 0.05 m diameter MFC tubes offered the best long-term performances. The long-term electricity production were tested from starch, yeast extract (YE), carboxymethyl cellulose (CMC) with humic acid (HA) as a mediator. In all cases, 3 kΩ external load have been used. The two best-operated systems were the Pseudomonas aeruginosa 541 containing MFCs with 1 % carboxymethyl cellulose and the MFCs with 1% yeast extract in the anode area and 35% hydrogel in the cathode chamber. The first had 3.3 ± 0.033 mW/m2 and the second had 4.1 ± 0.065 mW/m2 power density values. These systems have operated for 230 days without any treatment. The addition of 0.2 % HA and 1 % YE referred to the volume of the anode area resulted in 1.4 ± 0.035 mW/m2 power densities. The mixture of 1% starch with 0.2 % HA gave 1.82 ± 0.031 mW/m2. Using CMC as retard carbon source takes effect in the long-term bacterial survivor, thus enable the expression of the long term power output. The application of hydrogels in the cathode chamber significantly increased the performance of the MFC units due to their good water retention capacity.Keywords: microbial fuel cell, bioremediation, Pseudomonas aeruginosa, biotechnological solution
Procedia PDF Downloads 2913653 Characterization of the Physicochemical Properties of Raw and Calcined Kaolinitic Clays Using Analytical Techniques
Authors: Alireza Khaloo, Asghar Gholizadeh-Vayghan
Abstract:
The present work focuses on the characterization of the physicochemical properties of kaolinitic clays in both raw and calcined (i.e., dehydroxylated) states. The properties investigated included the dehydroxylation temperature, chemical composition and crystalline phases, band types, kaolinite content, vitreous phase, and reactive and unreactive silica and alumina. The thermogravimetric analysis, X-ray diffractometry and infrared spectroscopy results suggest that full dehydroxylation takes place at 639°C, converting kaolinite to reactive metakaolinite (Si₂Al₂O₇). Application of higher temperatures up to 800 °C leads to complete decarbonation of the calcite phase, and the kaolinite converts to mullite at temperatures exceeding 957 °C. Calcination at 639°C was found to cause a 50% increase in the vitreous content of kaolin. Statistically meaningful increases in the reactivity of silica, alumina, calcite and sodium carbonate in kaolin were detected as a result of such thermal treatment. Such increases were found to be 11%, 47%, 240% and 10%, respectively. The ferrite phase, however, showed a 36% decline in reactivity. The proposed approach can be used as an analytical method to determine the viability of the source of kaolinite and proper physical and chemical modifications needed to enhance its suitability for geopolymer production.Keywords: physicochemical properties, dehydroxylation, kaolinitic clays, kaolinite content, vitreous phase, reactivity
Procedia PDF Downloads 1633652 Risk Assessment of Trace Metals in the Soil Surface of an Abandoned Mine, El-Abed Northwestern Algeria
Authors: Farida Mellah, Abdelhak Boutaleb, Bachir Henni, Dalila Berdous, Abdelhamid Mellah
Abstract:
Context/Purpose: One of the largest mining operations for lead and zinc deposits in northwestern Algeria in more than thirty years, El Abed is now the abandoned mine that has been inactive since 2004, leaving large amounts of accumulated mining waste under the influence of Wind, erosion, rain, and near agricultural lands. Materials & Methods: This study aims to verify the concentrations and sources of heavy metals for surface samples containing randomly taken soil. Chemical analyses were performed using iCAP 7000 Series ICP-optical emission spectrometer, using a set of environmental quality indicators by calculating the enrichment factor using iron and aluminum references, geographic accumulation index and geographic information system (GIS). On the basis of the spatial distribution. Results: The results indicated that the average metal concentration was: (As = 30,82),(Pb = 1219,27), (Zn = 2855,94), (Cu = 5,3), mg/Kg,based on these results, all metals except Cu passed by GBV in the Earth's crust. Environmental quality indicators were calculated based on the concentrations of trace metals such as lead, arsenic, zinc, copper, iron and aluminum. Interpretation: This study investigated the concentrations and sources of trace metals, and by using quality indicators and statistical methods, lead, zinc, and arsenic were determined from human sources, while copper was a natural source. And based on the spatial analysis on the basis of GIS, many hot spots were identified in the El-Abed region. Conclusion: These results could help in the development of future treatment strategies aimed primarily at eliminating materials from mining waste.Keywords: soil contamination, trace metals, geochemical indices, El Abed mine, Algeria
Procedia PDF Downloads 713651 Remediation Activities in Bagnoli Superfund Site: An Italian Case of Study
Authors: S. Bellagamba, S. Malinconico, P. De Simone, F. Paglietti
Abstract:
