Search results for: liner layer
805 A CFD Study of the Performance Characteristics of Vented Cylinders as Vortex Generators
Authors: R. Kishan, R. M. Sumant, S. Suhas, Arun Mahalingam
Abstract:
This paper mainly researched on influence of vortex generator on lift coefficient and drag coefficient, when vortex generator is mounted on a flat plate. Vented cylinders were used as vortex generators which intensify vortex shedding in the wake of the vented cylinder as compared to base line circular cylinder which ensures more attached flow and increases lift force of the system. Firstly vented cylinders were analyzed in commercial CFD software which is compared with baseline cylinders for different angles of attack and further variation of lift and drag forces were studied by varying Reynolds number to account for influence of turbulence and boundary layer in the flow. Later vented cylinders were mounted on a flat plate and variation of lift and drag coefficients was studied by varying angles of attack and studying the dependence of Reynolds number and dimensions of vortex generator on the coefficients. Mesh grid sensitivity is studied to check the convergence of the results obtained It was found that usage of vented cylinders as vortex generators increased lift forces with small variation in drag forces by varying angle of attack.Keywords: CFD analysis, drag coefficient, FVM, lift coefficient, modeling, Reynolds number, simulation, vortex generators, vortex shedding
Procedia PDF Downloads 431804 Formex Algebra Adaptation into Parametric Design Tools: Dome Structures
Authors: Réka Sárközi, Péter Iványi, Attila B. Széll
Abstract:
The aim of this paper is to present the adaptation of the dome construction tool for formex algebra to the parametric design software Grasshopper. Formex algebra is a mathematical system, primarily used for planning structural systems such like truss-grid domes and vaults, together with the programming language Formian. The goal of the research is to allow architects to plan truss-grid structures easily with parametric design tools based on the versatile formex algebra mathematical system. To produce regular structures, coordinate system transformations are used and the dome structures are defined in spherical coordinate system. Owing to the abilities of the parametric design software, it is possible to apply further modifications on the structures and gain special forms. The paper covers the basic dome types, and also additional dome-based structures using special coordinate-system solutions based on spherical coordinate systems. It also contains additional structural possibilities like making double layer grids in all geometry forms. The adaptation of formex algebra and the parametric workflow of Grasshopper together give the possibility of quick and easy design and optimization of special truss-grid domes.Keywords: parametric design, structural morphology, space structures, spherical coordinate system
Procedia PDF Downloads 253803 An Assesment of Unconventional Hydrocarbon Potential of the Silurian Dadaş Shales in Diyarbakır Basin, Türkiye
Authors: Ceren Sevimli, Sedat İnan
Abstract:
The Silurian Dadaş Formation within the Diyarbakir Basin in SE Türkiye, like other Silurian shales in North Africa and Middle East, represents a significant prospect for conventional and unconventional hydrocarbon exploration. The Diyarbakır Basin remains relatively underexplored, presenting untapped potential that warrants further investigation. This study focuses on the thermal maturity and hydrocarbon generation histories of the Silurian Dadaş shales, utilizing basin modeling approach. The Dadaş shales are organic-rich and contain mainly Type II kerogen, especially the basal layer contains up to 10 wt. %TOC and thus it is named as “hot shale”. The research integrates geological, geochemical, and basin modeling data to elucidate the unconventional hydrocarbon potential of this formation, which is crucial given the global demand for energy and the need for new resources. The data obtained from previous studies were used to calibrate basin model that has been established by using PetroMod software (Schlumberger). The calibrated model results suggest that Dadaş shales are in oil generation window and that the major episode for thermal maturation and hydrocarbon generation took place prior rot Alpine orogeny (uplift and erosion) The modeling results elucidate the burial history, maturity history, and hydrocarbon production history of the Silurian-aged Dadaş shales, as well as its hydrocarbon content in the area.Keywords: dadaş formation, diyarbakır basin, silurian hot shale, unconventional hydrocarbon
Procedia PDF Downloads 31802 An Approach of Node Model TCnNet: Trellis Coded Nanonetworks on Graphene Composite Substrate
Authors: Diogo Ferreira Lima Filho, José Roberto Amazonas
Abstract:
Nanotechnology opens the door to new paradigms that introduces a variety of novel tools enabling a plethora of potential applications in the biomedical, industrial, environmental, and military fields. This work proposes an integrated node model by applying the same concepts of TCNet to networks of nanodevices where the nodes are cooperatively interconnected with a low-complexity Mealy Machine (MM) topology integrating in the same electronic system the modules necessary for independent operation in wireless sensor networks (WSNs), consisting of Rectennas (RF to DC power converters), Code Generators based on Finite State Machine (FSM) & Trellis Decoder and On-chip Transmit/Receive with autonomy in terms of energy sources applying the Energy Harvesting technique. This approach considers the use of a Graphene Composite Substrate (GCS) for the integrated electronic circuits meeting the following characteristics: mechanical flexibility, miniaturization, and optical transparency, besides being ecological. In addition, graphene consists of a layer of carbon atoms with the configuration of a honeycomb crystal lattice, which has attracted the attention of the scientific community due to its unique Electrical Characteristics.Keywords: composite substrate, energy harvesting, finite state machine, graphene, nanotechnology, rectennas, wireless sensor networks
