Search results for: moral intelligence
270 The Implications of Technological Advancements on the Constitutional Principles of Contract Law
Authors: Laura Çami (Vorpsi), Xhon Skënderi
Abstract:
In today's rapidly evolving technological landscape, the traditional principles of contract law are facing significant challenges. The emergence of new technologies, such as electronic signatures, smart contracts, and online dispute resolution mechanisms, is transforming the way contracts are formed, interpreted, and enforced. This paper examines the implications of these technological advancements on the constitutional principles of contract law. One of the fundamental principles of contract law is freedom of contract, which ensures that parties have the autonomy to negotiate and enter into contracts as they see fit. However, the use of technology in the contracting process has the potential to disrupt this principle. For example, online platforms and marketplaces often offer standard-form contracts, which may not reflect the specific needs or interests of individual parties. This raises questions about the equality of bargaining power between parties and the extent to which parties are truly free to negotiate the terms of their contracts. Another important principle of contract law is the requirement of consideration, which requires that each party receives something of value in exchange for their promise. The use of digital assets, such as cryptocurrencies, has created new challenges in determining what constitutes valuable consideration in a contract. Due to the ambiguity in this area, disagreements about the legality and enforceability of such contracts may arise. Furthermore, the use of technology in dispute resolution mechanisms, such as online arbitration and mediation, may raise concerns about due process and access to justice. The use of algorithms and artificial intelligence to determine the outcome of disputes may also raise questions about the impartiality and fairness of the process. Finally, it should be noted that there are many different and complex effects of technical improvements on the fundamental constitutional foundations of contract law. As technology continues to evolve, it will be important for policymakers and legal practitioners to consider the potential impacts on contract law and to ensure that the principles of fairness, equality, and access to justice are preserved in the contracting process.Keywords: technological advancements, constitutional principles, contract law, smart contracts, online dispute resolution, freedom of contract
Procedia PDF Downloads 150269 Multi Biomertric Personal Identification System Based On Hybird Intellegence Method
Authors: Laheeb M. Ibrahim, Ibrahim A. Salih
Abstract:
Biometrics is a technology that has been widely used in many official and commercial identification applications. The increased concerns in security during recent years (especially during the last decades) have essentially resulted in more attention being given to biometric-based verification techniques. Here, a novel fusion approach of palmprint, dental traits has been suggested. These traits which are authentication techniques have been employed in a range of biometric applications that can identify any postmortem PM person and antemortem AM. Besides improving the accuracy, the fusion of biometrics has several advantages such as increasing, deterring spoofing activities and reducing enrolment failure. In this paper, a first unimodel biometric system has been made by using (palmprint and dental) traits, for each one classification applying an artificial neural network and a hybrid technique that combines swarm intelligence and neural network together, then attempt has been made to combine palmprint and dental biometrics. Principally, the fusion of palmprint and dental biometrics and their potential application has been explored as biometric identifiers. To address this issue, investigations have been carried out about the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. Also the results of the multimodal approach have been compared with each one of these two traits authentication approaches. This paper studies the features and decision fusion levels in multimodal biometrics. To determine the accuracy of GAR to parallel system decision-fusion including (AND, OR, Majority fating) has been used. The backpropagation method has been used for classification and has come out with result (92%, 99%, 97%) respectively for GAR, while the GAR) for this algorithm using hybrid technique for classification (95%, 99%, 98%) respectively. To determine the accuracy of the multibiometric system for feature level fusion has been used, while the same preceding methods have been used for classification. The results have been (98%, 99%) respectively while to determine the GAR of feature level different methods have been used and have come out with (98%).Keywords: back propagation neural network BP ANN, multibiometric system, parallel system decision-fusion, practical swarm intelligent PSO
Procedia PDF Downloads 533268 Global Learning Supports Global Readiness with Projects with Purpose
Authors: Brian Bilich
Abstract:
A typical global learning program is a two-week project based, culturally immersive and academically relevant experience built around a project with purpose and catered to student and business groups. Global Learning in Continuing Education at Austin Community College promotes global readiness through projects with purpose with special attention given to balancing learning, hospitality and travel. A recent project involved CommunityFirst! Village; a 51-acre planned community which provides affordable, permanent housing for men and women coming out of chronic homelessness. Global Learning students collaborated with residents and staff at the Community First! Village on a project to produce two-dimensional remodeling plans of residents’ tiny homes with a focus on but not limited to design improvements on elements related to accessibility, increased usability of living and storage space and esthetic upgrades to boost psychological and emotional appeal. The goal of project-based learning in the context of global learning in Continuing Educaiton at Austin Community Collegen general is two fold. One, in rapid fashion we develop a project which gives the learner a hands-on opportunity to exercise soft and technical skills, like creativity and communication and analytical thinking. Two, by basing projects on global social conflict issues, the project of purpose promotes the development of empathy for other people and fosters a sense of corporate social responsibility in future generations of business leadership. In the example provide above the project informed the student group on the topic of chronic homelessness and promoted awareness and empathy for this underserved segment of the community. Project-based global learning based on projects with purpose has the potential to cultivate global readiness by developing empathy and strengthening emotional intelligence for future generations.Keywords: project-based learning, global learning, global readiness, globalization, international exchange, collaboration
Procedia PDF Downloads 64267 E-Learning Platform for School Kids
Authors: Gihan Thilakarathna, Fernando Ishara, Rathnayake Yasith, Bandara A. M. R. Y.
