Search results for: interactive architecture
877 The Implementation of the Multi-Agent Classification System (MACS) in Compliance with FIPA Specifications
Authors: Mohamed R. Mhereeg
Abstract:
The paper discusses the implementation of the MultiAgent classification System (MACS) and utilizing it to provide an automated and accurate classification of end users developing applications in the spreadsheet domain. However, different technologies have been brought together to build MACS. The strength of the system is the integration of the agent technology with the FIPA specifications together with other technologies, which are the .NET widows service based agents, the Windows Communication Foundation (WCF) services, the Service Oriented Architecture (SOA), and Oracle Data Mining (ODM). Microsoft's .NET windows service based agents were utilized to develop the monitoring agents of MACS, the .NET WCF services together with SOA approach allowed the distribution and communication between agents over the WWW. The Monitoring Agents (MAs) were configured to execute automatically to monitor excel spreadsheets development activities by content. Data gathered by the Monitoring Agents from various resources over a period of time was collected and filtered by a Database Updater Agent (DUA) residing in the .NET client application of the system. This agent then transfers and stores the data in Oracle server database via Oracle stored procedures for further processing that leads to the classification of the end user developers.Keywords: MACS, implementation, multi-agent, SOA, autonomous, WCF
Procedia PDF Downloads 274876 Attendance Management System Implementation Using Face Recognition
Authors: Zainab S. Abdullahi, Zakariyya H. Abdullahi, Sahnun Dahiru
Abstract:
Student attendance in schools is a very important aspect in school management record. In recent years, security systems have become one of the most demanding systems in school. Every institute have its own method of taking attendance, many schools in Nigeria use the old fashion way of taking attendance. That is writing the students name and registration number in a paper and submitting it to the lecturer at the end of the lecture which is time-consuming and insecure, because some students can write for their friends without the lecturer’s knowledge. In this paper, we propose a system that takes attendance using face recognition. There are many automatic methods available for this purpose i.e. biometric attendance, but they all waste time, because the students have to follow a queue to put their thumbs on a scanner which is time-consuming. This attendance is recorded by using a camera attached in front of the class room and capturing the student images, detect the faces in the image and compare the detected faces with database and mark the attendance. The principle component analysis was used to recognize the faces detected with a high accuracy rate. The paper reviews the related work in the field of attendance system, then describe the system architecture, software algorithm and result.Keywords: attendance system, face detection, face recognition, PCA
Procedia PDF Downloads 364875 Quality in Healthcare: An Autism-Friendly Hospital Emergency Waiting Room
Authors: Elena Bellini, Daniele Mugnaini, Michele Boschetto
Abstract:
People with an Autistic Spectrum Disorder and an Intellectual Disability who need to attend a Hospital Emergency Waiting Room frequently present high levels of discomfort and challenging behaviors due to stress-related hyperarousal, sensory sensitivity, novelty-anxiety, communication and self-regulation difficulties. Increased agitation and acting out also disturb the diagnostic and therapeutic processes, and the emergency room climate. Architectural design disciplines aimed at reducing distress in hospitals or creating autism-friendly environments are called for to find effective answers to this particular need. A growing number of researchers are considering the physical environment as an important point of intervention for people with autism. It has been shown that providing the right setting can help enhance confidence and self-esteem and can have a profound impact on their health and wellbeing. Environmental psychology has evaluated the perceived quality of care, looking at the design of hospital rooms, paths and circulation, waiting rooms, services and devices. Furthermore, many studies have investigated the influence of the hospital environment on patients, in terms of stress-reduction and therapeutic intervention’ speed, but also on health professionals and their work. Several services around the world are organizing autism-friendly hospital environments which involve the architecture and the specific staff training. In Italy, the association Spes contra spem has promoted and published, in 2013, the ‘Chart of disabled people in the hospital’. It stipulates that disabled people should have equal rights to accessible and high-quality care. There are a few Italian examples of therapeutic programmes for autistic people as the Dama project in Milan and the recent experience of Children and Autism Foundation in Pordenone. Careggi’s Emergency Waiting Room in Florence has been