Search results for: radioactive waste glass
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3753

Search results for: radioactive waste glass

2013 Evaluation of the Socio-Economic Impact of Marine Debris in Coastal Nigeria

Authors: Chibuzo Okoye Daniels, Gillian Glegg, Lynda Rodwell

Abstract:

Marine debris from fishing nets to medical equipment to food packaging that play major roles in boosting the economy and protecting human health is now more than an environmental problem that can be solved by legislation, law enforcement and technical solutions. It has also been identified as a cultural problem that can only be addressed by identifying instruments that can be used to change human attitudes and behaviors. This may be through management approaches, education and involvement of all sectors/interests, including the public. To contribute to the sustainable development of coastal Nigeria, two case study areas (Ikoyi and Victoria Islands of Lagos State) were used to evaluate the socio-economic impacts of marine debris problem in coastal Nigeria. The following methods were used: (1) semi-structured interviews with key stakeholders and businesses on beaches, waterfronts and waterways within the study areas and (2) observational study of beaches, waterfronts and waterways within the study areas. The results of the study have shown that marine debris is a cultural and multi-sectoral problem that poses great threat not only to the environmental sustainability of the study areas but also to the wellbeing of its citizens and the economy of coastal Nigeria. Current solid waste and marine debris management practices are inefficient due to inadequate knowledge of how to tackle the problem. To ensure environmental sustainability in coastal Nigeria and avoid waste of scarce financial resources, adequate, appropriate and cost effective solutions to the marine debris problem need to be identified and effectively transferred for implementation in the study areas.

Keywords: sustainability, coastal Nigeria, study areas, aquaculture

Procedia PDF Downloads 554
2012 Design of a CO₂-Reduced 3D Concrete Mixture Using Circular (Clay-Based) Building Materials

Authors: N. Z. van Hierden, Q. Yu, F. Gauvin

Abstract:

Cement manufacturing is, because of its production process, among the highest contributors to CO₂ emissions worldwide. As cement is one of the major components in 3D printed concrete, achieving sustainability and carbon neutrality can be particularly challenging. To improve the sustainability of 3D printed materials, different CO₂-reducing strategies can be used, each one with a distinct level of impact and complexity. In this work, we focus on the development of these sustainable mixtures and finding alternatives. Promising alternatives for cement and clinker replacement include the use of recycled building materials, amongst which (calcined) bricks and roof tiles. To study the potential of recycled clay-based building materials, the application of calcinated clay itself is studied as well. Compared to cement, the calcination temperature of clay-based materials is significantly lower, resulting in reduced CO₂ output. Reusing these materials is therefore a promising solution for utilizing waste streams while simultaneously reducing the cement content in 3D concrete mixtures. In addition, waste streams can be locally sourced, thereby reducing the emitted CO₂ during transportation. In this research, various alternative binders are examined, such as calcined clay blends (LC3) from recycled tiles and bricks, or locally obtained clay resources. Using various experiments, a high potential for mix designs including these resources has been shown with respect to material strength, while sustaining decent printability and buildability. Therefore, the defined strategies are promising and can lead to a more sustainable, low-CO₂ mixture suitable for 3D printing while using accessible materials.

Keywords: cement replacement, 3DPC, circular building materials, calcined clay, CO₂ reduction

Procedia PDF Downloads 85
2011 Marine Litter and Microplastic Pollution in Mangrove Sediments in The Sea of Oman

Authors: Muna Al-Tarshi, Dobretsov Sergey, Wenresti Gallardo

Abstract:

Marine litter pollution is a global concern that has wide-ranging ecological, societal, and economic implications, along with potential health risks for humans. In Oman, inadequate solid waste management has led to the accumulation of litter in mangrove ecosystems. However, there is a dearth of information on marine litter and microplastic pollution in Omani mangroves, impeding the formulation of effective mitigation strategies. To address this knowledge gap, we conducted a comprehensive assessment of marine litter and microplastics in mangrove sediments in the Sea of Oman. Our study measured the average abundance of marine litter, which ranged from 0.83±1.03 to 19.42±8.52 items/m2. Notably, plastics constituted the majority of litter, accounting for 73-96% of all items, with soft plastics being the most prevalent. Furthermore, we investigated microplastic concentrations in the sediments, finding levels ranging from 6 to 256 pieces /kg. Among the studied areas, afforested mangroves in Al-Sawadi exhibited the highest average abundance of microplastics (27.52±5.32 pieces/ kg), while the Marine Protected Area Al Qurum had the lowest average abundance (0.60±1.12 pieces /kg). These findings significantly contribute to our understanding of marine litter and microplastic pollution in Omani mangroves. They provide valuable baseline data for future monitoring initiatives and the development of targeted management strategies. Urgent action is needed to implement effective waste management practices and interventions to protect the ecological integrity of mangrove ecosystems in Oman and mitigate the risks associated with marine litter and microplastics.

Keywords: microplastics, anthropogenic marine litter, ftir, polymer, khawr, mangrove, sediment

Procedia PDF Downloads 89
2010 Developing a GIS-Based Tool for the Management of Fats, Oils, and Grease (FOG): A Case Study of Thames Water Wastewater Catchment

Authors: Thomas D. Collin, Rachel Cunningham, Bruce Jefferson, Raffaella Villa

Abstract:

Fats, oils and grease (FOG) are by-products of food preparation and cooking processes. FOG enters wastewater systems through a variety of sources such as households, food service establishments, and industrial food facilities. Over time, if no source control is in place, FOG builds up on pipe walls, leading to blockages, and potentially to sewer overflows which are a major risk to the Environment and Human Health. UK water utilities spend millions of pounds annually trying to control FOG. Despite UK legislation specifying that discharge of such material is against the law, it is often complicated for water companies to identify and prosecute offenders. Hence, it leads to uncertainties regarding the attitude to take in terms of FOG management. Research is needed to seize the full potential of implementing current practices. The aim of this research was to undertake a comprehensive study to document the extent of FOG problems in sewer lines and reinforce existing knowledge. Data were collected to develop a model estimating quantities of FOG available for recovery within Thames Water wastewater catchments. Geographical Information System (GIS) software was used in conjunction to integrate data with a geographical component. FOG was responsible for at least 1/3 of sewer blockages in Thames Water waste area. A waste-based approach was developed through an extensive review to estimate the potential for FOG collection and recovery. Three main sources were identified: residential, commercial and industrial. Commercial properties were identified as one of the major FOG producers. The total potential FOG generated was estimated for the 354 wastewater catchments. Additionally, raw and settled sewage were sampled and analysed for FOG (as hexane extractable material) monthly at 20 sewage treatment works (STW) for three years. A good correlation was found with the sampled FOG and population equivalent (PE). On average, a difference of 43.03% was found between the estimated FOG (waste-based approach) and sampled FOG (raw sewage sampling). It was suggested that the approach undertaken could overestimate the FOG available, the sampling could only capture a fraction of FOG arriving at STW, and/or the difference could account for FOG accumulating in sewer lines. Furthermore, it was estimated that on average FOG could contribute up to 12.99% of the primary sludge removed. The model was further used to investigate the relationship between estimated FOG and number of blockages. The higher the FOG potential, the higher the number of FOG-related blockages is. The GIS-based tool was used to identify critical areas (i.e. high FOG potential and high number of FOG blockages). As reported in the literature, FOG was one of the main causes of sewer blockages. By identifying critical areas (i.e. high FOG potential and high number of FOG blockages) the model further explored the potential for source-control in terms of ‘sewer relief’ and waste recovery. Hence, it helped targeting where benefits from implementation of management strategies could be the highest. However, FOG is still likely to persist throughout the networks, and further research is needed to assess downstream impacts (i.e. at STW).

Keywords: fat, FOG, GIS, grease, oil, sewer blockages, sewer networks

Procedia PDF Downloads 209
2009 Capacity Building for Tourism Infrastructure: A Case of Tourism Influenced Regions in Uttar Pradesh, India

Authors: Sayan Munshi, Subrajit Banerjee, Indrani Chakraborty

Abstract:

Tourism is a prime sector in the economic development of many countries in particular the Indian sub-continent. Tourism is considered an integral pillar in the Make in India Program under the Government of India. The statistics of tourism in India had evolved from a past with the formation of History. The sector had shown dynamic changes in the statistics since 1980. With the evolving tourism along with destinations, this sector has been converted into the prime industry, as it not only impacts the destination but on the other hand supports the periphery of the destination. Tourism boost revenue and creates varied economic possibilities for the residents. Due to the influx of tourism in the cities, a load on the infrastructure and services can be observed, specifically in the Physical Infrastructure sectors. Due to the floating population in the designated tourism core of the Urban / Peri-Urban area, issues pertaining to Solid waste management and Transportation are highly observed. Thus, a need for capacity building arises for the infrastructure impacted by tourism, which may result in the upgradation of the lifestyle of the city and its permanent users. As tourism of a region has a dependency on the infrastructure, the paper here focuses on the relationship between tourism potential of a region and the infrastructural determinants of the city or region and hence to derive a structural equation supporting the relationship, further determine a coefficient and suggest the domain of in need of upgradation or retrofitting possibilities. The outcome of the paper is to suggest possible recommendations towards the formation of policies on an urban level to support the tourism potential of the region.

Keywords: urban planning, tourism planning, infrastructure, transportation, solid waste management

Procedia PDF Downloads 121
2008 Urban Furniture: Relationship between Metropolises Environment and Humans

Authors: Najmehossadat Enjoo

Abstract:

Beautification means all mindfully measurements to improve quality of urban environment which makes the city more suitable for its inhabitants' life. Purpose of beautification is to provide an environment in which all citizens take pleasure. Beautification aims at urban environment's quality improvement. In space among buildings and constructions some supplementary elements are required to furnish urban life; equipment like house furniture makes life possible in a space surrounded with stones, concrete, and glass. Such elements regulate the flow of movement, rest, recreation and stress in a city and exhilarate it. Urban furniture is the common term used for such facilities and capabilities. Nowadays, experience and application of urban elements have proved that to what extent using proper equipment and furniture can positively affect the citizens and users of urban environments.

Keywords: urban servitudes, urban design, urban furniture, visage of city

Procedia PDF Downloads 497
2007 Land Art in Public Spaces Design: Remediation, Prevention of Environmental Risks and Recycling as a Consequence of the Avant-Garde Activity of Landscape Architecture

Authors: Karolina Porada

Abstract:

Over the last 40 years, there has been a trend in landscape architecture which supporters do not perceive the role of pro-ecological or postmodern solutions in the design of public green spaces as an essential goal, shifting their attention to the 'sculptural' shaping of areas with the use of slopes, hills, embankments, and other forms of terrain. This group of designers can be considered avant-garde, which in its activities refers to land art. Initial research shows that such applications are particularly frequent in places of former post-industrial sites and landfills, utilizing materials such as debris and post-mining waste in their construction. Due to the high degradation of the environment surrounding modern man, the brownfields are a challenge and a field of interest for the representatives of landscape architecture avant-garde, who through their projects try to recover lost lands by means of transformations supported by engineering and ecological knowledge to create places where nature can develop again. The analysis of a dozen or so facilities made it possible to come up with an important conclusion: apart from the cultural aspects (including artistic activities), the green areas formally referring to the land are important in the process of remediation of post-industrial sites and waste recycling (e. g. from construction sites). In these processes, there is also a potential for applying the concept of Natural Based Solutions, i.e. solutions allowing for the natural development of the site in such a way as to use it to cope with environmental problems, such as e.g.  air pollution, soil phytoremediation and climate change. The paper presents examples of modern parks, whose compositions are based on shaping the surface of the terrain in a way referring to the land art, at the same time providing an example of brownfields reuse and application of waste recycling.  For the purposes of object analysis, research methods such as historical-interpretation studies, case studies, qualitative research or the method of logical argumentation were used. The obtained results provide information about the role that landscape architecture can have in the process of remediation of degraded areas, at the same time guaranteeing the benefits, such as the shaping of landscapes attractive in terms of visual appearance, low costs of implementation, and improvement of the natural environment quality.