Abstract:
E-learning is a crucial component of intelligent education. Even in the midst of a pandemic, E-learning is becoming increasingly important in the educational system. Several e-learning programs are accessible for students. Here, we decided to create an e-learning framework for children. We've found a few issues that teachers are having with their online classes. When there are numerous students in an online classroom, how does a teacher recognize a student's focus on academics and below-the-surface behaviors? Some kids are not paying attention in class, and others are napping. The teacher is unable to keep track of each and every student. Key challenge in e-learning is online exams. Because students can cheat easily during online exams. Hence there is need of exam proctoring is occurred. In here we propose an automated online exam cheating detection method using a web camera. The purpose of this project is to present an E-learning platform for math education and include games for kids as an alternative teaching method for math students. The game will be accessible via a web browser. The imagery in the game is drawn in a cartoonish style. This will help students learn math through games. Everything in this day and age is moving towards automation. However, automatic answer evaluation is only available for MCQ-based questions. As a result, the checker has a difficult time evaluating the theory solution. The current system requires more manpower and takes a long time to evaluate responses. It's also possible to mark two identical responses differently and receive two different grades. As a result, this application employs machine learning techniques to provide an automatic evaluation of subjective responses based on the keyword provided to the computer as student input, resulting in a fair distribution of marks. In addition, it will save time and manpower. We used deep learning, machine learning, image processing and natural language technologies to develop these research components.Keywords: math, education games, e-learning platform, artificial intelligence
Procedia PDF Downloads 156266 Improving Grade Control Turnaround Times with In-Pit Hyperspectral Assaying
Authors: Gary Pattemore, Michael Edgar, Andrew Job, Marina Auad, Kathryn Job
Abstract:
As critical commodities become more scarce, significant time and resources have been used to better understand complicated ore bodies and extract their full potential. These challenging ore bodies provide several pain points for geologists and engineers to overcome, poor handling of these issues flows downs stream to the processing plant affecting throughput rates and recovery. Many open cut mines utilise blast hole drilling to extract additional information to feed back into the modelling process. This method requires samples to be collected during or after blast hole drilling. Samples are then sent for assay with turnaround times varying from 1 to 12 days. This method is time consuming, costly, requires human exposure on the bench and collects elemental data only. To address this challenge, research has been undertaken to utilise hyperspectral imaging across a broad spectrum to scan samples, collars or take down hole measurements for minerals and moisture content and grade abundances. Automation of this process using unmanned vehicles and on-board processing reduces human in pit exposure to ensure ongoing safety. On-board processing allows data to be integrated into modelling workflows with immediacy. The preliminary results demonstrate numerous direct and indirect benefits from this new technology, including rapid and accurate grade estimates, moisture content and mineralogy. These benefits allow for faster geo modelling updates, better informed mine scheduling and improved downstream blending and processing practices. The paper presents recommendations for implementation of the technology in open cut mining environments.Keywords: grade control, hyperspectral scanning, artificial intelligence, autonomous mining, machine learning
Procedia PDF Downloads 113265 Sexual Consent and Persons with Psychosocial Disabilities: Exploring Sexual Rights under Indian Laws
Authors: Sachin Sharma
Abstract:
Sexual consent is integral to every sexual relationship. It is a process to facilitate sexual autonomy and bodily integrity. It assures complete sexual personhood and allows an individual to explore her sexual expressions independently. But the said proposition is not true for people with psychosocial disabilities. Generally, they are considered seraphic or mephistophelic and denied access to sexual autonomy. This result in institutionalizing the sexuality of disabled persons, where the eugenics-ableist narrative defines assessment and access to consent. This way, sexuality and disability are distanced apart. It is primarily due to the stigmatized socio-cultural constructs of sexuality that define sex within a “standard” and “charmed” circle. Such stigmatized expression influences the law, as it considers people with psychosocial disabilities incapable of sexual consent. The approach of legal institutions is very narrow towards interpreting their sexual rights. It echoes the modernist-ableism and strangulates the sexual choices. This way, it reflects the repressive model of sex and denies space to people with psychosocial disabilities. Moreover, judicial courts follow old and conservative methods while dealing with sexual issues. For instance, courts still practice the “standardized” norm of intelligence quotient (IQ) for determining the credibility of persons with psychosocial disabilities. Further, there is still doubt about assistive communicative techniques. This paper will try to question the normative structure of sexual consent and related laws while specifically addressing the issues of sex as desire and abuse. Considering the commitment to the United Nations Convention on the Rights of Persons with Disabilities (herein referred to as UNCRPD) and common law experience, the paper will draw a comparative study on the legal position of sexual rights in India. The paper will also analyze the role of UNCRPD in addressing sexual rights. The author will examine the position of sexual rights of people with psychosocial disabilities after the drafting of UNCRPD and specific state laws. The paper primarily follows the doctrinal method.Keywords: sexual autonomy, institutionalized choices, overregulated laws, violation of individuality
Procedia PDF Downloads 118264 Chemical Warfare Agent Simulant by Photocatalytic Filtering Reactor: Effect of Operating Parameters
