Search results for: nuclear host matrices
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2106

Search results for: nuclear host matrices

366 Microstructure and Mechanical Properties of Low Alloy Steel with Double Austenitizing Tempering Heat Treatment

Authors: Jae-Ho Jang, Jung-Soo Kim, Byung-Jun Kim, Dae-Geun Nam, Uoo-Chang Jung, Yoon-Suk Choi

Abstract:

Low alloy steels are widely used for pressure vessels, spent fuel storage, and steam generators required to withstand the internal pressure and prevent unexpected failure in nuclear power plants, which these may suffer embrittlement by high levels of radiation and heat for a long period. Therefore, it is important to improve mechanical properties of low alloy steels for the integrity of structure materials at an early stage of fabrication. Recently, it showed that a double austenitizing and tempering (DTA) process resulted in a significant improvement of strength and toughness by refinement of prior austenite grains. In this study, it was investigated that the mechanism of improving mechanical properties according to the change of microstructure by the second fully austenitizing temperature of the DAT process for low alloy steel required the structural integrity. Compared to conventional single austenitizing and tempering (SAT) process, the tensile elongation properties have improved about 5%, DBTTs have obtained result in reduction of about -65℃, and grain size has decreased by about 50% in the DAT process conditions. Grain refinement has crack propagation interference effect due to an increase of the grain boundaries and amount of energy absorption at low temperatures. The higher first austenitizing temperature in the DAT process, the more increase the spheroidized carbides and strengthening the effect of fine precipitates in the ferrite grain. The area ratio of the dimple in the transition area has increased by proportion to the effect of spheroidized carbides. This may the primary mechanisms that can improve low-temperature toughness and elongation while maintaining a similar hardness and strength.

Keywords: double austenitizing, Ductile Brittle transition temperature, grain refinement, heat treatment, low alloy steel, low-temperature toughness

Procedia PDF Downloads 493
365 Home-Country’s Competitive Assets of the Emerging Countries' Multinational Enterprises (EMNEs)

Authors: Philippe Gugler

Abstract:

The aim of this study is to investigate how home country patterns may influence the competitiveness of EMNEs in international markets and more specifically their ability to invest abroad. The study examines the dynamic relationship between home country specific advantage and firms’ competitiveness. Are EMNEs still driven by strong country specific advantages or are EMNEs increasingly relying on their own firm specific competitiveness? EMNEs are not commonly recognized as a ‘homogeneous group’. Therefore, the approaches to these questions need to be specific while still attempting to extract some common evidence. The aim of the study is to elaborate a framework to investigate this issue in a dynamic context of international business’s strategies. The study focuses on two major research questions. The first one relates to the role of the home-base context in the internationalization process of EMNEs and more specifically the home-base assets’ influence on EMNEs competitiveness. Another question is to investigate the interactions among home-base context, recipient country context and EMNEs competitiveness. The evolution of EMNEs’ competitiveness is shaped by the evolution of the home country’s business environment. The nature of the home-based components in EMNEs’ specific advantages has changed over time due to the increased integration of emerging countries in the world market and the inherent changes related to their institutional, structural and regulatory patterns. The home country offers not only inherited assets but also a productive business environment, allowing firms to innovate, be more productive, create unique value for customers and finally, to face international competition successfully. The more sophisticated the home business environment is, the more opportunities there are for firms to developed exclusive and unique competitive assets. The international expansion of EMNEs is a fascinating but challenging issue. Among the numerous questions raised by the involvement of EMNEs in international competition is the evolving role of the home market. The purpose of this study is to examine some of the theoretical ideas and empirical evidence to allow us to deepen our understanding of the role of emerging home countries in the internationalization process of their domestic firms and more specifically in their ability to compete successfully abroad. How much do home specific assets still influence EMNEs’ foreign investment? Which home country assets provide the main competitive drivers to invest and compete abroad? How do EMNEs combine home country assets and host country assets to strengthen their competitive advantages? These questions as well as various others deserve further examination by the scientific community.

Keywords: competitiveness, emerging countries' multinational enterprises, foreign direct investments, international business

Procedia PDF Downloads 241
364 Silymarin Reverses Scopolamine-Induced Memory Deficit in Object Recognition Test in Rats: A Behavioral, Biochemical, Histopathological and Immunohistochemical Study

Authors: Salma A. El-Marasy, Reham M. Abd-Elsalam, Omar A. Ahmed-Farid

Abstract:

Dementia is characterized by impairments in memory and other cognitive abilities. This study aims to elucidate the possible ameliorative effect of silymarin on scopolamine-induced dementia using the object recognition test (ORT). The study was extended to demonstrate the role of cholinergic activity, oxidative stress, neuroinflammation, brain neurotransmitters and histopathological changes in the anti-amnestic effect of silymarin in demented rats. Wistar rats were pretreated with silymarin (200, 400, 800 mg/kg) or donepezil (10 mg/kg) orally for 14 consecutive days. Dementia was induced after the last drug administration by a single intraperitoneal dose of scopolamine (16 mg/kg). Then behavioral, biochemical, histopathological, and immunohistochemical analyses were then performed. Rats pretreated with silymarin counteracted scopolamine-induced non-spatial working memory impairment in the ORT and decreased acetylcholinesterase (AChE) activity, reduced malondialdehyde (MDA), elevated reduced glutathione (GSH), restored gamma-aminobutyric acid (GABA) and dopamine (DA) contents in the cortical and hippocampal brain homogenates. Silymarin dose-dependently reversed scopolamine-induced histopathological changes. Immunohistochemical analysis showed that silymarin dose-dependently mitigated protein expression of a glial fibrillary acidic protein (GFAP) and nuclear factor kappa-B (NF-κB) in the brain cortex and hippocampus. All these effects of silymarin were similar to that of the standard anti-amnestic drug, donepezil. This study reveals that the ameliorative effect of silymarin on scopolamine-induced dementia in rats using the ORT maybe in part mediated by, enhancement of cholinergic activity, anti-oxidant and anti-inflammatory activities as well as mitigation in brain neurotransmitters and histopathological changes.

Keywords: dementia, donepezil, object recognition test, rats, silymarin, scopolamine

Procedia PDF Downloads 115
363 Measurement of Radon Exhalation Rate, Natural Radioactivity, and Radiation Hazard Assessment in Soil Samples from the Surrounding Area of Kasimpur Thermal Power Plant Kasimpur (U. P.), India

Authors: Anil Sharma, Ajay Kumar Mahur, R. G. Sonkawade, A. C. Sharma, R. Prasad

Abstract:

In coal fired thermal power stations, large amount of fly ash is produced after burning of coal. Fly ash is spread and distributed in the surrounding area by air and may be deposited on the soil of the region surrounding the power plant. Coal contains increased levels of these radionuclides and fly ash may increase the radioactivity in the soil around the power plant. Radon atoms entering into the pore space from the mineral grain are transported by diffusion and advection through this space until they in turn decay or are released into the atmosphere. In the present study, Soil samples were collected from the region around a Kasimpur Thermal Power Plant, Kasimpur, Aligarh (U.P.). Radon activity, radon surface exhalation and mass exhalation rates were measured using “sealed can technique” using LR 115-type II nuclear track detectors. Radon activities vary from 92.9 to 556.8 Bq m-3 with mean value of 279.8 Bq m-3. Surface exhalation rates (EX) in these samples are found to vary from 33.4 to 200.2 mBq m-2 h-1 with an average value of 100.5 mBq m-2 h-1 whereas, Mass exhalation rates (EM) vary from 1.2 to 7.7 mBq kg-1 h-1 with an average value of 3.8 mBq kg-1 h-1. Activity concentrations of radionuclides were measured in these samples by using a low level NaI (Tl) based gamma ray spectrometer. Activity concentrations of 226Ra 232Th and 40K vary from 12 to 49 Bq kg-1, 24 to 49 Bq kg-1 and 135 to 546 Bq kg-1 with overall mean values of 30.3 Bq kg-1, 38.5 Bq kg-1 and 317.8 Bq kg-1, respectively. Radium equivalent activity has been found to vary from 80.0 to 143.7 Bq kg-1 with an average value of 109.7 Bq kg-1. Absorbed dose rate varies from 36.1 to 66.4 nGy h-1 with an average value of 50.4 nGy h-1 and corresponding outdoor annual effective dose varies from 0.044 to 0.081 mSv with an average value of 0.061 mSv. Values of external and internal hazard index Hex, Hin in this study vary from 0.21 to 0.38 and 0.27 to 0.50 with an average value of 0.29 and 0.37, Respectively. The results will be discussed in light of various factors.