Keywords: brownfields, contemporary parks, landscape architecture, remediation

Procedia PDF Downloads 150
2006 Chemical Bath Deposition Technique (CBD) of Cds Used in Closed Space Sublimation (CSS) of CdTe Solar Cell

Authors: Zafar Mahmood, Fahimullah Babar, Surriyia Naz, Hafiz Ur Rehman

Abstract:

Cadmium Sulphide (CdS) was deposited on a Tec 15 glass substrate with the help of CBD (chemical bath deposition process) and then cadmium telluride CdTe was deposited on CdS with the help of CSS (closed spaced sublimation technique) for the construction of a solar cell. The thicknesses of all the deposited materials were measured with the help of Elipsometry. The IV graphs were drawn in order to observe the current voltage output. The efficiency of the cell was graphed with the fill factor as well (graphs not given here).The efficiency came out to be approximately 16.5 % and the CIGS (copper- indium –gallium- selenide) maximum efficiency is 20 %.The efficiency of a solar cell can further be enhanced by adapting quality materials, good experimental devices and proper procedures. The grain size was analyzed with the help of scanning electron microscope using RBS (Rutherford backscattering spectroscopy).

Keywords: CBD, CdS, CdTe, CSS

Procedia PDF Downloads 364
2005 Structural, Optical and Electrical Properties of PbS Thin Films Deposited by CBD at Different Bath pH

Authors: Lynda Beddek, Nadhir Attaf, Mohamed Salah Aida

Abstract:

PbS thin films were grown on glass substrates by chemical bath deposition (CBD). The precursor aqueous bath contained 1 mole of lead nitrate, 1 mole of Thiourea and complexing agents (triethanolamine (TEA) and NaOH). Bath temperature and deposition time were fixed at 60°C and 3 hours, respectively. However, the PH of bath was varied from 10.5 to 12.5. Structural properties of the deposited films were characterized by X-ray diffraction and Raman spectroscopy. The preferred direction was revealed to be along (111) and the PbS crystal structure was confirmed. Strains and grains sizes were also calculated. Optical studies showed that films thicknesses do not exceed 600nm. Energy band gap values of films decreases with increase in pH and reached a value ~ 0.4eV at pH equal 12.5. The small value of the energy band gap makes PbS one of the most interesting candidate for solar energy conversion near the infrared ray.

Keywords: CBD, PbS, pH, thin films, x-ray diffraction

Procedia PDF Downloads 442
2004 SEM-EBSD Observation for Microtubes by Using Dieless Drawing Process

Authors: Takashi Sakai, Itaru Kumisawa

Abstract:

Because die drawing requires insertion of a die, a plug, or a mandrel, higher precision and efficiency are demanded for drawing equipment for a tube having smaller diameter. Manufacturing of such tubes is also accompanied by problems such as cracking and fracture. We specifically examine dieless drawing, which is less affected by these drawing-related difficulties. This deformation process is governed by a similar principle to that of reduction in diameter when pulling a heated glass tube. We conducted dieless drawing of SUS304 stainless steel microtubes under various conditions with three factor parameters of heating temperature, area reduction, and drawing speed. We used SEM-EBSD to observe the processing condition effects on microstructural elements. As the result of this study, crystallographic orientation of microtube is clear by using SEM-EBSD analysis.

Keywords: microtube, dieless drawing, IPF (inverse pole figure), GOS (grain orientation spread), crystallographic analysis

Procedia PDF Downloads 248
2003 Rheological Evaluation of a Mucoadhesive Precursor of Based-Poloxamer 407 or Polyethylenimine Liquid Crystal System for Buccal Administration

Authors: Jéssica Bernegossi, Lívia Nordi Dovigo, Marlus Chorilli

Abstract:

Mucoadhesive liquid crystalline systems are emerging how delivery systems for oral cavity. These systems are interesting since they facilitate the targeting of medicines and change the release enabling a reduction in the number of applications made by the patient. The buccal mucosa is permeable besides present a great blood supply and absence of first pass metabolism, it is a good route of administration. It was developed two systems liquid crystals utilizing as surfactant the ethyl alcohol ethoxylated and propoxylated (30%) as oil phase the oleic acid (60%), and the aqueous phase (10%) dispersion of polymer polyethylenimine (0.5%) or dispersion of polymer poloxamer 407 (16%), with the intention of applying the buccal mucosa. Initially, was performed for characterization of systems the conference by polarized light microscopy and rheological analysis. For the preparation of the systems the components described was added above in glass vials and shaken. Then, 30 and 100% artificial saliva were added to each prepared formulation so as to simulate the environment of the oral cavity. For the verification of the system structure, aliquots of the formulations were observed in glass slide and covered with a coverslip, examined in polarized light microscope (PLM) Axioskop - Zeizz® in 40x magnifier. The formulations were also evaluated for their rheological profile Rheometer TA Instruments®, which were obtained rheograms the selected systems employing fluency mode (flow) in temperature of 37ºC (98.6ºF). In PLM, it was observed that in formulations containing polyethylenimine and poloxamer 407 without the addition of artificial saliva was observed dark-field being indicative of microemulsion, this was also observed with the formulation that was increased with 30% of the artificial saliva. In the formulation that was increased with 100% simulated saliva was shown to be a system structure since it presented anisotropy with the presence of striae being indicative of hexagonal liquid crystalline mesophase system. Upon observation of rheograms, both systems without the addition of artificial saliva showed a Newtonian profile, after addition of 30% artificial saliva have been given a non-Newtonian behavior of the pseudoplastic-thixotropic type and after adding 100% of the saliva artificial proved plastic-thixotropic. Furthermore, it is clearly seen that the formulations containing poloxamer 407 have significantly larger (15-800 Pa) shear stress compared to those containing polyethyleneimine (5-50 Pa), indicating a greater plasticity of these. Thus, it is possible to observe that the addition of saliva was of interest to the system structure, starting from a microemulsion for a liquid crystal system, thereby also changing thereby its rheological behavior. The systems have promising characteristics as controlled release systems to the oral cavity, as it features good fluidity during its possible application and greater structuring of the system when it comes into contact with environmental saliva.