Procedia PDF Downloads 104801 Experimental Investigation of Interfacial Bond Strength of Concrete Layers
Authors: Rajkamal Kumar, Sudhir Mishra
Abstract:
The connections between various elements of concrete structures play a vital role in determining the durability of structures. These connections produce discontinuities and to ensure the monolithic behavior of structures, these connections should be carefully designed. The connections between concrete layers may occur in various situations such as structure repairing and rehabilitation or construction of huge structures with cast-in-situ or pre-cast elements, etc. Bond strength at the interface of these concrete layers should be able to prevent the progressive slip from taking place and it should also ensure satisfactory performance of the structure. Different approaches to enhance the bond strength at interface have been a major area of research. Nowadays, micro-concrete is getting popular as a repair material. Under this ambit, this paper aims to present the experimental results of connections between concrete layers of different age with artificial indentation at interface with two types of repair material: Concrete with same parent concrete composition and ready-mix mortar (micro-concrete), artificial indentations (grooves and holes) were made on the old layer of concrete to increase the bond strength. Curing plays an important role in determining the bond strength. Optimum duration for curing have also been discussed for each type of repair material. Different types of failure patterns have also been mentioned.Keywords: adhesion, cohesion, compressive stress, micro-concrete, shear stress, slant shear test
Procedia PDF Downloads 331800 Optimization of Surface Roughness in Additive Manufacturing Processes via Taguchi Methodology
Authors: Anjian Chen, Joseph C. Chen
Abstract:
This paper studies a case where the targeted surface roughness of fused deposition modeling (FDM) additive manufacturing process is improved. The process is designing to reduce or eliminate the defects and improve the process capability index Cp and Cpk for an FDM additive manufacturing process. The baseline Cp is 0.274 and Cpk is 0.654. This research utilizes the Taguchi methodology, to eliminate defects and improve the process. The Taguchi method is used to optimize the additive manufacturing process and printing parameters that affect the targeted surface roughness of FDM additive manufacturing. The Taguchi L9 orthogonal array is used to organize the parameters' (four controllable parameters and one non-controllable parameter) effectiveness on the FDM additive manufacturing process. The four controllable parameters are nozzle temperature [°C], layer thickness [mm], nozzle speed [mm/s], and extruder speed [%]. The non-controllable parameter is the environmental temperature [°C]. After the optimization of the parameters, a confirmation print was printed to prove that the results can reduce the amount of defects and improve the process capability index Cp from 0.274 to 1.605 and the Cpk from 0.654 to 1.233 for the FDM additive manufacturing process. The final results confirmed that the Taguchi methodology is sufficient to improve the surface roughness of FDM additive manufacturing process.Keywords: additive manufacturing, fused deposition modeling, surface roughness, six-sigma, Taguchi method, 3D printing
Procedia PDF Downloads 391799 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet
Authors: Rangoli Goyal, Rama Bhargava
Abstract:
The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.Keywords: FEM, thermophoresis, diffusiophoresis, Brownian motion
Procedia PDF Downloads 420798 Behaviour of Model Square Footing Resting on Three Dimensional Geogrid Reinforced Sand Bed
Authors: Femy M. Makkar, S. Chandrakaran, N. Sankar
Abstract:
The concept of reinforced earth has been used in the field of geotechnical engineering since 1960s, for many applications such as, construction of road and rail embankments, pavements, retaining walls, shallow foundations, soft ground improvement and so on. Conventionally, planar geosynthetic materials such as geotextiles and geogrids were used as the reinforcing elements. Recently, the use of three dimensional reinforcements becomes one of the emerging trends in this field. So, in the present investigation, three dimensional geogrid is proposed as a reinforcing material. Laboratory scaled plate load tests are conducted on a model square footing resting on 3D geogrid reinforced sand bed. The performance of 3D geogrids in triangular and square pattern was compared with conventional geogrids and the improvement in bearing capacity and reduction in settlement and heave are evaluated. When single layer of reinforcement was placed at an optimum depth of 0.25B from the bottom of the footing, the bearing capacity of conventional geogrid reinforced soil improved by 1.85 times compared to unreinforced soil, where as 3D geogrid reinforced soil with triangular pattern and square pattern shows 2.69 and 3.05 times improvement respectively compared to unreinforced soil. Also, 3D geogrids performs better than conventional geogrids in reducing the settlement and heave of sand bed around the model footing.Keywords: 3D reinforcing elements, bearing capacity, heavy, settlement