Keywords: natural radioactivity, radium equivalent activity, absorbed dose rate, gamma ray spectroscopy

Procedia PDF Downloads 338
362 Design and Development of an Optimal Fault Tolerant 3 Degree of Freedom Robotic Manipulator

Authors: Ramish, Farhan Khalique Awan

Abstract:

Kinematic redundancy within the manipulators presents extended dexterity and manipulability to the manipulators. Redundant serial robotic manipulators are very popular in industries due to its competencies to keep away from singularities during normal operation and fault tolerance because of failure of one or more joints. Such fault tolerant manipulators are extraordinarily beneficial in applications where human interference for repair and overhaul is both impossible or tough; like in case of robotic arms for space programs, nuclear applications and so on. The design of this sort of fault tolerant serial 3 DoF manipulator is presented in this paper. This work was the extension of the author’s previous work of designing the simple 3R serial manipulator. This work is the realization of the previous design with optimizing the link lengths for incorporating the feature of fault tolerance. Various measures have been followed by the researchers to quantify the fault tolerance of such redundant manipulators. The fault tolerance in this work has been described in terms of the worst-case measure of relative manipulability that is, in fact, a local measure of optimization that works properly for certain configuration of the manipulators. An optimum fault tolerant Jacobian matrix has been determined first based on prescribed null space properties after which the link parameters have been described to meet the given Jacobian matrix. A solid model of the manipulator was then developed to realize the mathematically rigorous design. Further work was executed on determining the dynamic properties of the fault tolerant design and simulations of the movement for various trajectories have been carried out to evaluate the joint torques. The mathematical model of the system was derived via the Euler-Lagrange approach after which the same has been tested using the RoboAnalyzer© software. The results have been quite in agreement. From the CAD model and dynamic simulation data, the manipulator was fabricated in the workshop and Advanced Machining lab of NED University of Engineering and Technology.

Keywords: fault tolerant, Graham matrix, Jacobian, kinematics, Lagrange-Euler

Procedia PDF Downloads 200
361 Transcriptome Analysis Reveals Role of Long Non-Coding RNA NEAT1 in Dengue Patients

Authors: Abhaydeep Pandey, Shweta Shukla, Saptamita Goswami, Bhaswati Bandyopadhyay, Vishnampettai Ramachandran, Sudhanshu Vrati, Arup Banerjee

Abstract:

Background: Long non-coding RNAs (lncRNAs) are the important regulators of gene expression and play important role in viral replication and disease progression. The role of lncRNA genes in the pathogenesis of Dengue virus-mediated pathogenesis is currently unknown. Methods: To gain additional insights, we utilized an unbiased RNA sequencing followed by in silico analysis approach to identify the differentially expressed lncRNA and genes that are associated with dengue disease progression. Further, we focused our study on lncRNAs NEAT1 (Nuclear Paraspeckle Assembly Transcript 1) as it was found to be differentially expressed in PBMC of dengue infected patients. Results: The expression of lncRNAs NEAT1, as compared to dengue infection (DI), was significantly down-regulated as the patients developed the complication. Moreover, pairwise analysis on follow up patients confirmed that suppression of NEAT1 expression was associated with rapid fall in platelet count in dengue infected patients. Severe dengue patients (DS) (n=18; platelet count < 20K) when recovered from infection showing high NEAT1 expression as it observed in healthy donors. By co-expression network analysis and subsequent validation, we revealed that coding gene; IFI27 expression was significantly up-regulated in severe dengue cases and negatively correlated with NEAT1 expression. To discriminate DI from dengue severe, receiver operating characteristic (ROC) curve was calculated. It revealed sensitivity and specificity of 100% (95%CI: 85.69 – 97.22) and area under the curve (AUC) = 0.97 for NEAT1. Conclusions: Altogether, our first observations demonstrate that monitoring NEAT1and IFI27 expression in dengue patients could be useful in understanding dengue virus-induced disease progression and may be involved in pathophysiological processes.

Keywords: dengue, lncRNA, NEAT1, transcriptome

Procedia PDF Downloads 289
360 Cord Blood Hematopoietic Stem Cell Expansion Ability of Mesenchymal Stem Cells Isolated From Different Sources

Authors: Ana M. Lara, Manuela Llano, Felipe Gaitán, Rosa H. Bustos, Ana Maria Perdomo-Arciniegas, Ximena Bonilla

Abstract:

Umbilical cord blood is used as a source of progenitor and stem cells for the regeneration of the hematopoietic and immune system to treat patients with different hematological or non-hematological diseases. This stem cell source represents an advantage over the use of bone marrow or mobilized peripheral blood because it has a lower incidence rate of graft-versus-host disease, probably due to fewer immunological compatibility restrictions. However, its low cellular dose limits its use in pediatric patients. This work proposes the standardization of a cell expansion technique to compensate for the dose of infused cells through the ex-vivo manipulation of hematopoietic progenitor cells from umbilical cord blood before transplantation. The expansion model is carried out through co-cultures with mesenchymal stem cells (MSC) from bone marrow (BM) and less explored fetal tissues such as Wharton's jelly (WJ) and umbilical cord blood (UCB). Initially, a master cell bank of primary mesenchymal stem cells isolated from different sources was established and characterized following International Society of Cell Therapies (ISCT) indications. Additionally, we assessed the effect of a short 25 Gy cycle of gamma irradiation on cell cycle arrest of mesenchymal cells over the support capacity for the expansion of hematopoietic stem cells from umbilical cord blood was evaluated. The results show that co-cultures with MSC from WJ and UCB allow the cellular dose of HSPC to be maximized between 5 and 16 times having a similar support capacity as BM. In addition, was evaluated the hematopoietic stem progenitor cell's HSPC functionality through the evaluation of migration capacity, their differentiation capacity during culture time by flow cytometry to evaluate the expression of membrane markers associated with lineage-committed progenitors, their clonogenic potential, and the evaluation of secretome profile in the expansion process was evaluated. So far, the treatment with gamma irradiation maintains the hematopoietic support capacity of mesenchymal stem cells from the three sources studied compared to treatments without irradiation, favoring the use of fetal tissues that are generally waste to obtain mesenchymal cell lines for ex-vivo expansion systems. With the results obtained, a standardized protocol that will contribute to the development of ex-vivo expansion with MSC on a larger scale will be achieved, enabling its clinical use and expanding its application in adults.