Authors: Youcef Serhane, Abdelkrim Bouzaza, Dominique Wolbert, Aymen Amin Assadi
Abstract:
Throughout history, the use of chemical weapons is not exclusive to combats between army corps; some of these weapons are also found in very targeted intelligence operations (political assassinations), organized crime, and terrorist organizations. To improve the speed of action, important technological devices have been developed in recent years, in particular in the field of protection and decontamination techniques to better protect and neutralize a chemical threat. In order to assess certain protective, decontaminating technologies or to improve medical countermeasures, tests must be conducted. In view of the great toxicity of toxic chemical agents from (real) wars, simulants can be used, chosen according to the desired application. Here, we present an investigation about using a photocatalytic filtering reactor (PFR) for highly contaminated environments containing diethyl sulfide (DES). This target pollutant is used as a simulant of CWA, namely of Yperite (Mustard Gas). The influence of the inlet concentration (until high concentrations of DES (1200 ppmv, i.e., 5 g/m³ of air) has been studied. Also, the conversion rate was monitored under different relative humidity and different flow rates (respiratory flow - standards: ISO / DIS 8996 and NF EN 14387 + A1). In order to understand the efficacity of pollutant neutralization by PFR, a kinetic model based on the Langmuir–Hinshelwood (L–H) approach and taking into account the mass transfer step was developed. This allows us to determine the adsorption and kinetic degradation constants with no influence of mass transfer. The obtained results confirm that this small configuration of reactor presents an extremely promising way for the use of photocatalysis for treatment to deal with highly contaminated environments containing real chemical warfare agents. Also, they can give birth to an individual protection device (an autonomous cartridge for a gas mask).Keywords: photocatalysis, photocatalytic filtering reactor, diethylsulfide, chemical warfare agents
Procedia PDF Downloads 105263 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques
Authors: Umit Cali
Abstract:
The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids
Procedia PDF Downloads 518262 Argumentation Frameworks and Theories of Judging
Authors: Sonia Anand Knowlton
Abstract:
With the rise of artificial intelligence, computer science is becoming increasingly integrated in virtually every area of life. Of course, the law is no exception. Through argumentation frameworks (AFs), computer scientists have used abstract algebra to structure the legal reasoning process in a way that allows conclusions to be drawn from a formalized system of arguments. In AFs, arguments compete against each other for logical success and are related to one another through the binary operation of the attack. The prevailing arguments make up the preferred extension of the given argumentation framework, telling us what set of arguments must be accepted from a logical standpoint. There have been several developments of AFs since its original conception in the early 90’s in efforts to make them more aligned with the human reasoning process. Generally, these developments have sought to add nuance to the factors that influence the logical success of competing arguments (e.g., giving an argument more logical strength based on the underlying value it promotes). The most cogent development was that of the Extended Argumentation Framework (EAF), in which attacks can themselves be attacked by other arguments, and the promotion of different competing values can be formalized within the system. This article applies the logical structure of EAFs to current theoretical understandings of judicial reasoning to contribute to theories of judging and to the evolution of AFs simultaneously. The argument is that the main limitation of EAFs, when applied to judicial reasoning, is that they require judges to themselves assign values to different arguments and then lexically order these values to determine the given framework’s preferred extension. Drawing on John Rawls’ Theory of Justice, the examination that follows is whether values are lexical and commensurable to this extent. The analysis that follows then suggests a potential extension of the EAF system with an approach that formalizes different “planes of attack” for competing arguments that promote lexically ordered values. This article concludes with a summary of how these insights contribute to theories of judging and of legal reasoning more broadly, specifically in indeterminate cases where judges must turn to value-based approaches.Keywords: computer science, mathematics, law, legal theory, judging
Procedia PDF Downloads 60261 Autonomous Exploration, Navigation and Mapping Payload Integrated on a Quadruped Robot
Authors: Julian Y. Raheema, Michael R. Hess, Raymond C. Provost, Mark Bilinski
Abstract:
The world is rapidly moving towards advancing and utilizing artificial intelligence and autonomous robotics. The ground-breaking Boston Dynamics quadruped robot, SPOT, was designed for industrial and commercial tasks requiring limited autonomous navigation. Out of the box, SPOT has route memorization and playback – it can repeat a path that it has been manually piloted through, but it cannot autonomously navigate an area that has not been previously explored. The presented SPOT payload package is built on ROS framework to support autonomous navigation and mapping of an unexplored environment. The package is fully integrated with SPOT to take advantage of motor controls and collision avoidance that comes natively with the robot. The payload runs all computations onboard, takes advantage of visual odometry SLAM and uses an Intel RealSense depth camera and Velodyne LiDAR sensor to generate 2D and 3D maps while in autonomous navigation mode. These maps are fused into the navigation stack to generate a costmap to enable the robot to safely navigate the environment without causing damage to the surroundings or the robot. The operator defines the operational zone and start location and then sends the explore command to have SPOT explore, generate 2D and 3D maps of the environment and return to the start location to await the operator's next command. The benefit of the presented package is that it is much lighter weight and less expensive than previous approaches and, importantly, operates in GPS-denied scenarios, which is ideal for indoor mapping. There are numerous applications that are hazardous to humans for SPOT enhanced with the autonomy payload, including disaster response, nuclear inspection, mine inspection, and so on. Other less extreme uses cases include autonomous 3D and 2D scanning of facilities for inspection, engineering and construction purposes.Keywords: autonomous, SLAM, quadruped, mapping, exploring, ROS, robotics, navigation