Procedia PDF Downloads 300797 Surface Modification of TiO2 Layer with Phosphonic Acid Monolayer in Perovskite Solar Cells: Effect of Chain Length and Terminal Functional Group
Authors: Seid Yimer Abate, Ding-Chi Huang, Yu-Tai Tao
Abstract:
In this study, charge extraction characteristics at the perovskite/TiO2 interface in the conventional perovskite solar cell is studied by interface engineering. Self-assembled monolayers of phosphonic acids with different chain length and terminal functional group were used to modify mesoporous TiO2 surface to modulate the surface property and interfacial energy barrier to investigate their effect on charge extraction and transport from the perovskite to the mp-TiO2 and then the electrode. The chain length introduces a tunnelling distance and the end group modulate the energy level alignment at the mp-TiO2 and perovskite interface. The work function of these SAM-modified mp-TiO2 varied from −3.89 eV to −4.61 eV, with that of the pristine mp-TiO2 at −4.19 eV. A correlation of charge extraction and transport with respect to the modification was attempted. The study serves as a guide to engineer ETL interfaces with simple SAMs to improve the charge extraction, carrier balance and device long term stability. In this study, a maximum PCE of ~16.09% with insignificant hysteresis was obtained, which is 17% higher than the standard device.Keywords: Energy level alignment, Interface engineering, Perovskite solar cells, Phosphonic acid monolayer, Tunnelling distance
Procedia PDF Downloads 135796 Soil Water Retention and Van Genuchten Parameters following Tillage and Manure Effects
Authors: Shahin Farajifar, Azadeh Safadoust, Ali Akbar Mahboubi
Abstract:
A study was conducted to evaluate hydraulic properties of a sandy loam soil and corn (Zea mays L.) crop production under a short-term tillage and manure combinations field experiment carried out in west of Iran. Treatments included composted cattle manure application rates [0, 30, and 60 Mg (dry weight) ha-1] and tillage systems [no-tillage (NT), chisel plowing (CP), and moldboard plowing (MP)] arranged in a split-plot design. Soil water characteristic curve (SWCC) and saturated hydraulic conductivity (Ks) were significantly affected by manure and tillage treatments. At any matric suction, the soil water content was in the order of MP>CP>NT. At all matric suctions, the amount of water retained by the soil increased as manure application rate increased (i.e. 60>30>0 Mg ha-1). Similar to the tillage effects, at high suctions the differences of water retained due to manure addition were less than that at low suctions. The change of SWCC from tillage methods and manure applications may attribute to the change of pore size and aggregate size distributions. Soil Ks was in the order of CP>MP>NT for the first two layers and in the order of MP>CP and NT for the deeper soil layer. The Ks also increased with increasing rates of manure application (i.e. 60>30>0 Mg ha-1). This was due to the increase in the total pore size and continuity.Keywords: corn, manuure, saturated hydraulic conductivity, soil water characteristic curve, tillage
Procedia PDF Downloads 72795 Network and Sentiment Analysis of U.S. Congressional Tweets
Authors: Chaitanya Kanakamedala, Hansa Pradhan, Carter Gilbert
Abstract:
Social media platforms, such as Twitter, are excellent datasets for understanding human interactions and sentiments. This report explores social dynamics among US Congressional members through a network analysis applied to a dataset of tweets spanning 2008 to 2017 from the ’US Congressional Tweets Dataset’. In this report, we preform network analysis where connections between users (edges) are established based on a similarity threshold: two tweets are connected if the tweets they post are similar. By utilizing the Natural Language Toolkit (NLTK) and NetworkX, we quantified tweet similarity and constructed a graph comprising various interconnected components. Each component represents a cluster of users with closely aligned content. We then preform sentiment analysis on each cluster to explore the prevalent emotions and opinions within these groups. Our findings reveal that despite the initial expectation of distinct ideological divisions typically aligning with party lines, the analysis exposed a high degree of topical convergence across tweets from different political affiliations. The analysis preformed in this report not only highlights the potential of social media as a tool for political communication but also suggests a complex layer of interaction that transcends traditional partisan boundaries, reflecting a complicated landscape of politics in the digital age.Keywords: natural language processing, sentiment analysis, centrality analysis, topic modeling
Procedia PDF Downloads 32794 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network
Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui
Abstract:
Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN
Procedia PDF Downloads 130793 3D Carbon Structures (Globugraphite) with Hierarchical Pore Morphology for the Application in Energy Storage Systems
Authors: Hubert Beisch, Janik Marx, Svenja Garlof, Roman Shvets, Ivan Grygorchak, Andriy Kityk, Bodo Fiedler
Abstract:
Three-dimensional carbon materials can be used as electrode materials for energy storage systems such as batteries and supercapacitors. Fast charging and discharging times are realizable without reducing the performance due to aging processes. Furthermore high specific surface area (SSA) of three-dimensional carbon structures leads to high specific capacities. One newly developed carbon foam is Globugraphite. This interconnected globular carbon morphology with statistically distributed hierarchical pores is manufactured by a chemical vapor deposition (CVD) process from ceramic templates resulting from a sintering process. Via scanning electron (SEM) and transmission electron microscopy (TEM), the morphology is characterized. Moreover, the SSA was measured by the Brunauer–Emmett–Teller (BET) theory. Measurements of Globugraphite in an organic and inorganic electrolyte show high energy densities and power densities resulting from ion absorption by forming an electrochemical double layer. A comparison of the specific values is summarized in a Ragone diagram. Energy densities up to 48 Wh/kg and power densities to 833 W/kg could be achieved for an SSA from 376 m²/g to 859 m²/g. For organic electrolyte, a specific capacity of 100 F/g at a density of 20 mg/cm³ was achieved.Keywords: BET, carbon foam, CVD process, electrochemical cell, Ragone diagram, SEM, TEM
Procedia PDF Downloads 234792 Modeling Continuous Flow in a Curved Channel Using Smoothed Particle Hydrodynamics
Authors: Indri Mahadiraka Rumamby, R. R. Dwinanti Rika Marthanty, Jessica Sjah
Abstract:
Smoothed particle hydrodynamics (SPH) was originally created to simulate nonaxisymmetric phenomena in astrophysics. However, this method still has several shortcomings, namely the high computational cost required to model values with high resolution and problems with boundary conditions. The difficulty of modeling boundary conditions occurs because the SPH method is influenced by particle deficiency due to the integral of the kernel function being truncated by boundary conditions. This research aims to answer if SPH modeling with a focus on boundary layer interactions and continuous flow can produce quantifiably accurate values with low computational cost. This research will combine algorithms and coding in the main program of meandering river, continuous flow algorithm, and solid-fluid algorithm with the aim of obtaining quantitatively accurate results on solid-fluid interactions with the continuous flow on a meandering channel using the SPH method. This study uses the Fortran programming language for modeling the SPH (Smoothed Particle Hydrodynamics) numerical method; the model is conducted in the form of a U-shaped meandering open channel in 3D, where the channel walls are soil particles and uses a continuous flow with a limited number of particles.Keywords: smoothed particle hydrodynamics, computational fluid dynamics, numerical simulation, fluid mechanics
Procedia PDF Downloads 128791 Quality Control Assessment of X-Ray Equipment in Hospitals of Katsina State, Nigeria
Authors: Aminu Yakubu Umar
Abstract:
X-ray is the major contributor to the effective dose of both the patient and the personnel. Because of the radiological risks involved, it is usually recommended that dose to patient from X-ray be kept as low as reasonably achievable (ALARA) with adequate image quality. The implementation of quality assurance in diagnostic radiology can help greatly in achieving that, as it is a technique designed to reduce X-ray doses to patients undergoing radiological examination. In this study, quality control was carried out in six hospitals, which involved KVp test, evaluation of total filtration, test for constancy of radiation output, and check for mA linearity. Equipment used include KVp meter, Rad-check meter, aluminum sheets (0.1–1.0 mm) etc. The results of this study indicate that, the age of the X-ray machines in the hospitals ranges from 3-13 years, GHI and GH2 being the oldest and FMC being the newest. In the evaluation of total filtration, the HVL of the X-ray machines in the hospitals varied, ranging from 2.3-5.2 mm. The HVL was found to be highest in AHC (5.2 mm), while it was lowest in GH3 (2.3 mm). All HVL measurements were done at 80 KVp. The variation in voltage accuracy in the hospitals ranges from 0.3%-127.5%. It was only in GH1 that the % variation was below the allowed limit. The test for constancy of radiation output showed that, the coefficient of variation ranges from 0.005–0.550. In GH3, FMC and AHC, the coefficient of linearity were less than the allowed limit, while in GH1, GH2 and GH4 the coefficient of linearity had exceeded the allowed limit. As regard to mA linearity, FMC and AHC had their coefficients of linearity as 0.12 and 0.10 respectively, which were within the accepted limit, while GH1, GH3 and GH4 had their coefficients as 0.16, 0.69 and 0.98 respectively, which exceeded the allowed limit.Keywords: radiation, X-ray output, quality control, half-value layer, mA linearity, KVp variation
Procedia PDF Downloads 608790 Surface Modified Polyvinylidene Fluoride Membranes for Potential Use in Membrane Distillation
Authors: Lebea Nthunya, Arne Verliefde, Bhekie Mamba, Sabelo Mhlanga
Abstract:
A study aimed at developing membrane distillation (MD) processes that can be used for brackish/saline water purification will be presented. MD is a membrane-based technology that presents a possibility to counteract challenges associated with pressure driven membranes at high separation efficiencies. Membrane distillation membranes (MDM) are affected by wettability and fouling. Wetting inside the pores of the membrane is elevated by the hydrophilic characteristic of the membrane, while fouling is mostly induced by the hydrophobic-hydrophobic interaction of pollutants and the surface of the hydrophobic membranes, hence block the pores of the membranes. These properties are not desirable. As such, a carefully designed polyvinylidene fluoride (PVDF) MDM composed of a super-hydrophobic modified backbone and a super-hydrophilic thin layer has been developed to concurrently overcome these challenges. The membranes were characterized using contact angle measurements to confirm their hydrophobicity/hydrophilicity. SEM and SAXS were used to study the morphology and pore distribution on the surface of the membrane. The contact angles of the active surface ≤ 30º and that of the backbone ≥ 140º has thus revealed that the active surface was highly hydrophilic while the backbone was highly hydrophobic. The SEM and the SAXS results have also confirmed that the membranes are highly porous. These materials demonstrated a potential to remove salts from water at high efficiencies.Keywords: membrane distillation, modification, energy efficiency, desalination