built to satisfy this challenge. This project of research comes from a collaboration between the technical staff of Careggi Hospital, the Center for autism PAMAPI and some architects expert in the sensory environment. The methodology of focus group involved architects, psychologists and professionals through a transdisciplinary research, centered on the links between the spatial characteristics and clinical state of people with ASD. The relationship between architectural space and quality of life is studied to pay maximum attention to users’ needs and to support the medical staff in their work by a specific program of training. The result of this research is a sum of criteria used to design the emergency waiting room, that will be illustrated. A protected room, with a clear space design, maximizes comprehension and predictability. The multisensory environment is thought to help sensory integration and relaxation. Visual communication through Ipad allows an anticipated understanding of medical procedures, and a specific technological system supports requests, choices and self-determination in order to fit sensory stimulation to personal preferences, especially for hypo and hypersensitive people. All these characteristics should ensure a better regulation of the arousal, less behavior problems, improving treatment accessibility, safety, and effectiveness. First results about patient-satisfaction levels will be presented.Keywords: accessibility of care, autism-friendly architecture, personalized therapeutic process, sensory environment
Procedia PDF Downloads 265874 Vibration-Based Data-Driven Model for Road Health Monitoring
Authors: Guru Prakash, Revanth Dugalam
Abstract:
A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.Keywords: SVM, data-driven, road health monitoring, pot-hole
Procedia PDF Downloads 86873 Goblet cells and Mucin Related Gene Expression in Mice Infected with Eimeria papillata
Authors: Mohamed A. Dkhil, Denis Delic, Saleh Al-Quraishy
Abstract:
Coccidiosis causes considerable economic loss in the poultry industry. The current study aimed to investigate the response of goblet cells as well as the induced tissue damage during Eimeria papilata infection. Mice were infected with sporulated E. papillata oocyts. On day 5 post-infection, the fecal output was determined. Also, the jejunum was prepared for the histological, histochemical and molecular studies. Our results revealed that the intestinal coccidian infection with E. papillata induced a marked goblet cell hypoplasia and depleted mucus secretion. Also, the infection was able to alter the jejuna architecture and increased the apoptotic cells inside the villi. In addition, the real time PCR results indicated that, the inflammatory cytokines TNF-α, iNOS, IFN-y and IL-1β were significantly up-regulated. In contrast, the mRNA expression patterns of IL-6 in response to E. papillata infection did not differ significantly between control and infected mice. Moreover, the mRNA expression of TLR4 was significantly up-regulated, whereas the expression of MUC2 is significantly down-regulated upon infection. Further studies are required to understand the regulatory mechanisms of goblet cells related genes.Keywords: goblet cells, Eimeria papillata, mice, jejunum
Procedia PDF Downloads 275872 Multimodal Direct Neural Network Positron Emission Tomography Reconstruction
Authors: William Whiteley, Jens Gregor
Abstract:
In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity.Keywords: deep learning, image reconstruction, machine learning, neural network, positron emission tomography
Procedia PDF Downloads 111871 Fault-Tolerant Configuration for T-Type Nested Neutral Point Clamped Converter
Authors: S. Masoud Barakati, Mohsen Rahmani Haredasht
Abstract:
Recently, the use of T-type nested neutral point clamped (T-NNPC) converter has increased in medium voltage applications. However, the T-NNPC converter architecture's reliability and continuous operation are at risk by including semiconductor switches. Semiconductor switches are a prone option for open-circuit faults. As a result, fault-tolerant converters are required to improve the system's reliability and continuous functioning. This study's primary goal is to provide a fault-tolerant T-NNPC converter configuration. In the proposed design utilizing the cold reservation approach, a redundant phase is considered, which replaces the faulty phase once the fault is diagnosed in each phase. The suggested fault-tolerant configuration can be easily implemented in practical applications due to the use of a simple PWM control mechanism. The performance evaluation of the proposed configuration under different scenarios in the MATLAB-Simulink environment proves its efficiency.Keywords: T-type nested neutral point clamped converter, reliability, continuous operation, open-circuit faults, fault-tolerant converters
Procedia PDF Downloads 121870 Best Practices in Designing a Mentoring Programme for Soft Skills Development
Authors: D. Kokt, T. F. Dreyer
Abstract:
The main objective of the study was to design a mentoring programme aimed at developing the soft skills of mentors. The mentors are all employed by a multinational corporation. The company had a mentoring plan in place that did not yield the required results, especially related to the development of soft skills. This prompted the researchers to conduct an extensive literature review followed by a mixed methods approach to ascertain the best practices in developing the soft skills of mentors. The outcomes of the study led to the development of a structured mentoring programme using 25 modules to be completed by mentors. The design incorporated a blended modular approach using both face-to-face teaching and teaching supported by Information Communication Technology (ICT). Blended learning was ideal as the ICT component helped to minimise instructor-mentor physical contact as part of the health measures during the Covid-19 pandemic. The blended learning approach also allowed instructors and mentors an online or offline mode, so that mentors could have more time for creative and cooperative exercises. A range of delivery methodologies were spread out across the different modules to ensure mentor engagement and accelerate mentor development. This included concept development through in-person instructor-led training sessions, concept development through virtual instructor-led training sessions, simulations, case studies, e-learning, role plays, interactive learning using mentoring toolkits, and experiential learning through application. The mentor development journey included formal modular competency assessments. All modules contained post-competency assessment consisting of 10 questions (comprising of a combination of explanatory questions and multiple-choice questions) to ensure understanding and deal with identified competency gaps. The minimum pass mark for all modular competency assessments was 80%. Mentors were allowed to retake the assessment if they scored less than 80% until they demonstrated understanding at the required level.Keywords: mentor, mentee, soft skills, mentor development, blended learning, modular approach
Procedia PDF Downloads 29869 Detection of Autism Spectrum Disorders in Children Aged 4-6 Years by Municipal Maternal and Child Health Physicians: An Educational Intervention Study
Authors: M. Van 'T Hof, R. V. Pasma, J. T. Bailly, H. W. Hoek, W. A. Ester
Abstract:
Background: The transition into primary school can be challenging for children with an autism spectrum disorder (ASD). Due to the new demands that are made to children in this period, their limitations in social functioning and school achievements may manifest and appear faster. Detection of possible ASD signals mainly takes place by parents, teachers and during obligatory municipal maternal and child health centre visits. Physicians of municipal maternal and child health centres have limited education and instruments to detect ASD. Further education on detecting ASD is needed to optimally equip these doctors for this task. Most research aims to increase the early detection of ASD in children aged 0-3 years and shows positive results. However, there is a lack of research on educational interventions to detect ASD in children aged 4-6 years by municipal maternal and child health physicians. Aim: The aim of this study is to explore the effect of the online educational intervention: Detection of ASD in children aged 4-6 years for municipal maternal and child health physicians. This educational intervention is developed within The Reach-Aut Academic Centre for Autism; Transitions in education, and will be available throughout The Netherlands. Methods: Ninety-two participants will follow the educational intervention: Detection of ASD in children aged 4-6 years for municipal maternal and child health centre physicians. The educational intervention consists of three, one and a half hour sessions, which are offered through an online interactive classroom. The focus and content of the course has been developed in collaboration with three groups of stakeholders; autism scientists, clinical practitioners (municipal maternal and child health doctors and ASD experts) and parents of children with ASD. The primary outcome measure is knowledge about ASD: signals, early detection, communication with parents and referrals. The secondary outcome measures are the number of ASD related referrals, the attitude towards the mentally ill (CAMI), perceived competency about ASD knowledge and detection skills, and satisfaction about the educational intervention. Results and Conclusion: The study started in January 2016 and data collection will end mid 2017.Keywords: ASD, child, detection, educational intervention, physicians
Procedia PDF Downloads 293868 Promoting Creative and Critical Thinking in Mathematics
Authors: Ana Maria Reis D'Azevedo Breda, Catarina Maria Neto da Cruz
Abstract:
The Japanese art of origami provides a rich context for designing exploratory mathematical activities for children and young people. By folding a simple sheet of paper, fascinating and surprising planar and spatial configurations emerge. Equally surprising is the unfolding process, which also produces striking patterns. The procedure of folding, unfolding, and folding again allows the exploration of interesting geometric patterns. When adequately and systematically done, we may deduce some of the mathematical rules ruling origami. As the child/youth folds the sheet of paper repeatedly, he can physically observe how the forms he obtains are transformed and how they relate to the pattern of the corresponding unfolding, creating space for the understanding/discovery of mathematical principles regulating the folding-unfolding process. As part of a 2023 Summer Academy organized by a Portuguese university, a session entitled “Folding, Thinking and Generalizing” took place. Twenty-three students attended the session, all enrolled in the 2nd cycle of Portuguese Basic Education and aged between 10 and 12 years old. The main focus of this session was to foster the development of critical cognitive and socio-emotional skills among these young learners using origami. These skills included creativity, critical analysis, mathematical reasoning, collaboration, and communication. Employing a qualitative, descriptive, and interpretative analysis of data collected during the session through field notes and students’ written productions, our findings reveal that structured origami-based activities not only promote student engagement with mathematical concepts in a playful and interactive but also facilitate the development of socio-emotional skills, which include collaboration and effective communication between participants. This research highlights the value of integrating origami into educational practices, highlighting its role in supporting comprehensive cognitive and emotional learning experiences.Keywords: skills, origami rules, active learning, hands-on activities
Procedia PDF Downloads 67867 The Role of Situational Factors in User Experience during Human-Robot Interaction
Authors: Da Tao, Tieyan Wang, Mingfu Qin
Abstract:
While social robots have been increasingly developed and rapidly applied in our daily life, how robots should interact with humans is still an urgent problem to be explored. Appropriate use of interactive behavior is likely to create a good user experience in human-robot interaction situations, which in turn can improve people’s acceptance of robots. This paper aimed to systematically and quantitatively examine the effects of several important situational factors (i.e., interaction distance, interaction posture, and feedback style) on user experience during human-robot interaction. A three-factor mixed designed experiment was adopted in this study, where subjects were asked to interact with a social robot in different interaction situations by combinations of varied interaction distance, interaction posture, and feedback style. A set of data on users’ behavioral performance, subjective perceptions, and eye movement measures were tracked and collected, and analyzed by repeated measures analysis of variance. The results showed that the three situational factors showed no effects on behavioral performance in tasks during human-robot interaction. Interaction distance and feedback style yielded significant main effects and interaction effects on the proportion of fixation times. The proportion of fixation times on the robot is higher for negative feedback compared with positive feedback style. While the proportion of fixation times on the robot generally decreased with the increase of the interaction distance, it decreased more under the positive feedback style than under the negative feedback style. In addition, there were significant interaction effects on pupil diameter between interaction distance and posture. As interaction distance increased, mean pupil diameter became smaller in side interaction, while it became larger in frontal interaction. Moreover, the three situation factors had significant interaction effects on user acceptance of the interaction mode. The findings are helpful in the underlying mechanism of user experience in human-robot interaction situations and provide important implications for the design of robot behavioral expression and for optimal strategies to improve user experience during human-robot interaction.Keywords: social robots, human-robot interaction, interaction posture, interaction distance, feedback style, user experience
Procedia PDF Downloads 132866 Robust ResNets for Chemically Reacting Flows
Authors: Randy Price, Harbir Antil, Rainald Löhner, Fumiya Togashi
Abstract:
Chemically reacting flows are common in engineering applications such as hypersonic flow, combustion, explosions, manufacturing process, and environmental assessments. The number of reactions in combustion simulations can exceed 100, making a large number of flow and combustion problems beyond the capabilities of current supercomputers. Motivated by this, deep neural networks (DNNs) will be introduced with the goal of eventually replacing the existing chemistry software packages with DNNs. The DNNs used in this paper are motivated by the Residual Neural Network (ResNet) architecture. In the continuum limit, ResNets become an optimization problem constrained by an ODE. Such a feature allows the use of ODE control techniques to enhance the DNNs. In this work, DNNs are constructed, which update the species un at the nᵗʰ timestep to uⁿ⁺¹ at the n+1ᵗʰ timestep. Parallel DNNs are trained for each species, taking in uⁿ as input and outputting one component of uⁿ⁺¹. These DNNs are applied to multiple species and reactions common in chemically reacting flows such as H₂-O₂ reactions. Experimental results show that the DNNs are able to accurately replicate the dynamics in various situations and in the presence of errors.Keywords: chemical reacting flows, computational fluid dynamics, ODEs, residual neural networks, ResNets