Keywords: ex-vivo expansion, hematopoietic stem cells, hematopoietic stem cell transplantation, mesenchymal stem cells, umbilical cord blood

Procedia PDF Downloads 95
359 Jordan, Towards Eliminating Preventable Maternal Deaths

Authors: Abdelmanie Suleimat, Nagham Abu Shaqra, Sawsan Majali, Issam Adawi, Heba Abo Shindi, Anas Al Mohtaseb

Abstract:

The Government of Jordan recognizes that maternal mortality constitutes a grave public health problem. Over the past two decades, there has been significant progress in improving the quality of maternal health services, resulting in improved maternal and child health outcomes. Despite these efforts, measurement and analysis of maternal mortality remained a challenge, with significant discrepancies from previous national surveys that inhibited accuracy. In response with support from USAID, the Jordan Maternal Mortality Surveillance Response (JMMSR) System was established to collect, analyze, and equip policymakers with data for decision-making guided by interdisciplinary multi-levelled advisory groups aiming to eliminate preventable maternal deaths, A 2016 Public Health Bylaw required the notification of deaths among women of reproductive age. The JMMSR system was launched in 2018 and continues annually, analyzing data received from health facilities, to guide policy to prevent avoidable deaths. To date, there have been four annual national maternal mortality reports (2018-2021). Data is collected, reviewed by advisory groups, and then consolidated in an annual report to inform and guide the Ministry of Health (MOH); JMMSR collects the necessary information to calculate an accurate maternal mortality ratio and assists in identifying leading causes and contributing factors for each maternal death. Based on this data, national response plans are created. A monitoring and evaluation plan was designed to define, track, and improve implementation through indicators. Over the past four years, one of these indicators, ‘percent of facilities notifying respective health directorates of all deaths of women of reproductive age,’ increased annually from 82.16%, 92.95%, and 92.50% to 97.02%, respectively. The Government of Jordan demonstrated commitment to the JMMSR system by designating the MOH to primarily host the system and lead the development and dissemination of policies and procedures to standardize implementation. The data was translated into practical and evidence-based recommendations. The successful impact of results deepened the understanding of maternal mortality in Jordan, which convinced the MOH to amend the Bylaw now mandating electronic reporting of all births and neonatal deaths from health facilities to empower the JMMSR system, by developing a stillbirths and neonatal mortality surveillance and response system.

Keywords: maternal health, maternal mortality, preventable maternal deaths, maternal morbidity

Procedia PDF Downloads 10
358 Physicochemical Characterization of Asphalt Ridge Froth Bitumen

Authors: Nader Nciri, Suil Song, Namho Kim, Namjun Cho

Abstract:

Properties and compositions of bitumen and bitumen-derived liquids have significant influences on the selection of recovery, upgrading and refining processes. Optimal process conditions can often be directly related to these properties. The end uses of bitumen and bitumen products are thus related to their compositions. Because it is not possible to conduct a complete analysis of the molecular structure of bitumen, characterization must be made in other terms. The present paper focuses on physico-chemical analysis of two different types of bitumens. These bitumen samples were chosen based on: the original crude oil (sand oil and crude petroleum), and mode of process. The aim of this study is to determine both the manufacturing effect on chemical species and the chemical organization as a function of the type of bitumen sample. In order to obtain information on bitumen chemistry, elemental analysis (C, H, N, S, and O), heavy metal (Ni, V) concentrations, IATROSCAN chromatography (thin layer chromatography-flame ionization detection), FTIR spectroscopy, and 1H NMR spectroscopy have all been used. The characterization includes information about the major compound types (saturates, aromatics, resins and asphaltenes) which can be compared with similar data for other bitumens, more importantly, can be correlated with data from petroleum samples for which refining characteristics are known. Examination of Asphalt Ridge froth bitumen showed that it differed significantly from representative petroleum pitches, principally in their nonhydrocarbon content, heavy metal content and aromatic compounds. When possible, properties and composition were related to recovery and refining processes. This information is important because of the effects that composition has on recovery and processing reactions.

Keywords: froth bitumen, oil sand, asphalt ridge, petroleum pitch, thin layer chromatography-flame ionization detection, infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy

Procedia PDF Downloads 405
357 Clinicopathological and Immunohistochemical Study of Ovarian Sex Cord-Stromal Tumors and Their Histological Mimics

Authors: Ghada Esheba, Ebtisam Aljerayan, Afnan Al-Ghamdi, Atheer Alsharif, Hanan alzahrani

Abstract:

Background: Primary ovarian neoplasms comprise a heterogeneous group of tumors of three main subtypes: surface epithelial, germ cell, and sex cord-stromal. The wide morphological variation within and between these groups can result in diagnostic difficulties. Gonadal sex cord-stromal tumors (SCST) represent one of the most heterogeneous categories of human neoplasms, because they may contain various combinations of different gonadal sex cord and stromal element. Aim: The aim of this work is to highlight the clinicopathological characteristics of SCST and to assess the value of alpha-inhibin and calretinin in the distinction between SCST and their mimics. Material and methods: This study was carried out on 100 cases using full tissue sections; 70 cases were SCST and 30 cases were histological mimics of SCST. The cases were studied using immunohistochemically using alpha-inhibin. In addition, an ovarian tissue microarray containing 170 benign and malignant ovarian neoplasms was also studied immunohistochemically for calretinin expression. The ovarian microarray included 14 SCST, 59 ovarian serous borderline tumors, 17 mucinous borderline tumors, 10 mucinous adenocarcinomas, 32 endometrioid adenocarcinomas, 34 clear cell carcinomas, and 4 germ cell tumors. Results: 99% of SCST examined using full tissue sections exhibited positive cytoplasmic staining for inhibin. On the contrary, only 7% of the histological mimics (P value < 0.0001). 86% of SCST in the tissue microarray were positive for calretinin with nuclear and/or cytoplasmic staining compared to only 7% of the other tumor types (P value < 0.0001). Conclusions: SCST have characteristic clinicopathological and immunohistochemical features and their recognition is crucial for proper diagnosis and treatment. Alpha-inhibin and calretinin are of great help in the diagnosis of sex cord-stromal tumors.

Keywords: calretinin, granulosa cell tumor, inhibin, sex cord-stromal tumors

Procedia PDF Downloads 184
356 Philippine Site Suitability Analysis for Biomass, Hydro, Solar, and Wind Renewable Energy Development Using Geographic Information System Tools

Authors: Jara Kaye S. Villanueva, M. Rosario Concepcion O. Ang

Abstract:

For the past few years, Philippines has depended most of its energy source on oil, coal, and fossil fuel. According to the Department of Energy (DOE), the dominance of coal in the energy mix will continue until the year 2020. The expanding energy needs in the country have led to increasing efforts to promote and develop renewable energy. This research is a part of the government initiative in preparation for renewable energy development and expansion in the country. The Philippine Renewable Energy Resource Mapping from Light Detection and Ranging (LiDAR) Surveys is a three-year government project which aims to assess and quantify the renewable energy potential of the country and to put them into usable maps. This study focuses on the site suitability analysis of the four renewable energy sources – biomass (coconut, corn, rice, and sugarcane), hydro, solar, and wind energy. The site assessment is a key component in determining and assessing the most suitable locations for the construction of renewable energy power plants. This method maximizes the use of both the technical methods in resource assessment, as well as taking into account the environmental, social, and accessibility aspect in identifying potential sites by utilizing and integrating two different methods: the Multi-Criteria Decision Analysis (MCDA) method and Geographic Information System (GIS) tools. For the MCDA, Analytical Hierarchy Processing (AHP) is employed to determine the parameters needed for the suitability analysis. To structure these site suitability parameters, various experts from different fields were consulted – scientists, policy makers, environmentalists, and industrialists. The need to have a well-represented group of people to consult with is relevant to avoid bias in the output parameter of hierarchy levels and weight matrices. AHP pairwise matrix computation is utilized to derive weights per level out of the expert’s gathered feedback. Whereas from the threshold values derived from related literature, international studies, and government laws, the output values were then consulted with energy specialists from the DOE. Geospatial analysis using GIS tools translate this decision support outputs into visual maps. Particularly, this study uses Euclidean distance to compute for the distance values of each parameter, Fuzzy Membership algorithm which normalizes the output from the Euclidean Distance, and the Weighted Overlay tool for the aggregation of the layers. Using the Natural Breaks algorithm, the suitability ratings of each of the map are classified into 5 discrete categories of suitability index: (1) not suitable (2) least suitable, (3) suitable, (4) moderately suitable, and (5) highly suitable. In this method, the classes are grouped based on the best groups similar values wherein each subdivision are set from the rest based on the big difference in boundary values. Results show that in the entire Philippine area of responsibility, biomass has the highest suitability rating with rice as the most suitable at 75.76% suitability percentage, whereas wind has the least suitability percentage with score 10.28%. Solar and Hydro fall in the middle of the two, with suitability values 28.77% and 21.27%.