Procedia PDF Downloads 90260 The Politics of Health Education: A Cultural Analysis of Tobacco Control Communication in India
Authors: Ajay Ivan
Abstract:
This paper focuses on the cultural politics of health-promotional and disease-preventive pedagogic practices in the context of the national tobacco control programme in India. Tobacco consumption is typically problematised as a paradox: tobacco poses objective health risks such as cancer and heart disease, but its production, sale and export contribute significantly to state revenue. A blanket ban on tobacco products, therefore, is infeasible though desirable. Instead, initiatives against tobacco use have prioritised awareness creation and behaviour change to reduce its demand. This paper argues that public health communication is not, as commonly assumed, an apolitical and neutral transmission of disease-preventive information. Drawing on Michel Foucault’s concept of governmentality, it examines such campaigns as techniques of disciplining people rather than coercing them to give up tobacco use, which would be both impractical and counter-productive. At the level of the population, these programmes constitute a security mechanism that reduces risks without eliminating them, so as to ensure an optimal level of public health without hampering the economy. Anti-tobacco pedagogy thus aligns with a contemporary paradigm of health that emphasises risk-assessment and lifestyle management as tools of governance, using pedagogic techniques to teach people how to be healthy. The paper analyses the pictorial health warnings on tobacco packets and anti-tobacco advertisements in movie theatres mandated by the state, along with awareness-creation messages circulated by anti-tobacco advocacy groups in India, to show how they discursively construct tobacco and its consumption as a health risk. Smoking is resignified from a pleasurable and sociable practice to a deadly addiction that jeopardises the health of those who smoke and those who passively inhale the smoke. While disseminating information about the health risks of tobacco, these initiatives employ emotional and affective techniques of persuasion to discipline tobacco users. They incite fear of death and of social ostracism to motivate behaviour change, complementing their appeals to reason. Tobacco is portrayed as a grave moral danger to the family and a detriment to the vitality of the nation, such that using it contradicts one’s duties as a parent or citizen. Awareness programmes reproduce prevailing societal assumptions about health and disease, normalcy and deviance, and proper and improper conduct. Pedagogy thus functions as an apparatus of public health governance, recruiting subjects as volunteers in their own regulation and aligning their personal goals and aspirations to the objectives of tobacco control. The paper links this calculated management of subjectivity and the self-responsibilisation of the pedagogic subject to a distinct mode of neoliberal civic governance in contemporary India. Health features prominently in this mode of governance that serves the biopolitical obligation of the state as laid down in Article 39 of the Constitution, which includes a duty to ensure the health of its citizens. Insofar as the health of individuals is concerned, the problem is how to balance this duty of the state with the fundamental right of the citizen to choose how to live. Public health pedagogy, by directing the citizen’s ‘free’ choice without unduly infringing upon it, offers a tactical solution.Keywords: public health communication, pedagogic power, tobacco control, neoliberal governance
Procedia PDF Downloads 83259 Modelling the Impact of Installation of Heat Cost Allocators in District Heating Systems Using Machine Learning
Authors: Danica Maljkovic, Igor Balen, Bojana Dalbelo Basic
Abstract:
Following the regulation of EU Directive on Energy Efficiency, specifically Article 9, individual metering in district heating systems has to be introduced by the end of 2016. These directions have been implemented in member state’s legal framework, Croatia is one of these states. The directive allows installation of both heat metering devices and heat cost allocators. Mainly due to bad communication and PR, the general public false image was created that the heat cost allocators are devices that save energy. Although this notion is wrong, the aim of this work is to develop a model that would precisely express the influence of installation heat cost allocators on potential energy savings in each unit within multifamily buildings. At the same time, in recent years, a science of machine learning has gain larger application in various fields, as it is proven to give good results in cases where large amounts of data are to be processed with an aim to recognize a pattern and correlation of each of the relevant parameter as well as in the cases where the problem is too complex for a human intelligence to solve. A special method of machine learning, decision tree method, has proven an accuracy of over 92% in prediction general building consumption. In this paper, a machine learning algorithms will be used to isolate the sole impact of installation of heat cost allocators on a single building in multifamily houses connected to district heating systems. Special emphasises will be given regression analysis, logistic regression, support vector machines, decision trees and random forest method.Keywords: district heating, heat cost allocator, energy efficiency, machine learning, decision tree model, regression analysis, logistic regression, support vector machines, decision trees and random forest method
Procedia PDF Downloads 249258 Hybrid CNN-SAR and Lee Filtering for Enhanced InSAR Phase Unwrapping and Coherence Optimization
Authors: Hadj Sahraoui Omar, Kebir Lahcen Wahib, Bennia Ahmed
Abstract:
Interferometric Synthetic Aperture Radar (InSAR) coherence is a crucial parameter for accurately monitoring ground deformation and environmental changes. However, coherence can be degraded by various factors such as temporal decorrelation, atmospheric disturbances, and geometric misalignments, limiting the reliability of InSAR measurements (Omar Hadj‐Sahraoui and al. 2019). To address this challenge, we propose an innovative hybrid approach that combines artificial intelligence (AI) with advanced filtering techniques to optimize interferometric coherence in InSAR data. Specifically, we introduce a Convolutional Neural Network (CNN) integrated with the Lee filter to enhance the performance of radar interferometry. This hybrid method leverages the strength of CNNs to automatically identify and mitigate the primary sources of decorrelation, while the Lee filter effectively reduces speckle noise, improving the overall quality of interferograms. We develop a deep learning-based model trained on multi-temporal and multi-frequency SAR datasets, enabling it to predict coherence patterns and enhance low-coherence regions. This hybrid CNN-SAR with Lee filtering significantly reduces noise and phase unwrapping errors, leading to more precise deformation maps. Experimental results demonstrate that our approach improves coherence by up to 30% compared to traditional filtering techniques, making it a robust solution for challenging scenarios such as urban environments, vegetated areas, and rapidly changing landscapes. Our method has potential applications in geohazard monitoring, urban planning, and environmental studies, offering a new avenue for enhancing InSAR data reliability through AI-powered optimization combined with robust filtering techniques.Keywords: CNN-SAR, Lee Filter, hybrid optimization, coherence, InSAR phase unwrapping, speckle noise reduction
Procedia PDF Downloads 12257 The Impact of Artificial Intelligence on Student’s Behavior and Mind
Authors: Makarios Mosaad Thabet Ibrahim
Abstract:
the existing context paper targets to give the important position of ‘scholar voice’ and the track trainer inside the study room, which contributes to greater scholar-focused song training. The goal is to consciousness at the capabilities of the scholar voice via the tune spectrum, which has been born in the music school room, and the instructor’s methodologies and techniques used within the song classroom. The tune curriculum, the principles of pupil-centered song schooling, and the function of students and teachers as tune ambassadors have been taken into consideration the essential song parameters of scholar voice. The scholar- voice is a well worth-mentioning factor of a scholar-focused training, and all instructors have to take into account and sell its life in their lecture room. student affairs services play a critical function in contributing to the wholistic development and success of college students as they progress through their educational careers. The examine incorporates a multifaceted examination of student affairs carrier offerings among 10 personal and three public Baghdad universities. scholar affairs administrators (thirteen) have been surveyed together with over 300 students to determine university-subsidized services and pupil pride and attention. The pupil affairs service studies findings various drastically among non-public and public establishments and people that observed a country wide and international curriculum. Universities need to persist to conform to changing demographics and technological improvements to enhance students' private and academic successes, and pupil affairs services are key to preparing graduates to thrive in a diverse international world.Keywords: college student-athletes, self-concept, use of social media training, social networking student affairs, student success, higher education, Iraq, universities, Baghdad student's voice, student-centered education, music ambassadors, music teachers
Procedia PDF Downloads 34256 'Sextually' Active: Teens, 'Sexting' and Gendered Double Standards in the Digital Age
Authors: Annalise Weckesser, Alex Wade, Clara Joergensen, Jerome Turner
Abstract:
Introduction: Digital mobile technologies afford Generation M a number of opportunities in terms of communication, creativity and connectivity in their social interactions. Yet these young people’s use of such technologies is often the source of moral panic with accordant social anxiety especially prevalent in media representations of teen ‘sexting,’ or the sending of sexually explicit images via smartphones. Thus far, most responses to youth sexting have largely been ineffective or unjust with adult authorities sometimes blaming victims of non-consensual sexting, using child pornography laws to paradoxically criminalise those they are designed to protect, and/or advising teenagers to simply abstain from the practice. Prevention strategies are further skewed, with sex education initiatives often targeted at girls, implying that they shoulder the responsibility of minimising the risks associated with sexting (e.g. revenge porn and sexual predation). Purpose of Study: Despite increasing public interest and concern about ‘teen sexting,’ there remains a dearth of research with young people regarding their experiences of navigating sex and relationships in the current digital media landscape. Furthermore, young people's views on sexting are rarely solicited in the policy and educational strategies aimed at them. To address this research-policy-education gap, an interdisciplinary team of four researchers (from anthropology, media, sociology and education) have undertaken a peer-to-peer research project to co-create a sexual health intervention. Methods: In the winter of 2015-2016, the research team conducted serial group interviews with four cohorts of students (aged 13 to 15) from a secondary school in the West Midlands, UK. To facilitate open dialogue, girls and boys were interviewed separately, and each group consisted of no more than four pupils. The team employed a range of participatory techniques to elicit young people’s views on sexting, its consequences, and its interventions. A final focus group session was conducted with all 14 male and female participants to explore developing a peer-to-peer ‘safe sexting’ education intervention. Findings: This presentation will highlight the ongoing, ‘old school’ sexual double standards at work within this new digital frontier. In the sharing of ‘nudes’ (teens’ preferred term to ‘sexting’) via social media apps (e.g. Snapchat and WhatsApp), girls felt sharing images was inherently risky and feared being blamed and ‘slut-shamed.’ In contrast, boys were seen to gain in social status if they accumulated nudes of female peers. Further, if boys had nudes of themselves shared without consent, they felt they were expected to simply ‘tough it out.’ The presentation will also explore what forms of supports teens desire to help them in their day-to-day navigation of these digitally mediated, heteronormative performances of teen femininity and masculinity expected of them. Conclusion: This is the first research project, within UK, conducted with rather than about teens and the phenomenon of sexting. It marks a timely and important contribution to the nascent, but growing body of knowledge on gender, sexual politics and the digital mobility of sexual images created by and circulated amongst young people.Keywords: teens, sexting, gender, sexual politics