Procedia PDF Downloads 252789 Uncovering the Role of Crystal Phase in Determining Nonvolatile Flash Memory Device Performance Based on 2D Van Der Waals Heterostructures
Authors: Yunpeng Xia, Jiajia Zha, Haoxin Huang, Hau Ping Chan, Chaoliang Tan
Abstract:
Although the crystal phase of two-dimensional (2D) transition metal dichalcogenides (TMDs) has been proven to play an essential role in fabricating high-performance electronic devices in the past decade, its effect on the performance of 2D material-based flash memory devices still remains unclear. Here, we report the exploration of the effect of MoTe₂ in different phases as the charge trapping layer on the performance of 2D van der Waals (vdW) heterostructure-based flash memory devices, where the metallic 1T′-MoTe₂ or semiconducting 2H-MoTe₂ nanoflake is used as the floating gate. By conducting comprehensive measurements on the two kinds of vdW heterostructure-based devices, the memory device based on MoS2/h-BN/1T′-MoTe₂ presents much better performance, including a larger memory window, faster switching speed (100 ns) and higher extinction ratio (107), than that of the device based on MoS₂/h-BN/2H-MoTe₂ heterostructure. Moreover, the device based on MoS₂/h-BN/1T′-MoTe₂ heterostructure also shows a long cycle (>1200 cycles) and retention (>3000 s) stability. Our study clearly demonstrates that the crystal phase of 2D TMDs has a significant impact on the performance of nonvolatile flash memory devices based on 2D vdW heterostructures, which paves the way for the fabrication of future high-performance memory devices based on 2D materials.Keywords: crystal Phase, 2D van der Waals heretostructure, flash memory device, floating gate
Procedia PDF Downloads 50788 Variation of Airfoil Pressure Profile Due to Confined Air Streams: Application in Gas-Oil Separators
Authors: Amir Hossein Haji, Nabeel Al-Rawahi, Gholamreza Vakili-Nezhaad
Abstract:
An innovative design has been examined for a gas-oil separator based on pressure reduction over an airfoil surface. The primary motivations are to shorten the release trajectory of the bubbles by minimizing the thickness of the oil layer as well as improving uniform pressure reduction zones. Restricted airflow over an airfoil is investigated for its effect on the pressure drop enhancement and the maximum attainable attack angle prior to the stall condition. Aerodynamic separation is delayed based on numerical simulation of Wortmann FX 63137 Airfoil in a confined domain using FLUENT 6.3.26. The proposed set up results in higher pressure drop compared with the free stream case. With the aim of optimum power consumption we have pursued further restriction to an air jet case over the airfoil. Then, a curved strip model is suggested for the air jet which can be applied as an analysis/design tool for the best performance conditions. Pressure reduction is shown to be inversely proportional to the curvature of the upper airfoil profile. This reduction occurs within the tracking zones where the air jet is effectively attached to the airfoil surface. The zero slope condition is suggested to estimate the onset of these zones after which the minimum curvature should be searched. The corresponding zero slope curvature is applied for estimation of the maximum pressure drop which shows satisfactory agreement with the simulation results.Keywords: airfoil, air jet, curved fluid flow, gas-oil separator
Procedia PDF Downloads 470787 TerraEnhance: High-Resolution Digital Elevation Model Generation using GANs
Authors: Siddharth Sarma, Ayush Majumdar, Nidhi Sabu, Mufaddal Jiruwaala, Shilpa Paygude
Abstract:
Digital Elevation Models (DEMs) are digital representations of the Earth’s topography, which include information about the elevation, slope, aspect, and other terrain attributes. DEMs play a crucial role in various applications, including terrain analysis, urban planning, and environmental modeling. In this paper, TerraEnhance is proposed, a distinct approach for high-resolution DEM generation using Generative Adversarial Networks (GANs) combined with Real-ESRGANs. By learning from a dataset of low-resolution DEMs, the GANs are trained to upscale the data by 10 times, resulting in significantly enhanced DEMs with improved resolution and finer details. The integration of Real-ESRGANs further enhances visual quality, leading to more accurate representations of the terrain. A post-processing layer is introduced, employing high-pass filtering to refine the generated DEMs, preserving important details while reducing noise and artifacts. The results demonstrate that TerraEnhance outperforms existing methods, producing high-fidelity DEMs with intricate terrain features and exceptional accuracy. These advancements make TerraEnhance suitable for various applications, such as terrain analysis and precise environmental modeling.Keywords: DEM, ESRGAN, image upscaling, super resolution, computer vision