Keywords: site suitability, biomass energy, hydro energy, solar energy, wind energy, GIS

Procedia PDF Downloads 130
355 The Impact of a Prior Haemophilus influenzae Infection in the Incidence of Prostate Cancer

Authors: Maximiliano Guerra, Lexi Frankel, Amalia D. Ardeljan, Sarah Ghali, Diya Kohli, Omar M. Rashid.

Abstract:

Introduction/Background: Haemophilus influenzae is present as a commensal organism in the nasopharynx of most healthy adults from where it can spread to cause both systemic and respiratory tract infection. Pathogenic properties of this bacterium as well as defects in host defense may result in the spread of these bacteria throughout the body. This can result in a proinflammatory state and colonization particularly in the lungs. Recent studies have failed to determine a link between H. Influenzae colonization and prostate cancer, despite previous research demonstrating the presence of proinflammatory states in preneoplastic and neoplastic prostate lesions. Given these contradictory findings, the primary goal of this study was to evaluate the correlation between H. Influenzae infection and the incidence of prostate cancer. Methods: To evaluate the incidence of Haemophilus influenzae infection and the development of prostate cancer in the future we used data provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database. We were afforded access to this database by Holy Cross Health, Fort Lauderdale for the express purpose of academic research. Standard statistical methods were employed in this study including Pearson’s chi-square tests. Results: Between January 2010 and December 2019, the query was analyzed and resulted in 13, 691 patients in both the control and C. difficile infected groups, respectively. The two groups were matched by age range and CCI score. In the Haemophilus influenzae infected group, the incidence of prostate cancer was 1.46%, while the incidence of the prostate cancer control group was 4.56%. The observed difference in cancer incidence was determined to be a statistically significant p-value (< 2.2x10^-16). This suggests that patients with a history of C. difficile have less risk of developing prostate cancer (OR 0.425, 95% CI: 0.382 - 0.472). Treatment bias was considered, the data was analyzed and resulted in two groups matched groups of 3,208 patients in both the infected with H. Influenzae treated group and the control who used the same medications for a different cause. Patients infected with H. Influenzae and treated had an incidence of prostate cancer of 2.49% whereas the control group incidence of prostate cancer was 4.92% with a p-value (< 2.2x10^-16) OR 0.455 CI 95% (0.526 -0.754), proving that the initial results were not due to the use of medications. Conclusion: The findings of our study reveal a statistically significant correlation between H. Influenzae infection and a decreased incidence of prostate cancer. Our findings suggest that prior infection with H. Influenzae may confer some degree of protection to patients and reduce their risk for developing prostate cancer. Future research is recommended to further characterize the potential role of Haemophilus influenzae in the pathogenesis of prostate cancer.

Keywords: Haemophilus Influenzae, incidence, prostate cancer, risk.

Procedia PDF Downloads 180
354 Effects of Anti-FGL2 Monoclonal Antibody SPF89 on Vascular Inflammation

Authors: Ying Sun, Biao Cheng, Qing Lu, Xuefei Tao, Xiaoyu Lai, Cheng Guo, Dan Wang

Abstract:

Fibrinogen-like protein 2 (FGL2) has recently been identified to play an important role in inflammatory diseases such as atherosclerosis through a thrombin-dependent manner. Here, a murine monoclonal antibody was raised against the critical residue Ser(89) of FGL2, and the effects of the anti-FGL2 mAb (SPF89) were analyzed in human umbilical vein endothelial cells (HUVECs) and THP-1 cells. Firstly, it was proved that SPF89, which belongs to the IgG1 subtype with a KD value of 44.5 pM, could specifically show the expression levels of protein FGL2 in different cell lines of known target gene status. The lipopolysaccharide (LPS)-mediated endothelial cell proliferation was significantly inhibited with a decline of phosphorylation nuclear factor-κB (NF-κB) in a dose-dependent manner after SPF89 treatment. Furthermore, SPF89 reduced LPS-induced expression of adhesion molecules and inflammatory cytokines such as vascular cell adhesion molecule-1, tumor necrosis factor-α, Matrix metalloproteinase MMP-2, Integrin αvβ3, and interleukin-6 in HUVECs. In macrophage-like THP-1 cells, SPF89 effectively inhibited LPS and low-density lipoprotein-induced foam cell formation. However, these anti-inflammatory and anti-atherosclerotic effects of anti-FGL2 mAb in HUVECs and THP-1 cells were significantly reduced after treatment with an NF-κB inhibitor PDTC. All the above suggest, by efficiently inhibiting LPS-induced pro-inflammatory effects in vascular endothelial cells by attenuating NF-κB dependent pathway, the new anti-FGL2 mAb SPF89 could to be a potential therapeutic candidate for protecting the vascular endothelium against inflammatory diseases such as atherosclerosis. This work was supported by the Program of Sichuan Science and Technology Department (2017FZ0069) and Collaborative Innovation Program of Sichuan for Elderly Care and Health(YLZBZ1511).

Keywords: monoclonal antibody, fibrinogen like protein 2, inflammation, endothelial cells

Procedia PDF Downloads 237
353 The Multiple Sclerosis condition and the Role of Varicella-zoster virus in its Progression

Authors: Sina Mahdavi, Mahdi Asghari Ozma

Abstract:

Multiple sclerosis (MS) is the most common inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human Varicella-zoster virus (VZV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on VZV retrovirus infection in MS disease progression. For this study, the keywords "Multiple sclerosis", " Human Varicella-zoster virus ", and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched and 14 articles were chosen, studied, and analyzed. Analysis of the amino acid sequences of HNRNPA1 with VZV proteins has shown a 62% amino acid sequence similarity between VZV gE and the PrLD/M9 epitope region (TNPO1 binding domain) of mutant HNRNPA1. A heterogeneous nuclear ribonucleoprotein (hnRNP), which is produced by HNRNPA1, is involved in the processing and transfer of mRNA and pre-mRNA. Mutant HNRNPA1 mimics gE of VZV as an antigen that leads to autoantibody production. Mutant HnRNPA1 translocates to the cytoplasm, after aggregation is presented by MHC class I, followed by CD8 + cells. Of these, antibodies and immune cells against the gE epitopes of VZV remain due to the memory immune response, causing neurodegeneration and the development of MS in genetically predisposed individuals. VZV expression during the course of MS is present in genetically predisposed individuals with HNRNPA1 mutation, suggesting a link between VZV and MS, and that this virus may play a role in the development of MS by inducing an inflammatory state. Therefore, measures to modulate VZV expression may be effective in reducing inflammatory processes in demyelinated areas of MS patients in genetically predisposed individuals.

Keywords: multiple sclerosis, varicella-zoster virus, central nervous system, autoimmunity

Procedia PDF Downloads 58
352 Luminescent Dye-Doped Polymer Nanofibers Produced by Electrospinning Technique

Authors: Monica Enculescu, A. Evanghelidis, I. Enculescu

Abstract:

Among the numerous methods for obtaining polymer nanofibers, the electrospinning technique distinguishes itself due to the more growing interest induced by its proved utility leading to developing and improving of the method and the appearance of novel materials. In particular, production of polymeric nanofibers in which different dopants are introduced was intensively studied in the last years because of the increased interest for the obtaining of functional electrospun nanofibers. Electrospinning is a facile method of obtaining polymer nanofibers with diameters from tens of nanometers to micrometrical sizes that are cheap, flexible, scalable, functional and biocompatible. Besides the multiple applications in medicine, polymeric nanofibers obtained by electrospinning permit manipulation of light at nanometric dimensions when doped with organic dyes or different nanoparticles. It is a simple technique that uses an electrical field to draw fine polymer nanofibers from solutions and does not require complicated devices or high temperatures. Different morphologies of the electrospun nanofibers can be obtained for the same polymeric host when different parameters of the electrospinning process are used. Consequently, we can obtain tuneable optical properties of the electrospun nanofibers (e.g. changing the wavelength of the emission peak) by varying the parameters of the fabrication method. We focus on obtaining doped polymer nanofibers with enhanced optical properties using the electrospinning technique. The aim of the paper is to produce dye-doped polymer nanofibers’ mats incorporating uniformly dispersed dyes. Transmission and fluorescence of the fibers will be evaluated by spectroscopy methods. The morphological properties of the electrospun dye-doped polymer fibers will be evaluated using scanning electron microscopy (SEM). We will tailor the luminescent properties of the material by doping the polymer (polyvinylpyrrolidone or polymethylmetacrilate) with different dyes (coumarins, rhodamines and sulforhodamines). The tailoring will be made taking into consideration the possibility of changing the luminescent properties of electrospun polymeric nanofibers that are doped with different dyes by using different parameters for the electrospinning technique (electric voltage, distance between electrodes, flow rate of the solution, etc.). Furthermore, we can evaluated the influence of the concentration of the dyes on the emissive properties of dye-doped polymer nanofibers using different concentrations. The advantages offered by the electrospinning technique when producing polymeric fibers are given by the simplicity of the method, the tunability of the morphology allowed by the possibility of controlling all the process parameters (temperature, viscosity of polymeric solution, applied voltage, distance between electrodes, etc.), and by the absence of necessity of using harsh and supplementary chemicals such as the ones used in the traditional nanofabrication techniques. Acknowledgments: The authors acknowledge the financial support received through IFA CEA Project No. C5-08/2016.

Keywords: electrospinning, luminescence, polymer nanofibers, scanning electron microscopy

Procedia PDF Downloads 184
351 Consumption and Diffusion Based Model of Tissue Organoid Development

Authors: Elena Petersen, Inna Kornienko, Svetlana Guryeva, Sergey Simakov

Abstract:

In vitro organoid cultivation requires the simultaneous provision of necessary vascularization and nutrients perfusion of cells during organoid development. However, many aspects of this problem are still unsolved. The functionality of vascular network intergrowth is limited during early stages of organoid development since a function of the vascular network initiated on final stages of in vitro organoid cultivation. Therefore, a microchannel network should be created in early stages of organoid cultivation in hydrogel matrix aimed to conduct and maintain minimally required the level of nutrients perfusion for all cells in the expanding organoid. The network configuration should be designed properly in order to exclude hypoxic and necrotic zones in expanding organoid at all stages of its cultivation. In vitro vascularization is currently the main issue within the field of tissue engineering. As perfusion and oxygen transport have direct effects on cell viability and differentiation, researchers are currently limited only to tissues of few millimeters in thickness. These limitations are imposed by mass transfer and are defined by the balance between the metabolic demand of the cellular components in the system and the size of the scaffold. Current approaches include growth factor delivery, channeled scaffolds, perfusion bioreactors, microfluidics, cell co-cultures, cell functionalization, modular assembly, and in vivo systems. These approaches may improve cell viability or generate capillary-like structures within a tissue construct. Thus, there is a fundamental disconnect between defining the metabolic needs of tissue through quantitative measurements of oxygen and nutrient diffusion and the potential ease of integration into host vasculature for future in vivo implantation. A model is proposed for growth prognosis of the organoid perfusion based on joint simulations of general nutrient diffusion, nutrient diffusion to the hydrogel matrix through the contact surfaces and microchannels walls, nutrient consumption by the cells of expanding organoid, including biomatrix contraction during tissue development, which is associated with changed consumption rate of growing organoid cells. The model allows computing effective microchannel network design giving minimally required the level of nutrients concentration in all parts of growing organoid. It can be used for preliminary planning of microchannel network design and simulations of nutrients supply rate depending on the stage of organoid development.

Keywords: 3D model, consumption model, diffusion, spheroid, tissue organoid

Procedia PDF Downloads 294
350 Mitigating the Vulnerability of Subsistence Farmers through Ground Water Optimisation

Authors: Olayemi Bakre

Abstract:

The majoritant of the South African rural populace are directly or indirectly engaged in agricultural practices for a livelihood. However, impediments such as the climate change and inadequacy of governmental support has undermined the once thriving subsistence farming communities of South Africa. Furthermore, the poor leadership in hydrology, coupled with lack of depths in skills to facilitate the understanding and acceptance of groundwater from national level to local governance has made it near impossible for subsistence farmers to optimally benefit from the groundwater beneath their feet. The 2012 drought experienced in South Africa paralysed the farming activities across several subsistence farming communities across the KwaZulu-Natal Province. To revamp subsistence farming, a variety of interventions and strategies such as the Resource Poor Farmers (RPF) and Water Allocation Reforms (WAR) have been launched by the Department of Water and Sanitation (DWS) as an agendum to galvanising the defunct subsistence farming communities of KwaZulu-Natal as well as other subsistence farming communities across South Africa. Despite the enormous resources expended on the subsistence farming communities whom often fall under the Historically Disadvantaged Individuals (HDI); indicators such as the unsustainable farming practices, poor crop yield, pitiable living condition as well as the poor standard of living, are evidential to the claim that these afore cited interventions and a host of other similar strategies indicates that these initiatives have not yield the desired result. Thus, this paper seeks to suggest practicable interventions aimed at salvaging the vulnerability of subsistence farmers within the province understudy. The study pursued a qualitative approach as the view of experts on ground water and similarly related fields from the DWS were solicited as an agendum to obtaining in-depth perspective into the current study. Some of the core challenges undermining the sustainability and growth of subsistence farming in the area of study were - inadequacy of experts (engineers, scientist, researchers) in ground water; water shortages; lack of political will as well as lack of coordination among stakeholders. As an agendum to optimising the ground water usage for subsistence farming, this paper advocates the strengthening of geohydrological skills, development of technical training capacity, interactive participation among stakeholders as well as the initiation of Participatory Action Research as an agenda to optimising the available ground water in KwaZulu-Natal which is intended to orchestrate a sustainable and viable subsistence farming practice within the province.

Keywords: subsistence farming, ground water optimisation, resource poor farmers, and water allocation reforms, hydrology

Procedia PDF Downloads 224
349 Purification of Zr from Zr-Hf Resources Using Crystallization in HF-HCl Solvent Mixture

Authors: Kenichi Hirota, Jifeng Wang, Sadao Araki, Koji Endo, Hideki Yamamoto

Abstract:

Zirconium (Zr) has been used as a fuel cladding tube for nuclear reactors, because of the excellent corrosion resistance and the low adsorptive material for neutron. Generally speaking, the natural resource of Zr is often containing Hf that has similar properties. The content of Hf in the Zr resources is about 2~4 wt%. In the industrial use, the content of Hf in Zr resources should be lower than the 100 ppm. However, the separation of Zr and Hf is not so easy, because of similar chemical and physical properties such as melting point, boiling point and things. Solvent extraction method has been applied for the separation of Zr and Hf from Zr natural resources. This method can separate Hf with high efficiency (Hf < 100ppm), however, it needs much amount of organic solvents for solvent extraction and the cost of its disposal treatment is high. Therefore, we attached attention for the fractional crystallization. This separation method depends on the solubility difference of Zr and Hf in the solvent. In this work, hexafluorozirconate (hafnate) (K2Zr(Hf)F6) was used as model compound. Solubility of K2ZrF6 in water showed lower than that of K2HfF6. By repeating of this treatment, it is possible to purify Zr, practically. In this case, 16-18 times of recrystallization stages were needed for its high purification. The improvement of the crystallization process was carried out in this work. Water, hydrofluoric acid (HF) and hydrofluoric acid (HF) +hydrochloric acid (HCl) mixture were chosen as solvent for dissolution of Zr and Hf. In the experiment, 10g of K2ZrF6 was added to each solvent of 100mL. Each solution was heated for 1 hour at 353K. After 1h of this operation, they were cooled down till 293K, and were held for 5 hours at 273K. Concentration of Zr or Hf was measured using ICP analysis. It was found that Hf was separated from Zr-Hf mixed compound with high efficiency, when HF-HCl solution was used for solvent of crystallization. From the comparison of the particle size of each crystal by SEM, it was confirmed that the particle diameter of the crystal showed smaller size with decreasing of Hf content. This paper concerned with purification of Zr from Zr-Hf mixture using crystallization method.