Procedia PDF Downloads 237255 Intrusion Detection in SCADA Systems
Authors: Leandros A. Maglaras, Jianmin Jiang
Abstract:
The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm.Keywords: cyber-security, SCADA systems, OCSVM, intrusion detection
Procedia PDF Downloads 552254 Disinformation’s Threats to Democracy in Central Africa: Case Studies from Cameroon and Central African Republic
Authors: Simont Toussi
Abstract:
Cameroon and the Central African Republic arebound by the provisions of many regional and international charters, which condemn the manipulation of information, obstacles to access reliable information, or the limitation of freedoms of expression and opinion. These two countries also have constitutional guarantees for free speech and access to true and liable information. However, they are yet to define specific policies and regulations for access to information, disinformation, or misinformation. Yet, certain countries’ laws and regulations related to information and communication technologies, to criminal procedures, to terrorism, or intelligence services contain provisions that rather hider human rights by condemning false information. Like many other African countries, Cameroon and the Central African Republic face a profound democratic regression, and governments use multiple methods to stifle online discourse and digital rights. Despite the increased uptake of digital tools for political participation, there is a lack of interactivity and adoption of these tools. This enables a scarcity of information and creates room for the spreading of disinformation in the public space, hamperingdemocracy and the respect for human rights. This research aims to analyse the adequacy of stakeholders’ responses to disinformation in Cameroon and the Central African Republic in periods of political contestation, such as elections and anti-government protests, to highlight the nature, perpetrators, strategies, and channels of disinformation, as well as its effects on democratic actors, including civil society, bloggers, government critics, activists, and other human rights defenders. The study follows a qualitative method with literature review, content analysis, andkey informant’sinterviews with stakeholders’ representatives, emphasized crowdsourcing as a data and information collecting method in the two countries.Keywords: disinformation, democracy, political manipulation, social media, media, fake news, central Africa, cameroon, misinformation, free speech
Procedia PDF Downloads 108253 Explanation of the Main Components of the Unsustainability of Cooperative Institutions in Cooperative Management Projects to Combat Desertification in South Khorasan Province
Authors: Yaser Ghasemi Aryan, Firoozeh Moghiminejad, Mohammadreza Shahraki
Abstract:
Background: The cooperative institution is considered the first and most essential pillar of strengthening social capital, whose sustainability is the main guarantee of survival and continued participation of local communities in natural resource management projects. The Village Development Group and the Microcredit Fund are two important social and economic institutions in the implementation of the International Project for the Restoration of Degraded Forest Lands (RFLDL) in Sarayan City, South Khorasan Province, which has learned positive lessons from the participation of the beneficiaries in the implementation. They have brought more effective projects to deal with desertification. However, the low activity or liquidation of some of these institutions has become one of the important challenges and concerns of project executive experts. The current research was carried out with the aim of explaining the main components of the instability of these institutions. Materials and Methods: This research is descriptive-analytical in terms of method, practical in terms of purpose, and the method of collecting information is two documentary and survey methods. The statistical population of the research included all the members of the village development groups and microcredit funds in the target villages of the RFLDL project of Sarayan city, based on the Kochran formula and matching with the Karjesi and Morgan table. Net people were selected as a statistical sample. After confirming the validity of the expert's opinions, the reliability of the questionnaire was 0.83, which shows the appropriate reliability of the researcher-made questionnaire. Data analysis was done using SPSS software. Results: The results related to the extraction of obstacles to the stability of social and economic networks were classified and prioritized in the form of 5 groups of social-cultural, economic, administrative, educational-promotional and policy-management factors. Based on this, in the socio-cultural factors, the items ‘not paying attention to the structural characteristics and composition of groups’, ‘lack of commitment and moral responsibility in some members of the group,’ and ‘lack of a clear pattern for the preservation and survival of groups’, in the disciplinary factors, The items ‘Irregularity in holding group meetings’ and ‘Irregularity of members to participate in meetings’, in the economic factors of the items "small financial capital of the fund’, ‘the low amount of loans of the fund’ and ‘the fund's inability to conclude contracts and attract capital from other sources’, in the educational-promotional factors of the items ‘non-simultaneity of job training with the granting of loans to create jobs’ and ‘insufficient training for the effective use of loans and job creation’ and in the policy-management factors of the item ‘failure to provide government facilities for support From the funds, they had the highest priority. Conclusion: In general, the results of this research show that policy-management factors and social factors, especially the structure and composition of social and economic institutions, are the most important obstacles to their sustainability. Therefore, it is suggested to form cooperative institutions based on network analysis studies in order to achieve the appropriate composition of members.Keywords: cooperative institution, social capital, network analysis, participation, Sarayan.