Keywords: liquid crystal system, poloxamer 407, polyethylenimine, rheology

Procedia PDF Downloads 458
2002 Sustainable Manufacturing Industries and Energy-Water Nexus Approach

Authors: Shahbaz Abbas, Lin Han Chiang Hsieh

Abstract:

The significant population growth and climate change issues have contributed to the natural resources depletion and their sustainability in the future. Manufacturing industries have a substantial impact on every country’s economy, but the sustainability of the industrial resources is challenging, and the policymakers have been developing the possible solutions to manage the sustainability of industrial resources such as raw material, energy, water, and industrial supply chain. In order to address these challenges, nexus approach is one of the optimization and modelling techniques in the recent sustainable environmental research. The interactions between the nexus components acknowledge that all components are dependent upon each other, and they are interrelated; therefore, their sustainability is also associated with each other. In addition, the nexus concept does not only provide the resources sustainability but also environmental sustainability can be achieved through nexus approach by utilizing the industrial waste as a resource for the industrial processes. Based on energy-water nexus, this study has developed a resource-energy-water for the sugar industry to understand the interactions between sugarcane, energy, and water towards the sustainable sugar industry. In particular, the focus of the research is the Taiwanese sugar industry; however, the same approach can be adapted worldwide to optimize the sustainability of sugar industries. It has been concluded that there are significant interactions between sugarcane, energy consumption, and water consumption in the sugar industry to manage the scarcity of resources in the future. The interactions between sugarcane and energy also deliver a mechanism to reuse the sugar industrial waste as a source of energy, consequently validating industrial and environmental sustainability. The desired outcomes from the nexus can be achieved with the modifications in the policy and regulations of Taiwanese industrial sector.

Keywords: energy-water nexus, environmental sustainability, industrial sustainability, natural resource management

Procedia PDF Downloads 125
2001 Impact of Using Pyrolytic Carbon Black as Asphalt Modifier on Wearing Course of Flexible Pavement

Authors: Samiya Siddique, Taslima Akter Elma, Shahrina Mahzabin, Tamanna Jerin, Mohammed Russedul Islam

Abstract:

In the maneuver and designing of highway engineering, pavement performance is a principal concern. Quality of construction and materials, traffic volume, climate, etc. are the factors that affect the performance of asphalt concrete. Modified asphalt requires to attain greater strength and stability even at inimical circumstances. In this point of view, pyrolytic carbon black (PCB), which is a by-product of waste tire pyrolysis, holds incomparable properties that individualizes it from other conventional fillers by making it an imminent modifier of bitumen. Optimum asphalt content of 60/70 penetration grade asphalt is determined 5% through the Marshall Stability and Flow test for the wearing course of flexible pavement. 5, 10, and 15 percentages of PCB are then used with neat asphalt for modification. Deviations of physical and rheological properties are investigated on both PCB modified and neat asphalt by going through several laboratory tests such as penetration, softening point, and ductility tests. The obtained results reveal that the performance of paving asphalt can be upgraded by modifying it with PCB. With the increasing percentage of PCB, ductility is gradually decreased, and also penetration grade is gradually reduced from 60/70 to 30/40. Furthermore, asphalt mixtures modified with PCB demonstrate higher stability and lower flow values. The research discloses that the apposite percentage of PCB used in asphalt concrete plays a significant role in the advancement of pavement performances and reutilizing of waste tires.

Keywords: asphalt modification, pavement performances, pyrolytic carbon black, marshall stability, wearing course

Procedia PDF Downloads 149
2000 Synthesis of KCaVO4:Sm³⁺/PMMA Luminescent Nanocomposites and Their Optical Property Measurements

Authors: Sumara Khursheed, Jitendra Sharma

Abstract:

The present work reports synthesis of nanocomposites (NCs) of phosphor (KCaVO4:Sm3+) embedded poly(methylmethacrylate) (PMMA) using solution casting method and their optical properties measurements for their possible application in making flexible luminescent films. X-ray diffraction analyses were employed to obtain the structural parameters as crystallinity, shape and size of the obtained NCs. The emission and excitation spectra were obtained using Photoluminescence spectroscopy to quantify the spectral properties of these fluorescent polymer/phosphor films. Optical energy gap has been estimated using UV-VIS spectroscopy while differential scanning calorimetry (DSC) was exploited to measure the thermal properties of the NC films in terms of their thermal stability, glass transition temperature and degree of crystallinity etc.

Keywords: nanocomposites, luminescence, XRD, differential scanning calorimetry, PMMA

Procedia PDF Downloads 169
1999 Potential of Pyrolytic Tire Char Use in Agriculture

Authors: M. L. Moyo

Abstract:

Concerns about climate change, food productivity, and the ever-increasing cost of commercial fertilizer products is forcing have spurred interest in the production of alternatives or substitutes for commercial fertilizer products. In this study, the potential of pyrolytic tire char (PT-char) to improve soil productivity was investigated. The use of carbonized biomass, which is commonly termed biochar or biofertilizer and exhibits similar properties to PT-char in agriculture is not new, with historical evidence pointing to the use of charcoal for soil improvement by indigenous Amazon people for several centuries. Due to minimal market value or use of PT-char, huge quantities are currently stockpiled in South Africa. This successively reduces revenue and decreases investments in waste tire recycling efforts as PT-char constitutes 40 % weight of the total waste tire pyrolysis products. The physicochemical analysis results reported in this study showed that PT-char contains a low concentration of essential plant elements (P and K) and, therefore, cannot be used for increasing nutrient availability in soils. A low presence of heavy metals (Ni, Pb, and Cd), which may be harmful to the environment at high application rates was also observed. In addition, the results revealed that PT-char contains very high levels of Zn, a widely known phytotoxicity causing agents in plants. However, the study also illustrated that PT-char is made up of a highly aromatic and condensed carbon structure. PT-char is therefore highly stable, less prone to microbial degradation, and has a low chemical reactivity in soils. Considering these characteristics, PT-char meets the requirements for use as a carbon sequestration agent, which may be useful in mitigating climate change.