Until the 1990s, Italy was among the world’s leading producers of raw asbestos fibres and Asbestos Containing Materials (ACM) and one of the most contaminated Countries in Europe. To reduce asbestos-related health effects, Italy has adopted many laws and regulations regarding exposure thresholds, limits, and remediation tools. The Italian Environmental Ministry (MASE) has identified 42 Italian Superfund sites, 11 of which are mainly contaminated by Asbestos. The highest levels of exposure occur during remediation activities in the 42 superfund-sites and during the management of asbestos containing waste in landfills, which requires specific procedures. INAIL-DIT play a role as MASE scientific consultant on issues concerning pollution, remediation, and Asbestos Containing Waste (ACW) management. The aim is to identify the best Emergency Safety Measures, to suggest specific best pratics for remediation through occupational on site monitorings and laboratory analysis. Moreover, the aim of INAIL research is testing the available technologies for working activities and analytical methodologies. This paper describes the remediation of Bagnoli industrial facility (Naples), an Eternit factory which produced asbestos cement products. The remediation has been analyzed, considering a first phase focused on the demolition of structures and plants and a second phase regarding the characterization, screening, removal, and disposal of polluted soils. The project planned the complete removal of all the asbestos dispersed in the soil and subsoil and the recovery of the clean fraction. This work highlights the remediation techniques used and the prevention measures provide for workers and daily life areas protection. This study, considering the high number of asbestos cement factories in the world, can to serve as an important reference for similar situation at European or international scale.Keywords: safety, asbestos, workers, contaminated sites, hazardous waste
Procedia PDF Downloads 873650 Analytical and Numerical Studies on the Behavior of a Freezing Soil Layer
Authors: X. Li, Y. Liu, H. Wong, B. Pardoen, A. Fabbri, F. McGregor, E. Liu
Abstract:
The target of this paper is to investigate how saturated poroelastic soils subject to freezing temperatures behave and how different boundary conditions can intervene and affect the thermo-hydro-mechanical (THM) responses, based on a particular but classical configuration of a finite homogeneous soil layer studied by Terzaghi. The essential relations on the constitutive behavior of a freezing soil are firstly recalled: ice crystal - liquid water thermodynamic equilibrium, hydromechanical constitutive equations, momentum balance, water mass balance, and the thermal diffusion equation, in general, non-linear case where material parameters are state-dependent. The system of equations is firstly linearized, assuming all material parameters to be constants, particularly the permeability of liquid water, which should depend on the ice content. Two analytical solutions solved by the classic Laplace transform are then developed, accounting for two different sets of boundary conditions. Afterward, the general non-linear equations with state-dependent parameters are solved using a commercial code COMSOL based on finite elements method to obtain numerical results. The validity of this numerical modeling is partially verified using the analytical solution in the limiting case of state-independent parameters. Comparison between the results given by the linearized analytical solutions and the non-linear numerical model reveals that the above-mentioned linear computation will always underestimate the liquid pore pressure and displacement, whatever the hydraulic boundary conditions are. In the nonlinear model, the faster growth of ice crystals, accompanying the subsequent reduction of permeability of freezing soil layer, makes a longer duration for the depressurization of water liquid and slower settlement in the case where the ground surface is swiftly covered by a thin layer of ice, as well as a bigger global liquid pressure and swelling in the case of the impermeable ground surface. Nonetheless, the analytical solutions based on linearized equations give a correct order-of-magnitude estimate, especially at moderate temperature variations, and remain a useful tool for preliminary design checks.Keywords: chemical potential, cryosuction, Laplace transform, multiphysics coupling, phase transformation, thermodynamic equilibrium
Procedia PDF Downloads 803649 Irrigation and Thermal Buffering Mathematical Modeling
Authors: Yara Elborolosy, Harsho Sanyal, Joseph Cataldo
Abstract:
Two methods of irrigation, drip and sprinkler, were studied to determine the response of the Javits green roof to irrigation. The control study were dry unirrigated plots. Drip irrigation consisted of irrigation tubes running through the green roof that would water the soil throughout, and sprinkler irrigation used a sprinkler system to irrigate the green roof from above. In all cases, the irrigated roofs had increased the soil moisture, reduced temperatures of both the upper and lower surfaces, reduced growing medium temperatures and reduced air temperatures above the green roof relative to the unirrigated roof. The buffered temperature fluctuations were also studied via air conditioner energy consumption. There was a 28% reductionin air conditioner energy consumption and 33% reduction in overall energy consumption between dry and irrigated plots. Values of thermal resistance or S were determined for accuracy, and for this study, there was little change which is ideal. A series of infra-red and thermal probe measurements were used to determine temperatures in the air and sedum. It was determined that the sprinkler irrigation did a better job than the drip irrigation in keeping cooler temperatures within the green roof.Keywords: green infrastructure, black roof, thermal buffering, irrigation
Procedia PDF Downloads 703648 Effect of Vesicular Arbuscular mycorrhiza on Phytoremedial Potential and Physiological Changes in Solanum melongena Plants Grown under Heavy Metal Stress
Authors: Ritu Chaturvedi, Mayank Varun, M. S. Paul
Abstract:
Heavy metal contamination of soil is a growing area of concern since the soil is the matrix that supports flora and impacts humans directly. Phytoremediation of contaminated sites is gaining popularity due to its cost effectiveness and solar driven nature. Some hyperaccumulators have been identified for their potential. Metal-accumulating plants have various mechanisms to cope up with stress and one of them is increasing antioxidative capacity. The aim of this research is to assess the effect of Vesicular arbuscular mycorrhiza (VAM) application on the phytoremedial potential of Solanum melongena (Eggplant) and level of photosynthetic pigments along with antioxidative enzymes. Results showed that VAM application increased shoot length, root proliferation pattern of plants. The level of photosynthetic pigments, proline, SOD, CAT, APX altered significantly in response to heavy metal treatment. In conclusion, VAM increased the uptake of heavy metals which lead to the activation of the defense system in plants for scavenging free radicals.Keywords: heavy metal, phytoextraction, phytostabilization, reactive oxygen species
Procedia PDF Downloads 2753647 Experimental Characterization of the Thermal Behavior of a Sawdust Mortar
Authors: F. Taouche-Kheloui, O. Fedaoui-Akmoussi, K. Ait tahar, Li. Alex
Abstract:
Currently, the reduction of energy consumption, through the use of abundant and recyclable natural materials, for better thermal insulation represents an important area of research. To this end, the use of bio-sourced materials has been identified as one of the green sectors with a very high economic development potential for the future. Because of its role in reducing the consumption of fossil-based raw materials, it contributes significantly to the storage of atmospheric carbon, limits greenhouse gas emissions and creates new economic opportunities. This study constitutes a contribution to the elaboration and the experimental characterization of the thermal behavior of a sawdust-reduced mortar matrix. We have taken into account the influence of the size of the grain fibers of sawdust, hence the use of three different ranges and also different percentage in the different confections. The intended practical application consists of producing a light weight compound at a lower cost to ensure a better thermal and acoustic behavior compared to that existing in the field, in addition to the desired resistances. Improving energy performance, while reducing greenhouse gas emissions from the building sector, is amongst the objectives to be achieved. The results are very encouraging and highlight the value of the proposed design of organic-source mortar panels which have specific mechanical properties acceptable for their use, low densities, lower cost of manufacture and labor, and above all a positive impact on the environment.Keywords: mortar, sawdust waste, thermal, experimental, analysis
Procedia PDF Downloads 843646 Application of 2D Electrical Resistivity Tomographic Imaging Technique to Study Climate Induced Landslide and Slope Stability through the Analysis of Factor of Safety: A Case Study in Ooty Area, Tamil Nadu, India
Authors: S. Maniruzzaman, N. Ramanujam, Qazi Akhter Rasool, Swapan Kumar Biswas, P. Prasad, Chandrakanta Ojha
Abstract:
Landslide is one of the major natural disasters in South Asian countries. Applying 2D Electrical Resistivity Tomographic Imaging estimation of geometry, thickness, and depth of failure zone of the landslide can be made. Landslide is a pertinent problem in Nilgris plateau next to Himalaya. Nilgris range consists of hard Archean metamorphic rocks. Intense weathering prevailed during the Pre-Cambrian time had deformed the rocks up to 45m depth. The landslides are dominant in the southern and eastern part of plateau of is comparatively smaller than the northern drainage basins, as it has low density of drainage; coarse texture permitted the more of infiltration of rainwater, whereas in the northern part of the plateau entombed with high density of drainage pattern and fine texture with less infiltration than run off, and low to the susceptible to landslide. To get comprehensive information about the landslide zone 2D Electrical Resistivity Tomographic imaging study with CRM 500 Resistivity meter are used in Coonoor– Mettupalyam sector of Nilgiris plateau. To calculate Factor of Safety the infinite slope model of Brunsden and Prior is used. Factor of Safety can be expressed (FS) as the ratio of resisting forces to disturbing forces. If FS < 1 disturbing forces are larger than resisting forces and failure may occur. The geotechnical parameters of soil samples are calculated on the basis upon the apparent resistivity values for litho units of measured from 2D ERT image of the landslide zone. Relationship between friction angles for various soil properties is established by simple regression analysis from apparent resistivity data. Increase of water content in slide zone reduces the effectiveness of the shearing resistance and increase the sliding movement. Time-lapse resistivity changes to slope failure is determined through geophysical Factor of Safety which depends on resistivity and site topography. This ERT technique infers soil property at variable depths in wider areas. This approach to retrieve the soil property and overcomes the limit of the point of information provided by rain gauges and porous probes. Monitoring of slope stability without altering soil structure through the ERT technique is non-invasive with low cost. In landslide prone area an automated Electrical Resistivity Tomographic Imaging system should be installed permanently with electrode networks to monitor the hydraulic precursors to monitor landslide movement.Keywords: 2D ERT, landslide, safety factor, slope stability
Procedia PDF Downloads 3183645 An Experimental Approach of the Reuse of Dredged Sediments in a Cement Matrix by Physical and Heat Treatment