Keywords: crystallization, zirconium, hafnium, separation

Procedia PDF Downloads 413
348 User Expectations and Opinions Related to Campus Wayfinding and Signage Design: A Case Study of Kastamonu University

Authors: Güllü Yakar, Adnan Tepecik

Abstract:

A university campus resembles an independent city that is spread over a wide area. Campuses that incorporate thousands of new domestic and international users at the beginning of every academic period also host scientific, cultural and sportive events, in addition to embodying regular users such as students and staff. Wayfinding and signage systems are necessary for the regulation of vehicular traffic, and they enable users’ to navigate without losing time or feeling anxiety. While designing the system or testing the functionality of it, opinions of existing users or likely behaviors of typical user profiles (personas) provide designers with insight. The purpose of this study is to identify the wayfinding attitudes and expectations of Kastamonu University Kuzeykent Campus users. This study applies a mixed method in which a questionnaire, developed by the researcher, constitute the quantitative phase of the study. The survey was carried out with 850 participants who filled a questionnaire form which was tested in terms of construct validity by using Exploratory Factor Analysis. While interpreting the data obtained, Chi-Square, T- Test and ANOVA analyses were applied as well as descriptive analyses such as frequency (f) and percentage (%) values. The results of this survey, which was conducted during the absence of systematic wayfinding signs in the campus, reveals the participants expectations for insertion of floor plans and wayfinding signs to indoors, maps to outdoors, symbols and color codes to the existing signs and for the adequate arrangement of those for the use of visually impaired people. The fact that there is a direct proportional relation between the length of institution membership and wayfinding competency within campus, leads to the conclusion that especially the new comers are in need of wayfinding signs. In order to determine the effectiveness of campus-wide wayfinding system implemented after the survey and in order to identify the further expectations of users in this respect, a semi-structured interview form developed by the researcher and assessments of 20 participants are compiled. Subjected to content analysis, this data constitute the qualitative dimension of the study. Research results indicate that despite the presence of the signs, the participants experienced either inability or stress while finding their way, showed tendency to receive help from others and needed outdoor maps and signs, in addition to bigger-sized texts.

Keywords: environmental graphic design, environmental perception, wayfinding and signage design, wayfinding system

Procedia PDF Downloads 209
347 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 66
346 Reactive Fabrics for Chemical Warfare Agent Decomposition Using Particle Crystallization

Authors: Myungkyu Park, Minkun Kim, Sunghoon Kim, Samgon Ryu

Abstract:

Recently, research for reactive fabrics which have the characteristics of CWA (Chemical Warfare Agent) decomposition is being performed actively. The performance level of decomposition for CWA decomposition in various environmental condition is one of the critical factors in applicability as protective materials for NBC (Nuclear, Biological, and Chemical) protective clothing. In this study, results of performance test for CWA decomposition by reactive fabric made of electrospinning web and reactive particle are presented. Currently, the MOF (metal organic framework) type of UiO-66-NH₂ is frequently being studied as material for decomposing CWA especially blister agent HD [Bis(2-chloroethyl) sulfide]. When we test decomposition rate with electrospinning web made of PVB (Polyvinyl Butiral) polymer and UiO-66-NH₂ particle, we can get very high protective performance than the case other particles are applied. Furthermore, if the repellant surface fabric is added on reactive material as the component of protective fabric, the performance of layer by layered reactive fabric could be approached to the level of current NBC protective fabric for HD decomposition rate. Reactive fabric we used in this study is manufactured by electrospinning process of polymer which contains the reactive particle of UiO-66-NH₂, and we performed crystalizing process once again on that polymer fiber web in solvent systems as a second step for manufacturing reactive fabric. Three kinds of polymer materials are used in this process, but PVB was most suitable as an electrospinning fiber polymer considering the shape of product. The density of particle on fiber web and HD decomposition rate is enhanced by secondary crystallization compared with the results which are not processed. The amount of HD penetration by 24hr AVLAG (Aerosol Vapor Liquid Assessment Group) swatch test through the reactive fabrics with secondary crystallization and without crystallization is 24 and 146μg/cm² respectively. Even though all of the reactive fiber webs for this test are combined with repellant surface layer at outer side of swatch, the effects of secondary crystallization of particle for the reactive fiber web are remarkable.

Keywords: CWA, Chemical Warfare Agent, gas decomposition, particle growth, protective clothing, reactive fabric, swatch test

Procedia PDF Downloads 269
345 Immuno-Protective Role of Mucosal Delivery of Lactococcus lactis Expressing Functionally Active JlpA Protein on Campylobacter jejuni Colonization in Chickens

Authors: Ankita Singh, Chandan Gorain, Amirul I. Mallick

Abstract:

Successful adherence of the mucosal epithelial cells is the key early step for Campylobacter jejuni pathogenesis (C. jejuni). A set of Surface Exposed Colonization Proteins (SECPs) are among the major factors involved in host cell adherence and invasion of C. jejuni. Among them, constitutively expressed surface-exposed lipoprotein adhesin of C. jejuni, JlpA, interacts with intestinal heat shock protein 90 (hsp90α) and contributes in disease progression by triggering pro-inflammatory response via activation of NF-κB and p38 MAP kinase pathway. Together with its ability to express in the bacterial surface, higher sequence conservation and predicted predominance of several B cells epitopes, JlpA protein reserves its potential to become an effective vaccine candidate against wide range of Campylobacter sps including C. jejuni. Given that chickens are the primary sources for C. jejuni and persistent gut colonization remain as major cause for foodborne pathogenesis to humans, present study explicitly used chickens as model to test the immune-protective efficacy of JlpA protein. Taking into account that gastrointestinal tract is the focal site for C. jejuni colonization, to extrapolate the benefit of mucosal (intragastric) delivery of JlpA protein, a food grade Nisin inducible Lactic acid producing bacteria, Lactococcus lactis (L. lactis) was engineered to express recombinant JlpA protein (rJlpA) in the surface of the bacteria. Following evaluation of optimal surface expression and functionality of recombinant JlpA protein expressed by recombinant L. lactis (rL. lactis), the immune-protective role of intragastric administration of live rL. lactis was assessed in commercial broiler chickens. In addition to the significant elevation of antigen specific mucosal immune responses in the intestine of chickens that received three doses of rL. lactis, marked upregulation of Toll-like receptor 2 (TLR2) gene expression in association with mixed pro-inflammatory responses (both Th1 and Th17 type) was observed. Furthermore, intragastric delivery of rJlpA expressed by rL. lactis, but not the injectable form, resulted in a significant reduction in C. jejuni colonization in chickens suggesting that mucosal delivery of live rL. lactis expressing JlpA serves as a promising vaccine platform to induce strong immune-protective responses against C. jejuni in chickens.

Keywords: chickens, lipoprotein adhesion of Campylobacter jejuni, immuno-protection, Lactococcus lactis, mucosal delivery

Procedia PDF Downloads 121
344 Micromechanical Modelling of Ductile Damage with a Cohesive-Volumetric Approach

Authors: Noe Brice Nkoumbou Kaptchouang, Pierre-Guy Vincent, Yann Monerie

Abstract:

The present work addresses the modelling and the simulation of crack initiation and propagation in ductile materials which failed by void nucleation, growth, and coalescence. One of the current research frameworks on crack propagation is the use of cohesive-volumetric approach where the crack growth is modelled as a decohesion of two surfaces in a continuum material. In this framework, the material behavior is characterized by two constitutive relations, the volumetric constitutive law relating stress and strain, and a traction-separation law across a two-dimensional surface embedded in the three-dimensional continuum. Several cohesive models have been proposed for the simulation of crack growth in brittle materials. On the other hand, the application of cohesive models in modelling crack growth in ductile material is still a relatively open field. One idea developed in the literature is to identify the traction separation for ductile material based on the behavior of a continuously-deforming unit cell failing by void growth and coalescence. Following this method, the present study proposed a semi-analytical cohesive model for ductile material based on a micromechanical approach. The strain localization band prior to ductile failure is modelled as a cohesive band, and the Gurson-Tvergaard-Needleman plasticity model (GTN) is used to model the behavior of the cohesive band and derived a corresponding traction separation law. The numerical implementation of the model is realized using the non-smooth contact method (NSCD) where cohesive models are introduced as mixed boundary conditions between each volumetric finite element. The present approach is applied to the simulation of crack growth in nuclear ferritic steel. The model provides an alternative way to simulate crack propagation using the numerical efficiency of cohesive model with a traction separation law directly derived from porous continuous model.