Keywords: agriculture, carbon sequestration, physicochemical analysis, pyrolytic tire char, soil amendment.

Procedia PDF Downloads 122
1998 Experimental Investigation on Tensile Durability of Glass Fiber Reinforced Polymer (GFRP) Rebar Embedded in High Performance Concrete

Authors: Yuan Yue, Wen-Wei Wang

Abstract:

The objective of this research is to comprehensively evaluate the impact of alkaline environments on the durability of Glass Fiber Reinforced Polymer (GFRP) reinforcements in concrete structures and further explore their potential value within the construction industry. Specifically, we investigate the effects of two widely used high-performance concrete (HPC) materials on the durability of GFRP bars when embedded within them under varying temperature conditions. A total of 279 GFRP bar specimens were manufactured for microcosmic and mechanical performance tests. Among them, 270 specimens were used to test the residual tensile strength after 120 days of immersion, while 9 specimens were utilized for microscopic testing to analyze degradation damage. SEM techniques were employed to examine the microstructure of GFRP and cover concrete. Unidirectional tensile strength experiments were conducted to determine the remaining tensile strength after corrosion. The experimental variables consisted of four types of concrete (engineering cementitious composite (ECC), ultra-high-performance concrete (UHPC), and two types of ordinary concrete with different compressive strengths) as well as three acceleration temperatures (20, 40, and 60℃). The experimental results demonstrate that high-performance concrete (HPC) offers superior protection for GFRP bars compared to ordinary concrete. Two types of HPC enhance durability through different mechanisms: one by reducing the pH of the concrete pore fluid and the other by decreasing permeability. For instance, ECC improves embedded GFRP's durability by lowering the pH of the pore fluid. After 120 days of immersion at 60°C under accelerated conditions, ECC (pH=11.5) retained 68.99% of its strength, while PC1 (pH=13.5) retained 54.88%. On the other hand, UHPC enhances FRP steel's durability by increasing porosity and compactness in its protective layer to reinforce FRP reinforcement's longevity. Due to fillers present in UHPC, it typically exhibits lower porosity, higher densities, and greater resistance to permeation compared to PC2 with similar pore fluid pH levels, resulting in varying degrees of durability for GFRP bars embedded in UHPC and PC2 after 120 days of immersion at a temperature of 60°C - with residual strengths being 66.32% and 60.89%, respectively. Furthermore, SEM analysis revealed no noticeable evidence indicating fiber deterioration in any examined specimens, thus suggesting that uneven stress distribution resulting from interface segregation and matrix damage emerges as a primary causative factor for tensile strength reduction in GFRP rather than fiber corrosion. Moreover, long-term prediction models were utilized to calculate residual strength values over time for reinforcement embedded in HPC under high temperature and high humidity conditions - demonstrating that approximately 75% of its initial strength was retained by reinforcement embedded in HPC after 100 years of service.

Keywords: GFRP bars, HPC, degeneration, durability, residual tensile strength.

Procedia PDF Downloads 56
1997 Fabrication of Highly Conductive Graphene/ITO Transparent Bi-Film through Chemical Vapor Deposition (CVD) and Organic Additives-Free Sol-Gel Techniques

Authors: Bastian Waduge Naveen Harindu Hemasiri, Jae-Kwan Kim, Ji-Myon Lee

Abstract:

Indium tin oxide (ITO) remains the industrial standard transparent conducting oxides with better performances. Recently, graphene becomes as a strong material with unique properties to replace the ITO. However, graphene/ITO hybrid composite material is a newly born field in the electronic world. In this study, the graphene/ITO composite bi-film was synthesized by a two steps process. 10 wt.% tin-doped, ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO3)3.H2O and SnCl4 without using organic additives. The wettability and surface free energy (97.6986 mJ/m2) enhanced oxygen plasma treated glass substrates were used to form voids free continuous ITO film. The spin-coated samples were annealed at 600 0C for 1 hour under low vacuum conditions to obtained crystallized, ITO film. The crystal structure and crystalline phases of ITO thin films were analyzed by X-ray diffraction (XRD) technique. The Scherrer equation was used to determine the crystallite size. Detailed information about chemical composition and elemental composition of the ITO film were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) coupled with FE-SEM respectively. Graphene synthesis was done under chemical vapor deposition (CVD) method by using Cu foil at 1000 0C for 1 min. The quality of the synthesized graphene was characterized by Raman spectroscopy (532nm excitation laser beam) and data was collected at room temperature and normal atmosphere. The surface and cross-sectional observation were done by using FE-SEM. The optical transmission and sheet resistance were measured by UV-Vis spectroscopy and four point probe head at room temperature respectively. Electrical properties were also measured by using V-I characteristics. XRD patterns reveal that the films contain the In2O3 phase only and exhibit the polycrystalline nature of the cubic structure with the main peak of (222) plane. The peak positions of In3d5/2 (444.28 eV) and Sn3d5/2 (486.7 eV) in XPS results indicated that indium and tin are in the oxide form only. The UV-visible transmittance shows 91.35 % at 550 nm with 5.88 x 10-3 Ωcm specific resistance. The G and 2D band in Raman spectroscopy of graphene appear at 1582.52 cm-1 and 2690.54 cm-1 respectively when the synthesized CVD graphene on SiO2/Si. The determined intensity ratios of 2D to G (I2D/IG) and D to G (ID/IG) were 1.531 and 0.108 respectively. However, the above-mentioned G and 2D peaks appear at 1573.57 cm-1 and 2668.14 cm-1 respectively when the CVD graphene on the ITO coated glass, the positions of G and 2D peaks were red shifted by 8.948 cm-1 and 22.396 cm-1 respectively. This graphene/ITO bi-film shows modified electrical properties when compares with sol-gel derived ITO film. The reduction of sheet resistance in the bi-film was 12.03 % from the ITO film. Further, the fabricated graphene/ITO bi-film shows 88.66 % transmittance at 550 nm wavelength.