Procedia PDF Downloads 6786 Landslide Study Using Unmanned Aerial Vehicle and Resistivity Survey at Bkt Kukus, Penang Island, Malaysia
Authors: Kamal Bahrin Jaafar
Abstract:
The study area is located at Bukit Kukus, Penang where the construction of twin road project in ongoing. A landslide event has occurred on 19th October 2018, which causes fatal deaths. The purpose of this study is to figure out the causes of failure, the estimated volume of failure, and its balance. The study comprises of unmanned aerial vehicle (UAV) sensing and resistivity survey. The resistivity method includes spreading three lines of 200m length resistivity survey with the depth of penetration in the subsurface not exceeding 35m. The result of UAV shows the current view of the site condition. Based on resistivity result, the dominant layer in the study area consists of residual soil/filling material with a thickness of more than 35m. Three selected cross sections from construction drawing are overlain with the current cross sections to understand more on the condition of the subsurface profile. By comparison, there is a difference between past and present topography. The combination of result from the previous data and current condition shows the calculated volume of failure is 85,000 m³, and its balance is 50,000 m³. In conclusion, the failure occurs since the contractor has conducted the construction works without following the construction drawing supplied by the consultant. Besides, the cause of failure is triggered by the geology condition, such as a fault that should be considered prior to the commencement of work.Keywords: UAV, landslide, resistivity survey, cause of failure
Procedia PDF Downloads 110785 Enhancement of the Corrosion Resistance of Fastening System of Ballasted Railway in Sandy Desert by Using Nano-Coating
Authors: Milad Alizadeh Galdiani, Navid Sabet, Mohamad Ali Mohit, Fatemeh Palizdar
Abstract:
Railway as one of the most important transportation modes, passes through various areas with different conditions inevitably, and in many countries such as China, United States, Australia, and Iran, it passes through sandy desert areas. One of the main problems in these areas is the movement of sand, causing various damages to ballasted railway track such as corrosion in the railway fastening system. The soil composition of some desert areas like Fahraj in Iran consists of sand and salt. Due to the movement of sand and corrosive ions of salt, the fastening system of the railway is corroded, which, in turn, reduces the thickness of the components and their life span. In this research, the Nano-coating for fastening system of the railway is introduced, and its performance has been investigated in both laboratory and field tests. The Nano-coating of the fastening system consists of zinc-rich, epoxy, polyurethane, and additive, which is produced through Nano technology. This layer covers the surface of the fastening system and prohibits the chemical reactions, which result in corrosion. The results of Electrochemical Impedance Spectroscopy (EIS) indicate that corrosion resistance increases 315 times by using nano-coating, salt spray test results demonstrate that nano-coated components remained intact after 1000 hours.Keywords: ballasted railway, Nano-coating, railway fastening system, sandy desert
Procedia PDF Downloads 124784 Study of Wake Dynamics for a Rim-Driven Thruster Based on Numerical Method
Authors: Bao Liu, Maarten Vanierschot, Frank Buysschaert
Abstract:
The present work examines the wake dynamics of a rim-driven thruster (RDT) with Computational Fluid Dynamics (CFD). Unsteady Reynolds-averaged Navier-Stokes (URANS) equations were solved in the commercial solver ANSYS Fluent in combination with the SST k-ω turbulence model. The application of the moving reference frame (MRF) and sliding mesh (SM) approach to handling the rotational movement of the propeller were compared in the transient simulations. Validation and verification of the numerical model was performed to ensure numerical accuracy. Two representative scenarios were considered, i.e., the bollard condition (J=0) and a very light loading condition(J=0.7), respectively. From the results, it’s confirmed that compared to the SM method, the MRF method is not suitable for resolving the unsteady flow features as it only gives the general mean flow but smooths out lots of characteristic details in the flow field. By evaluating the simulation results with the SM technique, the instantaneous wake flow field under both conditions is presented and analyzed, most notably the helical vortex structure. It’s observed from the results that the tip vortices, blade shed vortices, and hub vortices are present in the wake flow field and convect downstream in a highly non-linear way. The shear layer vortices shedding from the duct displayed a strong interaction with the distorted tip vortices in an irregularmanner.Keywords: computational fluid dynamics, rim-driven thruster, sliding mesh, wake dynamics
Procedia PDF Downloads 257783 The Study of Aluminum Effects Layer Austenite Twins Adjacent to K-Carbide Plates in the Cellular Structure of a Mn-Al Alloy Steel
Authors: Wu Wei-Ting, Liu Po-Yen, Chang Chin-Tzu, Cheng Wei-Chun
Abstract:
Three types of low-temperature phase transformations in an Fe-12.5 Mn-6.53 Al-1.28 C (wt %) alloy have been studied. The steel underwent solution heat treatment at 1100℃ and isothermal holding at low temperatures. γ’ phase appears in the austenite matrix in the air-cooled steel. Coherent ultra-fine particles of γ’ phase precipitated uniformly in the austenite matrix after the air-cooling process. These ultra-fine particles were very small and only could be detected by TEM through dark-field images. After short periods of isothermal holding at low temperatures these particles of γ’ phase grew and could be easily detected by TEM. A pro-eutectoid reaction happened after isothermal holding at temperatures below 875 ℃. Proeutectoid κ-carbide and ferrite appear in the austenite matrix as grain boundary precipitates and cellular precipitates. The cellular precipitates are composed of lamellar κ-carbide and austenite. The lamellar κ-carbide grains are always accompanied by layers of austenite twins. The presence of twin layers adhering to the κ-carbide plates might be attributed to the lower activation energy for the precipitation of κ-carbide plates in the austenite. The final form of phase transformation is the eutectoid reaction for the decomposition of supersaturated austenite into stable κ-carbide and ferrite phases at temperatures below 700℃. The ferrite and κ-carbide are in the form of pearlite lamellae.Keywords: austenite, austenite twin layers, κ-carbide, twins
Procedia PDF Downloads 226782 An Exploratory Study of the Meaning of Life of Delivery Agents of Kolkata
Authors: Soumitri Bag Majumder, Anindita Chaudhuri
Abstract:
This exploratory study delves into the perception of job dignity among delivery agents in Kolkata, focusing on both food and grocery delivery sectors. The rapid expansion of online delivery platforms in India has led to a significant rise in the delivery service industry. Despite its growth, there is a dearth of research addressing the multifaceted challenges faced by delivery agents. This study aims to bridge this gap by shedding light on their experiences. The study’s objectives include exploring the lived experiences of delivery agents, their work-life balance, and their perception of job dignity. Using a qualitative research approach, the study will conduct semi-structured in-depth interviews with a purposive sample of 10 participants from each sector, consisting of individuals with lower socio-economic backgrounds aged between 18 and 35 years. The Three-Layer Coding framework proposed by Charmaz will guide the data analysis process, encompassing open coding, axial coding, and selective coding. Through this method, the study seeks to uncover emergent themes and patterns that illuminate the participants’ perspectives on job dignity, recognition, and the challenges they encounter. By uncovering their perceptions of job dignity and the challenges they face, the research aims to contribute to the well-being of these workers and inform relevant stakeholders for a more equitable work environment.Keywords: delivery agents, equitable work environment, perception of job dignity, work-life balance
Procedia PDF Downloads 63781 A New Correlation Between SPT-N and SSPT-N values for Various Soil Types in Peninsular Malaysia
Authors: Abdull Halim
Abstract:
The Standard Penetration Test (SPT-N) is the most common in situ test for soil investigations. The Shearing Seismic Standard Penetration Test (SSPT-N), on the other hand, is a new method using shearing wave with propagation exponent equation between the shearing wave, Vs., and hardness, N values without any need for borehole data. Due to the fast and accurate results that can be obtained, the SSPT has found many applications such as in the field rectification buried pipe line, the acid tank settlement and foundation design analyses, and the quality control assessment. Many geotechnical regimes and properties have attempted to correlate both the SSPT and the SPT-N values. Various foundation design methods have been developed based on the outcomes of these tests. Hence, it is pertinent to correlate these tests so that either one of the test can be used in the absence of the other, especially for preliminary evaluation and design purposes. The primary purpose of this study was to investigate the relationship between the SSPT-N and SPT-N values for different types of cohesive soil in Peninsular Malaysia. Data were collected from four different sites, and the correlations were established between the hardness N values, principal stress-strain Mohr circle curve, cohesion, friction angle and vertical effective stress. A positive exponent relationship was found between the shearing wave, sVs., and the hardness N values of the soil. In general, the SSPT-N value was slightly lower than the SPT-N value due to the upper limit boundary of the soil layer.Keywords: InsituSoil determination; shearing wave; hardness; correlation, SSPT-N, SPT-N
Procedia PDF Downloads 183780 Laboratory Investigation of the Impact Resistance of High-Strength Reinforced Concrete Against Impact Loading
Authors: Hadi Rouhi Belvirdi
Abstract:
Reinforced concrete structures, in addition to bearing service loads and seismic effects, may also be subjected to impact loads resulting from unforeseen incidents. Understanding the behavior of these structures is crucial, as they serve to protect against such sudden loads and can significantly reduce damage and destruction. In examining the behavior of structures under such loading conditions, a total of eight specimens of single-layer reinforced concrete slabs were subjected to impact loading through the free fall of weights from specified heights. The weights and dimensions of the specimens were uniform, and the amount of reinforcement was consistent. By altering the slabs' overall shape and the reinforcement details, efforts were made to optimize the behavior of the slabs against impact loads. The results indicated that utilizing ductile features in the slabs increased their resistance to impact loading. However, the compressive strength of the reinforcement did not significantly enhance the flexural resistance. Assuming a constant amount of longitudinal steel, changes in the placement of tensile reinforcement led to a decrease in resistance. With a fixed amount of transverse steel, merely adjusting the angle of the transverse reinforcement could help control cracking and mitigate premature failures. An increase in compressive resistance beyond a certain limit resulted in local buckling of the compressive zone, subsequently decreasing the impact resistance.Keywords: reinforced concrete slab, high-strength concrete, impact loading, impact resistance