Authors: Mahfoud Benzerzour, Mouhamadou Amar, Nor-edine Abriak
Abstract:
In this study, a sediment was used as a secondary raw material in cement substitution with prior treatment. The treatment adopted is a physical treatment involving grinding and separation to obtain different fractions, using a dry method (1 mm, 250µm, 120µm) and washing method (250µm and 120µm). They were subsequently heat treated at temperatures of 650°C, 750°C and 850°C for 1 hour and 3 hours, in order to enable chemical activation by decarbonation or by pozzolanic activation of the material. Different characterization techniques were performed. The determination of main physical and chemical characteristics was obtained through multiple tests: particle size distribution, specific density, the BET surface area, the initial setting time and hydration heat calorimetry Langavant. The chemical tests include: ATG analysis, X-ray diffractometry (XRD) and X-ray fluorescence (XRF) which were used to quantify the fractions, phases and chemical elements present. Compression tests were performed conforming NF EN 196-1 French standard, over terms of 7 days - 14 days - 28 days and 60 days on all formulated mortars: reference mortar based on 100% CEM I 52.5N binder and cement substituted mortars with 8% and 15% by treated sediment. This clearly evidenced contribution due to the chemical activity which was confirmed by calorimetry monitoring and strength investigation.Keywords: sediment, characterization, grinding, heat treatment, substitution
Procedia PDF Downloads 2023644 A Combination of Filtration and Coagulation Processes for Tannery Effluent Treatment
Authors: M. G. Mostafa, Manjushree Chowdhury, Tapan Kumar Biswas, , Ananda Kumar Saha
Abstract:
This study focused on effluents characterization and treatment process to reduce of toxicity from tannery effluents. Tanning industry is one of the oldest industries in the world. It is typically characterized as pollutants generated industries which produce wide varieties of high strength toxic chemicals. The study was conducted during the year 2008 to 2009 and the tannery effluents were collected three times in a year from the outlet of some selected leather industries located in Hagaribagh industrial zone Dhaka, Bangladesh. The analysis results of the raw effluents reveal that the effluents were yellowish-brown color, having basic pH, very high value of BOD5¬¬, COD, TDS, TSS, TS, and high concentrations of Cr, Na, SO42-, Cl- and other organic and inorganic constituents. The tannery effluents were treated with various doses of FeCl3 after settling and a subsequent filtration through sand-stone. The study observed that coagulant (FeCl3) 150 mg/L dose around neutral pH showed the best removal efficiency for major physico-chemical parameters. The analysis results of illustrate that the most of the physical and chemical parameters were found well below the prescribed permissible limits for effluent discharged. The study suggests that tannery effluents could be treated by a combined process consisting of settling, filtering and coagulating with FeCl3.Keywords: characterization, effluent, tannery, treatment
Procedia PDF Downloads 4503643 Characterization of Fresh, Charcoal Flue Gas Treated and Boiled Beef Samples Using FTIR For Consumption Safety
Authors: Catherine W. Njeru, Clarence Murithi W., Isaac W. Mwangi, Ruth Wanjau, Grace N. Kiriro, Gerald W. Mbugua
Abstract:
Flesh from animals is one of the most nutritious food materials that is rich in Vitamin B12, B3 (Niacin), B6, iron, zinc, selenium, and plenty of other vitamins and minerals and a high content of fats Meat consumption projection indicates an increase from 5.5 to 13.3 million tons by 2025 and this demand has been associated with livestock revolution. This study used charcoal flue gases sourced from the combustion of charcoal briquettes to prolong beef shelf life. The FT-IR technique is based on the specific absorption of infrared radiation by carbon monoxide and carbon dioxide molecules. The characterization of the functional groups was done using Fourier transform infrared spectroscopy (Shimadzu IR Tracer-100). The fresh, treated and boiled beef was ground with potassium bromide (KBr) into pellets and analyzed using FT-IR at a range of 400-3600 cm-1. The reaction of fresh, charcoal flue gas treated and boiled beef samples are as shown in the FT-IR spectrums. The fresh and boiled beef spectrums are similar, while the charcoal flue-treated beef samples show distinct peaks at 2100 and 2290 cm-1, which correspond to carbon monoxide and carbon dioxide, respectively. The study proposes the use of FT-IR in the determination of beef for consumption quality studies.Keywords: FT-IR, charcoal flue gases, beef, charcoal flue gases
Procedia PDF Downloads 243642 Comparative Study of Equivalent Linear and Non-Linear Ground Response Analysis for Rapar District of Kutch, India
Authors: Kulin Dave, Kapil Mohan
Abstract:
Earthquakes are considered to be the most destructive rapid-onset disasters human beings are exposed to. The amount of loss it brings in is sufficient to take careful considerations for designing of structures and facilities. Seismic Hazard Analysis is one such tool which can be used for earthquake resistant design. Ground Response Analysis is one of the most crucial and decisive steps for seismic hazard analysis. Rapar district of Kutch, Gujarat falls in Zone 5 of earthquake zone map of India and thus has high seismicity because of which it is selected for analysis. In total 8 bore-log data were studied at different locations in and around Rapar district. Different soil engineering properties were analyzed and relevant empirical correlations were used to calculate maximum shear modulus (Gmax) and shear wave velocity (Vs) for the soil layers. The soil was modeled using Pressure-Dependent Modified Kodner Zelasko (MKZ) model and the reference curve used for fitting was Seed and Idriss (1970) for sand and Darendeli (2001) for clay. Both Equivalent linear (EL), as well as Non-linear (NL) ground response analysis, has been carried out with Masing Hysteretic Re/Unloading formulation for comparison. Commercially available DEEPSOIL v. 7.0 software is used for this analysis. In this study an attempt is made to quantify ground response regarding generated acceleration time-history at top of the soil column, Response spectra calculation at 5 % damping and Fourier amplitude spectrum calculation. Moreover, the variation of Peak Ground Acceleration (PGA), Maximum Displacement, Maximum Strain (in %), Maximum Stress Ratio, Mobilized Shear Stress with depth is also calculated. From the study, PGA values estimated in rocky strata are nearly same as bedrock motion and marginal amplification is observed in sandy silt and silty clays by both analyses. The NL analysis gives conservative results of maximum displacement as compared to EL analysis. Maximum strain predicted by both studies is very close to each other. And overall NL analysis is more efficient and realistic because it follows the actual hyperbolic stress-strain relationship, considers stiffness degradation and mobilizes stresses generated due to pore water pressure.Keywords: DEEPSOIL v 7.0, ground response analysis, pressure-dependent modified Kodner Zelasko model, MKZ model, response spectra, shear wave velocity
Procedia PDF Downloads 1363641 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data
Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann
Abstract:
Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers
Procedia PDF Downloads 2053640 Treatment and Characterization of Cadmium Metal From Textile Factory Wastewater by Electrochemical Process Using Aluminum Plate Electrode
Authors: Dessie Tibebe, Yeshifana Ayenew, Marye Mulugeta, Yezbie Kassa, Zerubabel Moges, Dereje Yenealem, Tarekegn Fentie, Agmas Amare, Hailu Sheferaw Ayele
Abstract:
Electrochemical treatment technology is a technique used for wastewater treatment due to its ability to eliminate impurities that are not easily removed by chemical processes. The objective of the study is the treatment and characterization of textile wastewater by an electrochemical process. The results obtained at various operational parameters indicated that at 20 minutes of electrochemical process at ( pH =7), initial concentration 10 mg/L, current density 37.5 mA/cm², voltage 9 v and temperature 25⁰C the highest removal efficiency was achieved. The kinetics of removal of selected metal by electrochemical treatment has been successfully described by the first-order rate equation. The results of microscopic techniques using SEM for the scarified electrode before treatment were uniform and smooth, but after the electrochemical process, the morphology was completely changed. This is due to the detection of the adsorbed aluminum hydroxide coming from adsorption of the conducting electrolyte, chemicals used in the experiments, alloying and the scrap impurities of the anode and cathode. The FTIR spectroscopic analysis broad bands at 3450 cm-¹ representing O-H functional groups, while the presence of H-O-H and Al-H groups are indicated by the bands at 2850-2750 cm-¹ and 1099 representing C-H functional groups.Keywords: electrochemical, treatment, textile wastewater, kinetics, removal efficiency
Procedia PDF Downloads 973639 Assessing and Managing the Risk of Inland Acid Sulfate Soil Drainage via Column Leach Tests and 1D Modelling: A Case Study from South East Australia
Authors: Nicolaas Unland, John Webb
Abstract:
The acidification and mobilisation of metals during the oxidation of acid sulfate soils exposed during lake bed drying is an increasingly common phenomenon under climate scenarios with reduced rainfall. In order to assess the risk of generating high concentrations of acidity and dissolved metals, chromium suite analysis are fundamental, but sometimes limited in characterising the potential risks they pose. This study combines such fundamental test work, along with incubation tests and 1D modelling to investigate the risks associated with the drying of Third Reedy Lake in South East Australia. Core samples were collected from a variable depth of 0.5 m below the lake bed, at 19 locations across the lake’s footprint, using a boat platform. Samples were subjected to a chromium suite of analysis, including titratable actual acidity, chromium reducible sulfur and acid neutralising capacity. Concentrations of reduced sulfur up to 0.08 %S and net acidities up to 0.15 %S indicate that acid sulfate soils have formed on the lake bed during permanent inundation over the last century. A further sub-set of samples were prepared in 7 columns and subject to accelerated heating, drying and wetting over a period of 64 days in laboratory. Results from the incubation trial indicate that while pyrite oxidation proceeded, minimal change to soil pH or the acidity of leachate occurred, suggesting that the internal buffering capacity of lake bed sediments was sufficient to neutralise a large proportion of the acidity produced. A 1D mass balance model was developed to assess potential changes in lake water quality during drying based on the results of chromium suite and incubation tests. Results from the above test work and modelling suggest that acid sulfate soils pose a moderate to low risk to the Third Reedy Lake system. Further, the risks can be effectively managed during the initial stages of lake drying via flushing with available mildly alkaline water. The study finds that while test work such as chromium suite analysis are fundamental in characterizing acid sulfate soil environments, they can the overestimate risks associated with the soils. Subsequent incubation test work may more accurately characterise such soils and lead to better-informed management strategies.Keywords: acid sulfate soil, incubation, management, model, risk