Keywords: chemical vapor deposition, graphene, ITO, Raman Spectroscopy, sol-gel

Procedia PDF Downloads 260
1996 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings

Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi

Abstract:

Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.

Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden

Procedia PDF Downloads 85
1995 A Calibration Method for Temperature Distribution Measurement of Thermochromic Liquid Crystal Based on Mathematical Morphology of Hue Image

Authors: Risti Suryantari, Flaviana

Abstract:

The aim of this research is to design calibration method of Thermochromic Liquid Crystal for temperature distribution measurement based on mathematical morphology of hue image A glass of water is placed on the surface of sample TLC R25C5W at certain temperature. We use scanner for image acquisition. The true images in RGB format is converted to HSV (hue, saturation, value) by taking of hue without saturation and value. Then the hue images is processed based on mathematical morphology using Matlab2013a software to get better images. There are differences on the final images after processing at each temperature variation based on visualization observation and the statistic value. The value of maximum and mean increase with rising temperature. It could be parameter to identify the temperature of the human body surface like hand or foot surface.

Keywords: thermochromic liquid crystal, TLC, mathematical morphology, hue image

Procedia PDF Downloads 473
1994 Dynamic Response and Damage Modeling of Glass Fiber Reinforced Epoxy Composite Pipes: Numerical Investigation

Authors: Ammar Maziz, Mostapha Tarfaoui, Said Rechak

Abstract:

The high mechanical performance of composite pipes can be adversely affected by their low resistance to impact loads. Loads in dynamic origin are dangerous and cause consequences on the operation of pipes because the damage is often not detected and can affect the structural integrity of composite pipes. In this work, an advanced 3-D finite element (FE) model, based on the use of intralaminar damage models was developed and used to predict damage under low-velocity impact. The performance of the numerical model is validated with the confrontation with the results of experimental tests. The results show that at low impact energy, the damage happens mainly by matrix cracking and delamination. The model capabilities to simulate the low-velocity impact events on the full-scale composite structures were proved.

Keywords: composite materials, low velocity impact, FEA, dynamic behavior, progressive damage modeling

Procedia PDF Downloads 172
1993 Fabrication of SnO₂ Nanotube Arrays for Enhanced Gas Sensing Properties

Authors: Hsyi-En Cheng, Ying-Yi Liou

Abstract:

Metal-oxide semiconductor (MOS) gas sensors are widely used in the gas-detection market due to their high sensitivity, fast response, and simple device structures. However, the high working temperature of MOS gas sensors makes them difficult to integrate with the appliance or consumer goods. One-dimensional (1-D) nanostructures are considered to have the potential to lower their working temperature due to their large surface-to-volume ratio, confined electrical conduction channels, and small feature sizes. Unfortunately, the difficulty of fabricating 1-D nanostructure electrodes has hindered the development of low-temperature MOS gas sensors. In this work, we proposed a method to fabricate nanotube-arrays, and the SnO₂ nanotube-array sensors with different wall thickness were successfully prepared and examined. The fabrication of SnO₂ nanotube arrays incorporates the techniques of barrier-free anodic aluminum oxide (AAO) template and atomic layer deposition (ALD) of SnO₂. First, 1.0 µm Al film was deposited on ITO glass substrate by electron beam evaporation and then anodically oxidized by five wt% phosphoric acid solution at 5°C under a constant voltage of 100 V to form porous aluminum oxide. As the Al film was fully oxidized, a 15 min over anodization and a 30 min post chemical dissolution were used to remove the barrier oxide at the bottom end of pores to generate a barrier-free AAO template. The ALD using reactants of TiCl4 and H₂O was followed to grow a thin layer of SnO₂ on the template to form SnO₂ nanotube arrays. After removing the surface layer of SnO₂ by H₂ plasma and dissolving the template by 5 wt% phosphoric acid solution at 50°C, upright standing SnO₂ nanotube arrays on ITO glass were produced. Finally, Ag top electrode with line width of 5 μm was printed on the nanotube arrays to form SnO₂ nanotube-array sensor. Two SnO₂ nanotube-arrays with wall thickness of 30 and 60 nm were produced in this experiment for the evaluation of gas sensing ability. The flat SnO₂ films with thickness of 30 and 60 nm were also examined for comparison. The results show that the properties of ALD SnO₂ films were related to the deposition temperature. The films grown at 350°C had a low electrical resistivity of 3.6×10-3 Ω-cm and were, therefore, used for the nanotube-array sensors. The carrier concentration and mobility of the SnO₂ films were characterized by Ecopia HMS-3000 Hall-effect measurement system and were 1.1×1020 cm-3 and 16 cm3/V-s, respectively. The electrical resistance of SnO₂ film and nanotube-array sensors in air and in a 5% H₂-95% N₂ mixture gas was monitored by Pico text M3510A 6 1/2 Digits Multimeter. It was found that, at 200 °C, the 30-nm-wall SnO₂ nanotube-array sensor performs the highest responsivity to 5% H₂, followed by the 30-nm SnO₂ film sensor, the 60-nm SnO₂ film sensor, and the 60-nm-wall SnO₂ nanotube-array sensor. However, at temperatures below 100°C, all the samples were insensitive to the 5% H₂ gas. Further investigation on the sensors with thinner SnO₂ is necessary for improving the sensing ability at temperatures below 100 °C.