Procedia PDF Downloads 55252 Brilliant Candy Consists of Centella asiatica Extract and Soy Milk to Safe Nutrition Child of Indonesia
Authors: Hesti Ghassani, Tessa Septiadi
Abstract:
In the world we live on today, young generation highly influences the future of a nation. We have to concern that the condition of the country in 20 years later depending by the character of young adults these days. Therefore, it is important that we have to support and control the teenagers especially in one of developing countries in which I live in: Indonesia. Indonesia is a home to 240 million people. It diverse in languages, cultures, as well as attitudes. The differences among each individual lead us to think that there is something we have to take care of. It is necessary to pay attention to the nutrition consumed by the nation. We initiate to control the food consumed by young generation as early as a primary students. Nutrition affects the immune of the body, neuron system, and, most importantly brain. One of the nutrition that has to be fulfilled is milk. However, most of the population in Indonesia isn’t aware of the importance of consuming milk as their daily basis. We’ve formed an innovation called the Brilliant Candy which is affordable and rich in nutrition. So that is why the paper made by literature study to solve the problem with effective ways using available resources, practice and cheap. Brilliant Candy consists of Centella asiatica extract mixed with Soy milk. Centella asiatica contains of alkaloid which give the energy to brain and circulate oxygen. Based on the research of Sathya and Ganga, Centella asiatica can increase the intelligence. Indeed, Centella asiatica can relieve stress, and help us in staying focus. Soy milk is a kind of milk which come from extracted soybean. Soybean is rich in flafonoid. It has various advantages for our body. Which can also support child nutrition consumed. Soybean boosts immune system, helps digestive system, and in terms of food, soy bean exists as a source of nutrition. A method to get extraction of Centella asiatica is namely maserasi using ethanol. While making soybean milk with got the pollen of soybean. Both materials get mixed processed into hard candy with congelation of.Keywords: Indonesia, Centella asiatica, Soy milk, alkaloid, flafonoid
Procedia PDF Downloads 301251 Provision of Different Layers of Activities for Different Iranian Intermediate English as a Foreign Language Learners for the Beneficial Use of Films within Speaking Classes
Authors: Zahra Ebrahimi, Abbas Moradan
Abstract:
This study investigated the effect of applying different layers of activity for different Iranian intermediate EFL learner’s oral proficiency and two of its components (fluency and accura-cy) for the beneficial use of films within speaking classes. For this purpose, thirty Iranian EFL intermediate learners were selected based on availability sampling, they were divided into one experimental group and one control group, each consisting of 15 participants, who were proved to be homogeneous based on the results obtained from IELTS oral proficien-cy test prior to the treatment. Experimental Group received the treatment which was apply-ing different layers of speaking tasks according to learners’ level of fluency and accuracy. Control group received ordinal treatment of speaking classrooms. The materials for this study consisted of 11 English movies for each session, voice-recorder device, and IELTS oral proficiency tests as well as two interviews based on Ur’s oral scale for measuring fluen-cy and accuracy. The treatment was run for 12 sessions in six weeks. At the end of the treatment, all the students both in experimental and control group were given a post-test interview based on Ur’s scale. To compare and contrast the amount of progress of the learners in different groups the results of the pre-test and post-test of speaking were analysed by using T-tests. Moreover, Multivariate analysis of variance was also used to check the hypotheses. Results showed that application of different layers of activity with regard to students’ level, led to a significantly superior performance in experimental group. Thus, this study verified the positive effect of implementation of different layers of activity and tasks to achieve progress in speaking skill. It can also help to create a less stressful at-mosphere of learning in which all the students will be given specific time to speak and lead them to be autonomous learners.Keywords: differentiated instruction, learners’ style, multiple intelligence, speaking skill, task-based activities
Procedia PDF Downloads 142250 The Effect of Artificial Intelligence on Digital Factory
Authors: Sherif Fayez Lewis Ghaly
Abstract:
up to datefacupupdated planning has the mission of designing merchandise, plant life, procedures, enterprise, regions, and the development of a up to date. The requirements for up-to-date planning and the constructing of a updated have changed in recent years. everyday restructuring is turning inupupdated greater essential up-to-date hold the competitiveness of a manufacturing facilityupdated. restrictions in new regions, shorter existence cycles of product and manufacturing generation up-to-date a VUCA global (Volatility, Uncertainty, Complexity & Ambiguity) up-to-date greater frequent restructuring measures inside a manufacturing facilityupdated. A virtual up-to-date model is the making plans basis for rebuilding measures and up-to-date an fundamental up-to-date. short-time period rescheduling can now not be handled through on-web site inspections and manual measurements. The tight time schedules require 3177227fc5dac36e3e5ae6cd5820dcaa making plans fashions. updated the high variation fee of facup-to-dateries defined above, a method for rescheduling facupdatedries on the idea of a modern-day digital up to datery dual is conceived and designed for sensible software in updated restructuring projects. the point of interest is on rebuild approaches. The purpose is up-to-date preserve the planning basis (virtual up-to-date model) for conversions within a up to datefacupupdated updated. This calls for the application of a methodology that reduces the deficits of present techniques. The goal is up-to-date how a digital up to datery version may be up to date up to date during ongoing up to date operation. a method up-to-date on phoup to dategrammetry technology is presented. the focus is on developing a easy and fee-powerful up to date tune the numerous adjustments that arise in a manufacturing unit constructing in the course of operation. The method is preceded with the aid of a hardware and software assessment up-to-date become aware of the most cost effective and quickest version.Keywords: building information modeling, digital factory model, factory planning, maintenance digital factory model, photogrammetry, restructuring
Procedia PDF Downloads 28249 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing
Authors: Huan Ting Liao
Abstract:
In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning
Procedia PDF Downloads 24248 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second
Authors: P. V. Pramila , V. Mahesh
Abstract:
Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.Keywords: FEV, multivariate adaptive regression splines pulmonary function test, random forest
Procedia PDF Downloads 310247 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses
Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh
Abstract:
Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotive EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.Keywords: brain computer interface, electroencephalogram, EEGLab, BCILab, emotive, emotions, interval features, spectral features, artificial neural network, control applications