Procedia PDF Downloads 3583638 The Distribution and Environmental Behavior of Heavy Metals in Jajarm Bauxite Mine, Northeast Iran
Authors: Hossein Hassani, Ali Rezaei
Abstract:
Heavy metals are naturally occurring elements that have a high atomic weight and a density at least five times greater than that of water. Their multiple industrial, domestic, agricultural, medical, and technological applications have led to their wide distribution in the environment, raising concerns over their potential effects on human health and the environment. Environmental protection against various pollutants, such as heavy metals formed by industries, mines and modern technologies, is a concern for researchers and industry. In order to assess the contamination of soils the distribution and environmental behavior have been investigated. Jajarm bauxite mine, the most important deposits have been discovered in Iran, which is about 22 million tons of reserve, and is the main mineral of the Diaspora. With a view to estimate the heavy metals ratio of the Jajarm bauxite mine area and to evaluate the pollution level, 50 samples have been collected and have been analyzed for the heavy metals of As, Cd, Cu, Hg, Ni and Pb with the help of Inductively Coupled Plasma-Mass Spectrometer (ICP- MS). In this study, we have dealt with determining evaluation criteria including contamination factor (CF), average concentration (AV), enrichment factor (EF) and geoaccumulation index (GI) to assess the risk of pollution from heavy metals(As, Cd, Cu, Hg, Ni and Pb) in Jajarm bauxite mine. In the samples of the studied, the average of recorded concentration of elements for Arsenic, Cadmium, Copper, Mercury, Nickel and Lead are 18, 0.11, 12, 0.07, 58 and 51 (mg/kg) respectively. The comparison of the heavy metals concentration average and the toxic potential in the samples has shown that an average with respect to the world average of the uncontaminated soil amounts. The average of Pb and As elements shows a higher quantity with respect to the world average quantity. The pollution factor for the study elements has been calculated on the basis of the soil background concentration and has been categorized on the basis of the uncontaminated world soil average with respect to the Hakanson classification. The calculation of the corrected pollutant degree shows the degree of the bulk intermediate pollutant (1.55-2.0) for the average soil sampling of the study area which is on the basis of the background quantity and the world average quantity of the uncontaminated soils. The provided conclusion from calculation of the concentrated factor, for some of the samples show that the average of the lead and arsenic elements stations are more than the background values and the unnatural metal concentration are covered under the study area, That's because the process of mining and mineral extraction. Given conclusion from the calculation of Geoaccumulation index of the soil sampling can explain that the copper, nickel, cadmium, arsenic, lead and mercury elements are Uncontamination. In general, the results indicate that the Jajarm bauxite mine of heavy metal pollution is uncontaminated area and extract the mineral from the mine, not create environmental hazards in the region.Keywords: enrichment factor, geoaccumulation index, heavy metals, Jajarm bauxite mine, pollution
Procedia PDF Downloads 2913637 Characterization of Penicillin V Acid and Its Related Compounds by HPLC
Authors: Bahdja Guerfi, N. Hadhoum, I. Azouz, M. Bendoumia, S. Bouafia, F. Z. Hadjadj Aoul
Abstract:
Background: 'Penicillin V' is a narrow, bactericidal antibiotic of the beta-lactam family of the naturally occurring penicillin group. It is limited to infections due to the germs defined as sensitive. The objective of this work was to identify and to characterize Penicillin V acid and its related compounds by High-performance liquid chromatography (HPLC). Methods: Firstly phenoxymethylpenicillin was identified by an infrared absorption. The organoleptic characteristics, pH, and determination of water content were also studied. The dosage of Penicillin V acid active substance and the determination of its related compounds were carried on waters HPLC, equipped with a UV detector at 254 nm and Discovery HS C18 column (250 mm X 4.6 mm X 5 µm) which is maintained at room temperature. The flow rate was about 1 ml per min. A mixture of water, acetonitrile and acetic acid (65:35:01) was used as mobile phase for phenoxyacetic acid ‘impurity B' and a mixture of water, acetonitrile and acetic acid (650:150:5.75) for the assay and 4-hydroxypenicillin V 'impurity D'. Results: The identification of Penicillin V acid active substance and the evaluation of its chemical quality showed conformity with USP 35th edition. The Penicillin V acid content in the raw material is equal to 1692.22 UI/mg. The percentage content of phenoxyacetic acid and 4-hydroxypenicillin V was respectively: 0.035% and 0.323%. Conclusion: Through these results, we can conclude that the Penicillin V acid active substance tested is of good physicochemical quality.Keywords: characterization, HPLC, Penicillin V acid, related substances
Procedia PDF Downloads 2783636 Effect of Type of Pile and Its Installation Method on Pile Bearing Capacity by Physical Modelling in Frustum Confining Vessel