Keywords: ductile failure, cohesive model, GTN model, numerical simulation

Procedia PDF Downloads 125
343 Analysis of the Factors of Local Acceptance of Wind Power Generation Facilities

Authors: Hyunjoo Park, Taehyun Kim, Taehyun Kim

Abstract:

The government that declared 'de-nuclearization' pushes up renewable energy policies such as solar power and wind power as an alternative to nuclear power generation. However, local residents who are concerned about the development and natural disasters have been hit by opposition, and related businesses around the country are experiencing difficulties. There is also a voice saying that installing a large wind power generator will cause landslides, low frequencies and noise, which will have a bad influence. Renewal is only a harmful and disgusting facility for the residents. In this way, it is expected that extreme social conflicts will occur in the decision making process related to the locally unwanted land-use (LULU). The government's efforts to solve this problem have been steadily progressing, but the systematic methodology for bringing in active participation and opinion gathering of the residents has not yet been established except for the simple opinion poll or referendum. Therefore, it is time to identify the factors that concern the local residents about the wind power generation facilities, and to find ways to make policy decision-making possible. In this study, we analyze the perception of people about offshore and onshore wind power facilities through questionnaires or interviews, and examine quantitative and qualitative precedent studies to analyze them. In addition, the study evaluates what factors affect the local acceptance of wind power facilities. As a result of the factor analysis of the questionnaire items, factors affecting the residents' acceptance of the wind power facility were extracted from four factors such as environmental, economic, risk, social, and management factor. The study also found that the influence of the determinants of local acceptance on the regional acceptability differs according to the demographic characteristics such as gender and income level. This study will contribute to minimizing the conflict on the installation of wind power facilities through communication among the local residents.

Keywords: factor analysis, local acceptance, locally unwanted land-use, LULU, wind power generation facilities

Procedia PDF Downloads 133
342 Regression of Fibrosis by Apigenin in Thioacetamide-Induced Liver Fibrosis Rat Model through Suppression of HIF-1/FAK Pathway

Authors: Hany M. Fayed, Rehab F. Abdel-Rahman, Alyaa F. Hessin, Hanan A. Ogaly, Gihan F. Asaad, Abeer A. A. Salama, Sahar Abdelrahman, Mahmoud S. Arbid, Marwan Abd Elbaset Mohamed

Abstract:

Liver fibrosis is a serious global health problem that occurs as a result of a variety of chronic liver disorders. Apigenin, a flavonoid found in many plants, has several pharmacological properties. The aim of this study was to evaluate the antifibrotic efficacy of apigenin (APG) against experimentally induced hepatic fibrosis in rats via using thioacetamide (TAA) and to explore the possible underlying mechanisms. TAA (100 mg/kg, i.p.) was given three times each week for two weeks to induce liver fibrosis. After TAA injections, APG was given orally (5 and 10 mg/kg) daily for two weeks. Biochemical, molecular, histological and immunohistochemical analyses were performed on blood and liver tissue samples. The functioning of the liver, oxidative stress, inflammation, and liver fibrosis indicators were all evaluated. The findings showed that TAA markedly increased the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as well as the levels of malondialdehyde (MDA), focal adhesion kinase (FAK), hypoxia-inducible factor-1 (HIF-1), nuclear factor-κB (NF-κB), transforming growth factor-beta (TGF-β), tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) with a reduction in albumin, total protein, A/G ratio, GSH content and interleukin-10 (IL-10). Moreover, TAA elevated the content of collagen I, α -smooth muscle actin (α-SMA), and hydroxyproline in the liver. The treatment with APG in a dose-dependent manner has obviously prevented these alterations and amended the harmful effects induced by TAA. The histopathological and immunohistochemical observations supported this biochemical evidence. The higher dose of APG produced the most significant antifibrotic effect. As a result of these data, APG appears to be a promising antifibrotic drug and could be used as a new herbal medication or dietary supplement in the future for the treatment of liver fibrosis. This effect might be related to the inhibition of the HIF-1/FAK signaling pathway.

Keywords: apigenin, FAK, HIF-1, liver fibrosis, rat, thioacetamide

Procedia PDF Downloads 110
341 Infectivity of Glossina pallidipes Salivary Gland Hypertrophy Virus (GpSGHV) to Various Tsetse Species

Authors: Guler D. Uzel, Andrew G. Parker, Robert L. Mach, Adly Abd-Alla

Abstract:

Several tsetse fly species (Diptera: Glossinidae) in natural or colonized populations can be infected with the salivary gland hypertrophy virus (SGHV), a circular dsDNA virus (Hytrosaviridae). The virus infection is mainly asymptomatic but, in some species under certain conditions, the infection can produce salivary gland hypertrophy (SGH) symptoms. In the laboratory colonized tsetse, flies with SGH have reduced fertility, which negatively affects colony performance. Therefore, a high prevalence of SGH in insect mass rearing represents a major challenge for tsetse control using the sterile insect technique. The main objective of this study is to analyze the impact of Glossina pallidipes SGHV infection in various tsetse species on mortality and productivity and its impact on the symbiotic bacteria. Hypertropied salivary glands (SG) were collected from G. pallidipes into phosphate buffered saline (PBS) to prepare suspension; 2 µl aliquots were injected into adults of several tsetse species (G. pallidipes (Gp), G. p. gambiensis (Gpg), G. brevipalpis (Gb), G. morsitans morsitans (Gmm), G. morsitans centralis (Gmc) and G. fuscipes (Gf)) and the change in virus and symbiont titers were analyzed using qPCR. The development of SGH in the F1 was detected by dissection 10 days after emergence and virus infection was confirmed by PCR. The impact of virus infection on fly mortality and productivity was recorded. 2 µl aliquots were also injected into 3rd instar larvae of the different species and the adult SGs assayed by PCR for virus. Virus positive SGs from each species were homogenized in PBS and pooled within species for injection into larvae of the same species. Flies injected with PBS were used as control. Injecting teneral flies with SGHV caused increasing virus titer over time in all species but no SGH was detected. Dissection of the F1 also showed no development of SGH except in Gp (the homologous host). Injection of SGHV did not have any impact on the prevalence of the tsetse symbionts, but an increase in Sodalis titer was observed correlated with fly age regardless of virus infection. The virus infection had a negative impact on productivity and mortality. SGHV injection into larvae of the different species produced SGHV infected glands in the adults determined by PCR with a rate of 60%, 27%, 16%, 7% and 7% for Gp, Gf, Gpg, Gmm and Gmc, respectively. Virus positive SGs observed in the heterologous species were smaller than SGH found in Gp. No virus positive SG was detected by PCR in Gb and no SGH was observed in any adults except in Gp. Injecting virus suspension from the virus positive SGs into conspecific larvae did not produce any adults with infected SGs (except in Gp). SGHV can infect all tested tsetse species. Although the virus can infect and increase in titer in other tsetse species and affect fly mortality and productivity, no vertical virus transmission was observed in other tsetse species with might indicate a transmission barrier in these species, and virus collected from flies injected as larvae was not infective by injection.