Keywords: atomic layer deposition, nanotube arrays, gas sensor, tin dioxide

Procedia PDF Downloads 242
1992 Alternative of Lead-Based Ionization Radiation Shielding Property: Epoxy-Based Composite Design

Authors: Md. Belal Uudin Rabbi, Sakib Al Montasir, Saifur Rahman, Niger Nahid, Esmail Hossain Emon

Abstract:

The practice of radiation shielding protects against the detrimental effects of ionizing radiation. Radiation shielding depletes radiation by inserting a shield of absorbing material between any radioactive source. It is a primary concern when building several industrial fields, so using potent (high activity) radioisotopes in food preservation, cancer treatment, and particle accelerator facilities is significant. Radiation shielding is essential for radiation-emitting equipment users to reduce or mitigate radiation damage. Polymer composites (especially epoxy based) with high atomic number fillers can replace toxic Lead in ionizing radiation shielding applications because of their excellent mechanical properties, superior solvent and chemical resistance, good dimensional stability, adhesive, and less toxic. Due to being lightweight, good neutron shielding ability in almost the same order as concrete, epoxy-based radiation shielding can be the next big thing. Micro and nano-particles for the epoxy resin increase the epoxy matrix's radiation shielding property. Shielding is required to protect users of such facilities from ionizing radiation as recently, and considerable attention has been paid to polymeric composites as a radiation shielding material. This research will examine the radiation shielding performance of epoxy-based nano-WO3 reinforced composites, exploring the performance of epoxy-based nano-WO3 reinforced composites. The samples will be prepared using the direct pouring method to block radiation. The practice of radiation shielding protects against the detrimental effects of ionizing radiation.

Keywords: radiation shielding materials, ionizing radiation, epoxy resin, Tungsten oxide, polymer composites

Procedia PDF Downloads 114
1991 Comparative Study of Experimental and Theoretical Convective, Evaporative for Two Model Distiller

Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi

Abstract:

The purification of brackish seawater becomes a necessity and not a choice against demographic and industrial growth especially in third world countries. Two models can be used in this work: simple solar still and simple solar still coupled with a heat pump. In this research, the productivity of water by Simple Solar Distiller (SSD) and Simple Solar Distiller Hybrid Heat Pump (SSDHP) was determined by the orientation, the use of heat pump, the simple or double glass cover. The productivity can exceed 1.2 L/m²h for the SSDHP and 0.5 L/m²h for SSD model. The result of the global efficiency is determined for two models SSD and SSDHP give respectively 30%, 50%. The internal efficiency attained 35% for SSD and 60% of the SSDHP models. Convective heat coefficient can be determined by attained 2.5 W/m²°C and 0.5 W/m²°C respectively for SSDHP and SSD models.

Keywords: productivity, efficiency, convective heat coefficient, SSD model, SSDHPmodel

Procedia PDF Downloads 213
1990 First Investigation on CZTS Electron affinity and Thickness Optimization using SILVACO-Atlas 2D Simulation

Authors: Zeineb Seboui, Samar Dabbabi

Abstract:

In this paper, we study the performance of Cu₂ZnSnS₄ (CZTS) based solar cell. In our knowledge, it is for the first time that the FTO/ZnO:Co/CZTS structure is simulated using the SILVACO-Atlas 2D simulation. Cu₂ZnSnS₄ (CZTS), ZnO:Co and FTO (SnO₂:F) layers have been deposited on glass substrates by the spray pyrolysis technique. The extracted physical properties, such as thickness and optical parameters of CZTS layer, are considered to create a new input data of CZTS based solar cell. The optimization of CZTS electron affinity and thickness is performed to have the best FTO/ZnO: Co/CZTS efficiency. The use of CZTS absorber layer with 3.99 eV electron affinity and 3.2 µm in thickness leads to the higher efficiency of 16.86 %, which is very important in the development of new technologies and new solar cell devices.

Keywords: CZTS solar cell, characterization, electron affinity, thickness, SILVACO-atlas 2D simulation

Procedia PDF Downloads 78
1989 Highly Transparent, Hydrophobic and Self-Cleaning ZnO-Durazane Based Hybrid Organic-Inorganic Coatings

Authors: Abderrahmane Hamdi, Julie Chalon, Benoit Dodin, Philippe Champagne

Abstract:

In this report, we present a simple route to realize robust, hydrophobic, and highly transparent coatings using organic polysilazane (durazane) and zinc oxide nanoparticles (ZnO). These coatings were deposited by spraying the mixture solution on glass slides. Thus, the properties of the films were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), UV–vis-NIR spectrophotometer, and water contact angle method. This sprayable polymer mixed with ZnO nanoparticles shows high transparency for visible light > 90%, a hydrophobic character (CA > 90°), and good mechanical and chemical stability. The coating also demonstrates excellent self-cleaning properties, which makes it a promising candidate for commercial use.

Keywords: coatings, durability, hydrophobicity, organic polysilazane, self-cleaning, transparence, zinc oxide nanoparticles

Procedia PDF Downloads 170
1988 A New OvS Approach in Assembly Line Balancing Problem

Authors: P. Azimi, B. Behtoiy, A. A. Najafi, H. R. Charmchi

Abstract:

According to the previous studies, one of the most famous techniques which affect the efficiency of a production line is the assembly line balancing (ALB) technique. This paper examines the balancing effect of a whole production line of a real auto glass manufacturer in three steps. In the first step, processing time of each activity in the workstations is generated according to a practical approach. In the second step, the whole production process is simulated and the bottleneck stations have been identified, and finally in the third step, several improvement scenarios are generated to optimize the system throughput, and the best one is proposed. The main contribution of the current research is the proposed framework which combines two famous approaches including Assembly Line Balancing and Optimization via Simulation technique (OvS). The results show that the proposed framework could be applied in practical environments, easily.