Authors: Seyed Abolhasan Naeini, M. Mortezaee
Abstract:
Various factors such as the method of installation, the pile type, the pile material and the pile shape, can affect the final bearing capacity of a pile executed in the soil; among them, the method of installation is of special importance. The physical modeling is among the best options in the laboratory study of the piles behavior. Therefore, the current paper first presents and reviews the frustum confining vesel (FCV) as a suitable tool for physical modeling of deep foundations. Then, by describing the loading tests of two open-ended and closed-end steel piles, each of which has been performed in two methods, “with displacement" and "without displacement", the effect of end conditions and installation method on the final bearing capacity of the pile is investigated. The soil used in the current paper is silty sand of Firoozkooh. The results of the experiments show that in general the without displacement installation method has a larger bearing capacity in both piles, and in a specific method of installation the closed ended pile shows a slightly higher bearing capacity.Keywords: physical modeling, frustum confining vessel, pile, bearing capacity, installation method
Procedia PDF Downloads 1533635 Soil Mixed Constructed Permeable Reactive Barrier for Groundwater Remediation: Field Observation
Authors: Ziyda Abunada
Abstract:
In-situ remediation of contaminated land with deep mixing can deliver a multi-technique remedial strategy. A field trail includes permeable reactive barrier (PRB) took place at a severely contaminated site in Yorkshire to the north of the UK through the SMiRT (Soil Mix Remediation Technology) project in May 2011. SMiRT involved the execution of the largest research field trials in the UK to provide field validation. Innovative modified bentonite materials in combination with zeolite and organoclay were used to construct six different walls of a hexagonal PRB. Field monitoring, testing and site cores were collected from the PRB twice: once 2 months after the construction and again in March 2014 (almost 34 months later).This paper presents an overview of the results of the PRB materials’ relative performance with some initial 3-year time-related assessment. Results from the monitoring program and the site cores are presented. Some good correlations are seen together with some clear difference among the materials’ efficiency. These preliminary observations represent a potential for further investigations and highlighted the main lessons learned in a filed scale.Keywords: in-situ remediation, groundwater, permeable reactive barrier, site cores
Procedia PDF Downloads 2033634 Assimilating Multi-Mission Satellites Data into a Hydrological Model
Authors: Mehdi Khaki, Ehsan Forootan, Joseph Awange, Michael Kuhn
Abstract:
Terrestrial water storage, as a source of freshwater, plays an important role in human lives. Hydrological models offer important tools for simulating and predicting water storages at global and regional scales. However, their comparisons with 'reality' are imperfect mainly due to a high level of uncertainty in input data and limitations in accounting for all complex water cycle processes, uncertainties of (unknown) empirical model parameters, as well as the absence of high resolution (both spatially and temporally) data. Data assimilation can mitigate this drawback by incorporating new sets of observations into models. In this effort, we use multi-mission satellite-derived remotely sensed observations to improve the performance of World-Wide Water Resources Assessment system (W3RA) hydrological model for estimating terrestrial water storages. For this purpose, we assimilate total water storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) and surface soil moisture data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) into W3RA. This is done to (i) improve model estimations of water stored in ground and soil moisture, and (ii) assess the impacts of each satellite of data (from GRACE and AMSR-E) and their combination on the final terrestrial water storage estimations. These data are assimilated into W3RA using the Ensemble Square-Root Filter (EnSRF) filtering technique over Mississippi Basin (the United States) and Murray-Darling Basin (Australia) between 2002 and 2013. In order to evaluate the results, independent ground-based groundwater and soil moisture measurements within each basin are used.Keywords: data assimilation, GRACE, AMSR-E, hydrological model, EnSRF
Procedia PDF Downloads 2893633 Extraction of Urban Land Features from TM Landsat Image Using the Land Features Index and Tasseled Cap Transformation
Authors: R. Bouhennache, T. Bouden, A. A. Taleb, A. Chaddad
Abstract:
In this paper we propose a method to map the urban areas. The method uses an arithmetic calculation processed from the land features indexes and Tasseled cap transformation TC of multi spectral Thematic Mapper Landsat TM image. For this purpose the derived indexes image from the original image such SAVI the soil adjusted vegetation index, UI the urban Index, and EBBI the enhanced built up and bareness index were staked to form a new image and the bands were uncorrelated, also the Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification approaches were first applied on the new image TM data using the reference spectra of the spectral library and subsequently the four urban, vegetation, water and soil land cover categories were extracted with their accuracy assessment.The urban features were represented using a logic calculation applied to the brightness, UI-SAVI, NDBI-greenness and EBBI- brightness data sets. The study applied to Blida and mentioned that the urban features can be mapped with an accuracy ranging from 92 % to 95%.Keywords: EBBI, SAVI, Tasseled Cap Transformation, UI