Procedia PDF Downloads 317246 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection
Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young
Abstract:
Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving
Procedia PDF Downloads 251245 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)
Procedia PDF Downloads 22244 Perception of Mass Media Usage in Educational Development of Rural Communities in Nigeria
Authors: Aniekan James Akpan, Inemesit Akpan Umoren, Uduak Iwok
Abstract:
From prehistoric and primitive cultures, education was seen as a process of culture transmission by way of guiding children into becoming good members of their local communities. Even in modern cultures, education is seen as a systematic discipline aimed at cultivating genuine values to improve oneself and society. Without education, the chances of realizing the desired vision are marred as it is believed that nations that invest much in education are able to reap the desired benefits technologically, economically, socially, politically, and otherwise. In this sense, the moulding of character is considered the primary purpose of education, and until the audience of mass media through its various vehicles is seen as tools for improving the overall development of society. It is believed that a media-friendly person is likely to perform better than someone who is less friendly. This work, therefore, examines the role media play in educational development. As highlighted by the study, a summary of the functions of media shows that they widen horizon by acting as a liberating force, breaking distance, bonds, and transforming a traditional society into a modern one. With the use of technological development theory, agenda-setting theory as well as uses and gratification theory and multiple intelligence theory, the work identifies different ways in which mass media help in educational development and draws attention to the audience’s perception of media functions in terms of educational development. With a survey method and a population of 6,903,321 people, the work sampled 220 respondents using purposive technique drawn from rural communities in the South-South region of Nigeria. The work concludes that mass media are potent vehicles for teaching and learning and therefore recommends that government should provide basic infrastructures to the rural communities to aid full utilization of media potentials in educational development and equally urge media owners and practitioners to as a matter of urgency increase coverage time on issues bordering on education as it is done for political and other issues.Keywords: educational, development, media usage, perception
Procedia PDF Downloads 128243 Brain-Computer Interfaces That Use Electroencephalography
Authors: Arda Ozkurt, Ozlem Bozkurt
Abstract:
Brain-computer interfaces (BCIs) are devices that output commands by interpreting the data collected from the brain. Electroencephalography (EEG) is a non-invasive method to measure the brain's electrical activity. Since it was invented by Hans Berger in 1929, it has led to many neurological discoveries and has become one of the essential components of non-invasive measuring methods. Despite the fact that it has a low spatial resolution -meaning it is able to detect when a group of neurons fires at the same time-, it is a non-invasive method, making it easy to use without possessing any risks. In EEG, electrodes are placed on the scalp, and the voltage difference between a minimum of two electrodes is recorded, which is then used to accomplish the intended task. The recordings of EEGs include, but are not limited to, the currents along dendrites from synapses to the soma, the action potentials along the axons connecting neurons, and the currents through the synaptic clefts connecting axons with dendrites. However, there are some sources of noise that may affect the reliability of the EEG signals as it is a non-invasive method. For instance, the noise from the EEG equipment, the leads, and the signals coming from the subject -such as the activity of the heart or muscle movements- affect the signals detected by the electrodes of the EEG. However, new techniques have been developed to differentiate between those signals and the intended ones. Furthermore, an EEG device is not enough to analyze the data from the brain to be used by the BCI implication. Because the EEG signal is very complex, to analyze it, artificial intelligence algorithms are required. These algorithms convert complex data into meaningful and useful information for neuroscientists to use the data to design BCI devices. Even though for neurological diseases which require highly precise data, invasive BCIs are needed; non-invasive BCIs - such as EEGs - are used in many cases to help disabled people's lives or even to ease people's lives by helping them with basic tasks. For example, EEG is used to detect before a seizure occurs in epilepsy patients, which can then prevent the seizure with the help of a BCI device. Overall, EEG is a commonly used non-invasive BCI technique that has helped develop BCIs and will continue to be used to detect data to ease people's lives as more BCI techniques will be developed in the future.Keywords: BCI, EEG, non-invasive, spatial resolution
Procedia PDF Downloads 71242 AI for Efficient Geothermal Exploration and Utilization
Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson
Abstract:
Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal
Procedia PDF Downloads 53241 Human Factors Interventions for Risk and Reliability Management of Defence Systems
Authors: Chitra Rajagopal, Indra Deo Kumar, Ila Chauhan, Ruchi Joshi, Binoy Bhargavan
Abstract:
Reliability and safety are essential for the success of mission-critical and safety-critical defense systems. Humans are part of the entire life cycle of defense systems development and deployment. The majority of industrial accidents or disasters are attributed to human errors. Therefore, considerations of human performance and human reliability are critical in all complex systems, including defense systems. Defense systems are operating from the ground, naval and aerial platforms in diverse conditions impose unique physical and psychological challenges to the human operators. Some of the safety and mission-critical defense systems with human-machine interactions are fighter planes, submarines, warships, combat vehicles, aerial and naval platforms based missiles, etc. Human roles and responsibilities are also going through a transition due to the infusion of artificial intelligence and cyber technologies. Human operators, not accustomed to such challenges, are more likely to commit errors, which may lead to accidents or loss events. In such a scenario, it is imperative to understand the human factors in defense systems for better systems performance, safety, and cost-effectiveness. A case study using Task Analysis (TA) based methodology for assessment and reduction of human errors in the Air and Missile Defense System in the context of emerging technologies were presented. Action-oriented task analysis techniques such as Hierarchical Task Analysis (HTA) and Operator Action Event Tree (OAET) along with Critical Action and Decision Event Tree (CADET) for cognitive task analysis was used. Human factors assessment based on the task analysis helps in realizing safe and reliable defense systems. These techniques helped in the identification of human errors during different phases of Air and Missile Defence operations, leading to meet the requirement of a safe, reliable and cost-effective mission.Keywords: defence systems, reliability, risk, safety
Procedia PDF Downloads 136