Keywords: assembly line balancing problem, optimization via simulation, production planning

Procedia PDF Downloads 526
1987 Implementation of Lean Tools (Value Stream Mapping and ECRS) in an Oil Refinery

Authors: Ronita Singh, Yaman Pattanaik, Soham Lalwala

Abstract:

In today’s highly competitive business environment, every organization is striving towards lean manufacturing systems to achieve lower Production Lead Times, lower costs, less inventory and overall improvement in supply chains efficiency. Based on the similar idea, this paper presents the practical application of Value Stream Mapping (VSM) tool and ECRS (Eliminate, Combine, Reduce, and Simplify) technique in the receipt section of the material management center of an oil refinery. A value stream is an assortment of all actions (value added as well as non-value added) that are required to bring a product through the essential flows, starting with raw material and ending with the customer. For drawing current state value stream mapping, all relevant data of the receipt cycle has been collected and analyzed. Then analysis of current state map has been done for determining the type and quantum of waste at every stage which helped in ascertaining as to how far the warehouse is from the concept of lean manufacturing. From the results achieved by current VSM, it was observed that the two processes- Preparation of GRN (Goods Receipt Number) and Preparation of UD (Usage Decision) are both bottle neck operations and have higher cycle time. This root cause analysis of various types of waste helped in designing a strategy for step-wise implementation of lean tools. The future state thus created a lean flow of materials at the warehouse center, reducing the lead time of the receipt cycle from 11 days to 7 days and increasing overall efficiency by 27.27%.

Keywords: current VSM, ECRS, future VSM, receipt cycle, supply chain, VSM

Procedia PDF Downloads 315
1986 Sorption of Cesium Ions from Aqueous Solutions by Magnetic Multi-Walled Carbon Nanotubes Functionalized with Zinc Hexacyanoferrate

Authors: H. H. Lee, D. Y. Kim, S. W. Lee, J. H. Kim, J. H. Kim, W. Z. Oh, S. J. Choi

Abstract:

In recent years, carbon nanotubes (CNTs) have been widely employed as a sorbent for the removal of various metal ions from water due to their unique properties such as large surface area, light mass density, high porous and hollow structure, and strong interaction between the pollutant molecules and CNTs. To apply CNTs to the sorption of Cs+ from aqueous solutions, they must first be functionalized to increase their hydrophilicity and therefore, enhance their applicability to the sorption of polar and relatively low-molecular-weight species. The objective of this study is to investigate the preparation of magnetically separable multi-walled carbon nanotubes (MWCNTs-m) as a sorbents for the removal of Cs+ from aqueous solutions. The MWCNTs-m was prepared using pristine MWCNTs and iron precursor Fe(acac)3. For the selective removal of Cs+ from aqueous solutions, the MWCNTs-m was functionalized with zinc hexacyanoferrate (MWCNTs-m-ZnFC). The physicochemical properties of the synthesized sorbents were characterized with various techniques, including transmission electron microscopy (TEM), specific surface area analysis, Fourier transform-infrared (FT-IR) spectroscopy, and vibrating-sample magnetometer. The MWCNTs-m-ZnFC was found to be easily separated from aqueous solutions by using magnetic field. The MWCNTs-m-ZnFC exhibited a high capacity for sorbing Cs+ from aqueous solutions because of their strong affinity for Cs+ and specific surface area. The sorption ability of the MWCNTs-m-ZnFC for Cs+ was maintained even in the presence of co-existing ions (Na+). Considering these results, the CNT-m-ZnFCs have great potential for use as an effective sorbent for the selective removal of radioactive Cs+ ions from aqueous solutions.

Keywords: multi-walled carbon nanotubes, magnetic materials, cesium, zinc hexacyanoferrate, sorption

Procedia PDF Downloads 326
1985 Devulcanization of Waste Rubber Tyre Utilizing Deep Eutectic Solvents and Ultrasonic Energy

Authors: Ricky Saputra, Rashmi Walvekar, Mohammad Khalid, Kaveh Shahbaz, Suganti Ramarad

Abstract:

This particular study of interest aims to study the effect of coupling ultrasonic treatment with eutectic solvents in devulcanization process of waste rubber tyre. Specifically, three different types of Deep Eutectic Solvents (DES) were utilized, namely ChCl:Urea (1:2), ChCl:ZnCl₂ (1:2) and ZnCl₂:urea (2:7) in which their physicochemical properties were analysed and proven to have permissible water content that is less than 3.0 wt%, degradation temperature below 200ᵒC and freezing point below 60ᵒC. The mass ratio of rubber to DES was varied from 1:20-1:40, sonicated for 1 hour at 37 kHz and heated at variable time of 5-30 min at 180ᵒC. Energy dispersive x-rays (EDX) results revealed that the first two DESs give the highest degree of sulphur removal at 74.44 and 76.69% respectively with optimum heating time at 15 minutes whereby if prolonged, reformation of crosslink network would be experienced. Such is supported by the evidence shown by both FTIR and FESEM results where di-sulfide peak reappears at 30 minutes and morphological structures from 15 to 30 minutes change from smooth with high voidage to rigid with low voidage respectively. Furthermore, TGA curve reveals similar phenomena whereby at 15 minutes thermal decomposition temperature is at the lowest due to the decrease of molecular weight as a result of sulphur removal but increases back at 30 minutes. Type of bond change was also analysed whereby it was found that only di-sulphide bond was cleaved and which indicates partial-devulcanization. Overall, the results show that DES has a great potential to be used as devulcanizing solvent.

Keywords: crosslink network, devulcanization, eutectic solvents, reformation, ultrasonic

Procedia PDF Downloads 173
1984 Photo-Thermal Degradation Analysis of Single Junction Amorphous Silicon Solar Module Eva Encapsulation

Authors: Gilbert O. Osayemwenre, Meyer L. Edson

Abstract:

Ethylene vinyl acetate (EVA) encapsulation degradation affects the performance of photovoltaic (PV) module. Hotspot formation causes the EVA encapsulation to undergo photothermal deterioration and molecular breakdown by UV radiation. This leads to diffusion of chemical particles into other layers. During outdoor deployment, the EVA encapsulation in the affect region loses its adhesive strength, when this happen the affected region layer undergoes rapid delamination. The presence of photo-thermal degradation is detrimental to PV modules as it causes both optical and thermal degradation. Also, it enables the encapsulant to be more susceptible to chemicals substance and moisture. Our findings show a high concentration of Sodium, Phosphorus and Aluminium which originate from the glass substrate, cell emitter and back contact respectively.

Keywords: ethylene vinyl acetate (EVA), encapsulation, photo-thermal degradation, thermogravimetric analysis (TGA), scanning probe microscope (SPM)

Procedia PDF Downloads 307