Keywords: DNA viruses, glossina, hytrosaviridae, symbiotic bacteria, tsetse

Procedia PDF Downloads 193
340 Ectoine: A Compatible Solute in Radio-Halophilic Stenotrophomonas sp. WMA-LM19 Strain to Prevent Ultraviolet-Induced Protein Damage

Authors: Wasim Sajjad, Manzoor Ahmad, Sundas Qadir, Muhammad Rafiq, Fariha Hasan, Richard Tehan, Kerry L. McPhail, Aamer Ali Shah

Abstract:

Aim: This study aims to investigate the possible radiation protective role of a compatible solute in the tolerance of radio-halophilic bacterium against stresses, like desiccation and exposure to ionizing radiation. Methods and Results: Nine different radio-resistant bacteria were isolated from desert soil, where strain WMA-LM19 was chosen for detailed studies on the basis of its high tolerance for ultraviolet radiation among all these isolates. 16S rRNA gene sequencing indicated that the bacterium was closely related to Stenotrophomonas sp. (KT008383). A bacterial milking strategy was applied for extraction of intracellular compatible solutes in 70% (v/v) ethanol, which were purified by high-performance liquid chromatography (HPLC). The compound was characterized as ectoine by 1H and 13C nuclear magnetic resonance (NMR), and mass spectrometry (MS). Ectoine demonstrated more efficient preventive activity (54.80%) to erythrocyte membranes and also inhibited oxidative damage to proteins and lipids in comparison to the standard ascorbic acid. Furthermore, a high level of ectoine-mediated protection of bovine serum albumin against ionizing radiation (1500-2000 Jm-2) was observed, as indicated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Conclusion: The results indicated that ectoine can be used as a potential mitigator and radio-protective agent to overcome radiation- and salinity-mediated oxidative damage in extreme environments. Significance and Impact of the Study: This study shows that ectoine from radio-halophiles can be used as a potential source in topical creams as sunscreen. The investigation of ectoine as UV protectant also changes the prospective that radiation resistance is specific only to molecular adaptation.

Keywords: ectoine, anti-oxidant, stenotrophomonas sp., ultraviolet radiation

Procedia PDF Downloads 188
339 The Subcellular Localisation of EhRRP6 and Its Involvement in Pre-Ribosomal RNA Processing in Growth-Stressed Entamoeba histolytica

Authors: S. S. Singh, A. Bhattacharya, S. Bhattacharya

Abstract:

The eukaryotic exosome complex plays a pivotal role in RNA biogenesis, maturation, surveillance and differential expression of various RNAs in response to varying environmental signals. The exosome is composed of evolutionary conserved nine core subunits and the associated exonucleases Rrp6 and Rrp44. Rrp6p is crucial for the processing of rRNAs, other non-coding RNAs, regulation of polyA tail length and termination of transcription. Rrp6p, a 3’-5’ exonuclease is required for degradation of 5’-external transcribed spacer (ETS) released from the rRNA precursors during the early steps of pre-rRNA processing. In the parasitic protist Entamoeba histolytica in response to growth stress, there occurs the accumulation of unprocessed pre-rRNA and 5’ ETS sub fragment. To understand the processes leading to this accumulation, we looked for Rrp6 and the exosome subunits in E. histolytica, by in silico approaches. Of the nine core exosomal subunits, seven had high percentage of sequence similarity with the yeast and human. The EhRrp6 homolog contained exoribonuclease and HRDC domains like yeast but its N- terminus lacked the PMC2NT domain. EhRrp6 complemented the temperature sensitive phenotype of yeast rrp6Δ cells suggesting conservation of biological activity. We showed 3’-5’ exoribonuclease activity of EhRrp6p with in vitro-synthesized appropriate RNAs substrates. Like the yeast enzyme, EhRrp6p degraded unstructured RNA, but could degrade the stem-loops slowly. Furthermore, immunolocalization revealed that EhRrp6 was nuclear-localized in normal cells but was diminished from nucleus during serum starvation, which could explain the accumulation of 5’ETS during stress. Our study shows functional conservation of EhRrp6p in E.histolytica, an early-branching eukaryote, and will help to understand the evolution of exosomal components and their regulatory function.

Keywords: entamoeba histolytica, exosome complex, rRNA processing, Rrp6

Procedia PDF Downloads 178
338 DNA Fragmentation and Apoptosis in Human Colorectal Cancer Cell Lines by Sesamum indicum Dried Seeds

Authors: Mohd Farooq Naqshbandi

Abstract:

The four fractions of aqueous extract of Sesame Seeds (Sesamum indicum L.) were studied for invitro DNA fragmentation, cell migration, and cellular apoptosis on SW480 and HTC116 human colorectal cancer cell lines. The seeds of Sesamum indicum were extracted with six solvents, including Methanol, Ethanol, Aqueous, Chloroform, Acetonitrile, and Hexane. The aqueous extract (IC₅₀ value 154 µg/ml) was found to be the most active in terms of cytotoxicity with SW480 human colorectal cancer cell lines. Further fractionation of this aqueous extract on flash chromatography gave four fractions. These four fractions were studied for anticancer and DNA binding studies. Cell viability was assessed by colorimetric assay (MTT). IC₅₀ values for all these four fractions ranged from 137 to 548 µg/mL for the HTC116 cancer cell line and 141 to 402 µg/mL for the SW480 cancer cell line. The four fractions showed good anticancer and DNA binding properties. The DNA binding constants ranged from 10.4 ×10⁴ 5 to 28.7 ×10⁴, showing good interactions with DNA. The DNA binding interactions were due to intercalative and π-π electron forces. The results indicate that aqueous extract fractions of sesame showed inhibition of cell migration of SW480 and HTC116 human colorectal cancer cell lines and induced DNA fragmentation and apoptosis. This was demonstrated by calculating the low wound closure percentage in cells treated with these fractions as compared to the control (80%). Morphological features of nuclei of cells treated with fractions revealed chromatin compression, nuclear shrinkage, and apoptotic body formation, which indicate cell death by apoptosis. The flow cytometer of fraction-treated cells of SW480 and HTC116 human colorectal cancer cell lines revealed death due to apoptosis. The results of the study indicate that aqueous extract of sesame seeds may be used to treat colorectal cancer.

Keywords: Sesamum indicum, cell migration inhibition, apoptosis induction, anticancer activity, colorectal cancer

Procedia PDF Downloads 66
337 Effect of Loop Diameter, Height and Insulation on a High Temperature CO2 Based Natural Circulation Loop

Authors: S. Sadhu, M. Ramgopal, S. Bhattacharyya

Abstract:

Natural circulation loops (NCLs) are buoyancy driven flow systems without any moving components. NCLs have vast applications in geothermal, solar and nuclear power industry where reliability and safety are of foremost concern. Due to certain favorable thermophysical properties, especially near supercritical regions, carbon dioxide can be considered as an ideal loop fluid in many applications. In the present work, a high temperature NCL that uses supercritical carbon dioxide as loop fluid is analysed. The effects of relevant design and operating variables on loop performance are studied. The system operating under steady state is modelled taking into account the axial conduction through loop fluid and loop wall, and heat transfer with surroundings. The heat source is considered to be a heater with controlled heat flux and heat sink is modelled as an end heat exchanger with water as the external cold fluid. The governing equations for mass, momentum and energy conservation are normalized and are solved numerically using finite volume method. Results are obtained for a loop pressure of 90 bar with the power input varying from 0.5 kW to 6.0 kW. The numerical results are validated against the experimental results reported in the literature in terms of the modified Grashof number (Grm) and Reynolds number (Re). Based on the results, buoyancy and friction dominated regions are identified for a given loop. Parametric analysis has been done to show the effect of loop diameter, loop height, ambient temperature and insulation. The results show that for the high temperature loop, heat loss to surroundings affects the loop performance significantly. Hence this conjugate heat transfer between the loop and surroundings has to be considered in the analysis of high temperature NCLs.

Keywords: conjugate heat transfer, heat loss, natural circulation loop, supercritical carbon dioxide

Procedia PDF Downloads 223