Procedia PDF Downloads 8779 Modeling Environmental, Social, and Governance Financial Assets with Lévy Subordinated Processes and Option Pricing
Authors: Abootaleb Shirvani, Svetlozar Rachev
Abstract:
ESG stands for Environmental, Social, and Governance and is a non-financial factor that investors use to specify material risks and growth opportunities in their analysis process. ESG ratings provide a quantitative measure of socially responsible investment, and it is essential to incorporate ESG ratings when modeling the dynamics of asset returns. In this article, we propose a triple subordinated Lévy process for incorporating numeric ESG ratings into dynamic asset pricing theory to model the time series properties of the stock returns. The motivation for introducing three layers of subordinator is twofold. The first two layers of subordinator capture the skew and fat-tailed properties of the stock return distribution that cannot be explained well by the existing Lévy subordinated model. The third layer of the subordinator introduces ESG valuation and incorporates numeric ESG ratings into dynamic asset pricing theory and option pricing. We employ the triple subordinator Lévy model for developing the ESG-valued stock return model, derive the implied ESG score surfaces for Microsoft, Apple, and Amazon stock returns, and compare the shape of the ESG implied surface scores for these stocks.Keywords: ESG scores, dynamic asset pricing theory, multiple subordinated modeling, Lévy processes, option pricing
Procedia PDF Downloads 79778 A Domain Specific Modeling Language Semantic Model for Artefact Orientation
Authors: Bunakiye R. Japheth, Ogude U. Cyril
Abstract:
Since the process of transforming user requirements to modeling constructs are not very well supported by domain-specific frameworks, it became necessary to integrate domain requirements with the specific architectures to achieve an integrated customizable solutions space via artifact orientation. Domain-specific modeling language specifications of model-driven engineering technologies focus more on requirements within a particular domain, which can be tailored to aid the domain expert in expressing domain concepts effectively. Modeling processes through domain-specific language formalisms are highly volatile due to dependencies on domain concepts or used process models. A capable solution is given by artifact orientation that stresses on the results rather than expressing a strict dependence on complicated platforms for model creation and development. Based on this premise, domain-specific methods for producing artifacts without having to take into account the complexity and variability of platforms for model definitions can be integrated to support customizable development. In this paper, we discuss methods for the integration capabilities and necessities within a common structure and semantics that contribute a metamodel for artifact-orientation, which leads to a reusable software layer with concrete syntax capable of determining design intents from domain expert. These concepts forming the language formalism are established from models explained within the oil and gas pipelines industry.Keywords: control process, metrics of engineering, structured abstraction, semantic model
Procedia PDF Downloads 140777 Theoretical Investigation of the Origin of Interfacial Ferromagnetism of (LaNiO₃)n/(CaMnO₃)m Superlattices
Authors: Jiwuer Jilili, Iogann Tolbatov, Mousumi U. Kahaly
Abstract:
Metal to insulator transition and interfacial magnetism of the LaNiO₃ based superlattice are main interest due to thickness dependent electronic response and tunable magnetic behavior. We investigate the structural, electronic, and magnetic properties of recently experimentally synthesized (LaNiO₃)n/(CaMnO₃)m superlattices with varying LaNiO₃ thickness using density functional theory. The effect of the on-site Coulomb interaction is discussed. In switching from zero to finite U value for Ni atoms, LaNiO₃ shows transitions from half-metallic to metallic character, while spinning ordering changes from paramagnetic to ferromagnetic (FM). For CaMnO₃, U < 3 eV on Mn atoms results in G-type anti-FM spin ordering whereas increasing U value yields FM ordering. In superlattices, metal to insulator transition was achieved with a reduction of LaNiO₃ thickness. The system with one layer of LaNiO₃ yields insulating character. Increasing LaNiO₃ to two layers and above results in the onset of the metallic character with a major contribution from Ni and Mn 3d eg states. Our results for interfacial ferromagnetism, induced Ni magnetic moments and novel antiferromagnetically coupled Ni atoms are consistent with the recent experimental findings. The possible origin of the emergent magnetism is proposed in terms of the exchange interaction and Anderson localization.Keywords: density functional theory, interfacial magnetism, metal-insulator transition, Ni magnetism.
Procedia PDF Downloads 229776 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification
Authors: Rujia Chen, Ajit Narayanan
Abstract:
Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels
Procedia PDF Downloads 185