Procedia PDF Downloads 4823632 Characterization of Waste Thermocol Modified Bitumen by Spectroscopy, Microscopic Technique, and Dynamic Shear Rheometer
Authors: Supriya Mahida, Sangita, Yogesh U. Shah, Shanta Kumar
Abstract:
The global production of thermocol increasing day by day, due to vast applications of the use of thermocole in many sectors. Thermocol being non-biodegradable and more toxic than plastic leads towards a number of problems like its management into value-added products, environmental damage and landfill problems due to weight to volume ratio. Utilization of waste thermocol for modification of bitumen binders resulted in waste thermocol modified bitumen (WTMB) used in road construction and maintenance technology. Modification of bituminous mixes through incorporating thermocol into bituminous mixes through a dry process is one of the new options besides recycling process which consumes lots of waste thermocol. This process leads towards waste management and remedies against thermocol waste disposal. The present challenge is to dispose the thermocol waste under different forms in road infrastructure, either through the dry process or wet process to be developed in future. This paper focuses on the use of thermocol wastes which is mixed with VG 10 bitumen in proportions of 0.5%, 1%, 1.5%, and 2% by weight of bitumen. The physical properties of neat bitumen are evaluated and compared with modified VG 10 bitumen having thermocol. Empirical characterization like penetration, softening, and viscosity of bitumen has been carried out. Thermocol and waste thermocol modified bitumen (WTMB) were further analyzed by Fourier Transform Infrared Spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), and Dynamic Shear Rheometer (DSR).Keywords: DSR, FESEM, FT-IR, thermocol wastes
Procedia PDF Downloads 1673631 Vitamin C Enhances Growth and Productivity of Sunflower Plants Grown under Newly-Reclaimed Saline Soil Conditions
Authors: Saad M. Howladar, Mostafa M. Rady, Wael M. Semida
Abstract:
A field experiment was conducted during the two successive seasons of 2012 and 2013 in the Experimental Farm (newly-reclaimed saline soil; EC = 7.8 dS m-1), Faculty of Agriculture, Fayoum University, Fayoum, Egypt to investigate the effect of vitamin C foliar application at the rates of 1, 2, 3 and 4 mM on the possibility of improving growth, seed and oil yields, and some chemical constituents of Helianthus annuus L. plants under the adverse conditions of the selected soil. Significant positive influences of all vitamin C treatments were observed on growth, seed and oil yields and some chemical constituents in both seasons. Compared to unsprayed plants (control), spraying plants with various rates of vitamin C significantly increased vegetative growth traits (i.e. plant height, No. of leaves plant-1, leaf area leaf-1, total leaves area plant-1, and dry weights of leaves and shoot plant-1) and seed and oil yields and their components (i.e. head diameter, seed weight head-1, 100-seed weight, seed yield feddan-1 and oil yield feddan-1). In addition, the concentrations of chlorophyll a, chlorophyll b, total chlorophylls, total carotenoids and total phenols in fresh leaves, and total carbohydrates, total soluble sugars, free proline and some nutrients (i.e. N, P, K, Fe, Mn, and Zn) in dry leaves were also increased significantly with all vitamin C applications. Vitamin C treatment at the rate of 3 mM was generated the best results. These results are important as the potential of vitamin C to alleviate the harmful effects of salt stress offer an opportunity to increase the resistance of sunflower plants to grow under saline conditions of the newly-reclaimed soils.Keywords: sunflower, Helianthus annuus L., ascorbic acid, salinity, growth, seed yield, oil content, chemical composition
Procedia PDF Downloads 4573630 Magnetic Field Induced Tribological Properties of Magnetic Fluid
Authors: Kinjal Trivedi, Ramesh V. Upadhyay
Abstract:
Magnetic fluid as a nanolubricant is a most recent field of study due to its unusual properties that can be tuned by applying a magnetic field. In present work, four ball tester has been used to investigate the tribological properties of the magnetic fluid having a 4 wt% of nanoparticles. The structural characterization of fluid shows crystallite size of particle is 11.7 nm and particles are nearly spherical in nature. The magnetic characterization shows the fluid saturation magnetization is 2.2 kA/m. The magnetic field applied using permanent strip magnet (0 to 1.6 mT) on the faces of the lock nut and fixing a solenoid (0 to 50 mT) around a shaft, such that shaft rotates freely. The magnetic flux line for both the systems analyzed using finite elemental analysis. The coefficient of friction increases with the application of magnetic field using permanent strip magnet compared to zero field value. While for the solenoid, it decreases at 20 mT. The wear scar diameter is lower for 1.1 mT and 20 mT when the magnetic field applied using permanent strip magnet and solenoid, respectively. The coefficient of friction and wear scar reduced by 29 % and 7 % at 20 mT using solenoid. The worn surface analysis carried out using Scanning Electron Microscope and Atomic Force Microscope to understand the wear mechanism. The results are explained on the basis of structure formation in a magnetic fluid upon application of magnetic field. It is concluded that the tribological properties of magnetic fluid depend on magnetic field and its applied direction.Keywords: four ball tester, magnetic fluid, nanolubricant, tribology
Procedia PDF Downloads 235