Procedia PDF Downloads 120865 Rethinking Classical Concerts in the Digital Era: Transforming Sound, Experience, and Engagement for the New Generation
Authors: Orit Wolf
Abstract:
Classical music confronts a crucial challenge: updating cherished concert traditions for the digital age. This paper is a journey, and a quest to make classical concerts resonate with a new generation. It's not just about asking questions; it's about exploring the future of classical concerts and their potential to captivate and connect with today's audience in an era defined by change. The younger generation, known for their love of diversity, interactive experiences, and multi-sensory immersion, cannot be overlooked. This paper explores innovative strategies that forge deep connections with audiences whose relationship with classical music differs from the past. The urgency of this challenge drives the transformation of classical concerts. Examining classical concerts is necessary to understand how they can harmonize with contemporary sensibilities. New dimensions in audiovisual experiences that enchant the emerging generation are sought. Classical music must embrace the technological era while staying open to fusion and cross-cultural collaboration possibilities. The role of technology and Artificial Intelligence (AI) in reshaping classical concerts is under research. The fusion of classical music with digital experiences and dynamic interdisciplinary collaborations breathes new life into the concert experience. It aligns classical music with the expectations of modern audiences, making it more relevant and engaging. Exploration extends to the structure of classical concerts. Conventions are challenged, and ways to make classical concerts more accessible and captivating are sought. Inspired by innovative artistic collaborations, musical genres and styles are redefined, transforming the relationship between performers and the audience. This paper, therefore, aims to be a catalyst for dialogue and a beacon of innovation. A set of critical inquiries integral to reshaping classical concerts for the digital age is presented. As the world embraces digital transformation, classical music seeks resonance with contemporary audiences, redefining the concert experience while remaining true to its roots and embracing revolutions in the digital age.Keywords: new concert formats, reception of classical music, interdiscplinary concerts, innovation in the new musical era, mash-up, cross culture, innovative concerts, engaging musical performances
Procedia PDF Downloads 64864 Fast Prediction Unit Partition Decision and Accelerating the Algorithm Using Cudafor Intra and Inter Prediction of HEVC
Authors: Qiang Zhang, Chun Yuan
Abstract:
Since the PU (Prediction Unit) decision process is the most time consuming part of the emerging HEVC (High Efficient Video Coding) standardin intra and inter frame coding, this paper proposes the fast PU decision algorithm and speed up the algorithm using CUDA (Compute Unified Device Architecture). In intra frame coding, the fast PU decision algorithm uses the texture features to skip intra-frame prediction or terminal the intra-frame prediction for smaller PU size. In inter frame coding of HEVC, the fast PU decision algorithm takes use of the similarity of its own two Nx2N size PU's motion vectors and the hierarchical structure of CU (Coding Unit) partition to skip some modes of PU partition, so as to reduce the motion estimation times. The accelerate algorithm using CUDA is based on the fast PU decision algorithm which uses the GPU to make the motion search and the gradient computation could be parallel computed. The proposed algorithm achieves up to 57% time saving compared to the HM 10.0 with little rate-distortion losses (0.043dB drop and 1.82% bitrate increase on average).Keywords: HEVC, PU decision, inter prediction, intra prediction, CUDA, parallel
Procedia PDF Downloads 399863 Effectiveness of an Attachment-Based Intervention on Child Cognitive Development: Preliminary Analyses of a 12-Month Follow-Up
Authors: Claire Baudry, Jessica Pearson, Laura-Emilie Savage, George Tarbulsy
Abstract:
Introduction: Over the last decade, researchers have implemented attachment-based interventions to promote parental interactive sensitivity and child development among vulnerable families. In the context of the present study, these interventions have been shown to be effective to enhance cognitive development when child outcome was measured shortly after the intervention. Objectives: The goal of the study was to investigate the effects of an attachment-based intervention on child cognitive development one year post-intervention. Methods: Thirty-five mother-child dyads referred by Child Protective Services in the province of Québec, Canada, were included in this study: 21 dyads who received 6 to 8 intervention sessions and 14 dyads not exposed to the intervention and matched for the following variables: duration of child protective services, reason for involvement with child protection, age, sex and family status. Child cognitive development was measured using the WPPSI-IV, 12 months after the end of the intervention when the average age of children was 54 months old. Findings: An independent-samples t-test was conducted to compare the scores obtained on the WPPSI-IV for the two groups. In general, no differences were observed between the two groups. There was a significant difference on the fluid reasoning scale between children exposed to the intervention (M = 95,13, SD = 16,67) and children not exposed (M = 81, SD = 9,90). T (23) = -2,657; p= .014 (IC :-25.13;3.12). This difference was found only for children aged between 48 and 92 months old. Other results did not show any significant difference between the two groups (Global IQ or subscales). Conclusions: This first set of analyses suggest that relatively little effects of attachment-based intervention remain on the level of cognitive functioning 12-months post-intervention. It is possible that the significant findings concerning fluid reasoning may be pertinent in that fluid reasoning is linked to the capacity to analyse, to solve problems, and remember information, which may be important for promoting school readiness. As the study is completed and as more information is gained from other assessments of cognitive and socioemotional outcome, a clearer picture of the potential moderate-term impact of attachment-based intervention will emerge.Keywords: attachment-based intervention, child development, child protective services, cognitive development
Procedia PDF Downloads 173862 To Upgrade Quality Services of Fashion Designer by Minimizing thought Communication Gap, Using the Projective Personality Tests
Authors: A. Hira Masood, B. Umer Hameed, C. Ezza Nasir
Abstract:
Contemporary studies support the strong co-relation between psychology and design. This study elaborates how different psychological personality test can help a fashion designer to judge the needs of their clients with respect to have products which will satisfy the client's request concerning costumised clothing. This study will also help the designer to improve the lacking in the personality and will enable him to put his effort in required areas for grooming the customer, control and direct organization regarding quality maintenance. The use of psychology test to support the choice of certain design strategies that how the right clothing can make client a better intellectual with enhanced self-esteem and confidence. Different projective personality test are being used to suggest to evaluate personality traits. The Rorschach Inkblot Test is projective mental comprising of 10 ink-blots synonymous with the clinical brain research. Lüsher Color Diagnostics measures a person’s psycho physical state, his or her ability to withstand stress to perform and communicate. HTP is a projective responsibility test measuring self-perception, attitudes. The TAT test intend to evaluate a person’s patterns of thoughts, attitudes, observation, capacity and emotional response to this ambiguous test materials. No doubt designers are already crucially redesigning the individuals by their attires, but to expose the behavioral mechanism of the customer, designers should be able to recognize the hidden complexity behind his client by using the above mentioned methods. The study positively finds the design and psychology need to become substantially contacted in order to create a new regime of norms to groom a personality under the concentration and services of a fashion designer in terms of clothing, This interactive activity altimately upgrade design team to help customers to find the suited way to satisfy their needs and wishes, offer client relible relationship and quality management services, and to become more disereable.Keywords: projective personality tests, customized clothing, Rorschach Inkblot test, TAT, HTP, Lüsher color diagnostics, quality management services
Procedia PDF Downloads 557861 Flood Simulation and Forecasting for Sustainable Planning of Response in Municipalities
Authors: Mariana Damova, Stanko Stankov, Emil Stoyanov, Hristo Hristov, Hermand Pessek, Plamen Chernev
Abstract:
We will present one of the first use cases on the DestinE platform, a joint initiative of the European Commission, European Space Agency and EUMETSAT, providing access to global earth observation, meteorological and statistical data, and emphasize the good practice of intergovernmental agencies acting in concert. Further, we will discuss the importance of space-bound disruptive solutions for improving the balance between the ever-increasing water-related disasters coming from climate change and minimizing their economic and societal impact. The use case focuses on forecasting floods and estimating the impact of flood events on the urban environment and the ecosystems in the affected areas with the purpose of helping municipal decision-makers to analyze and plan resource needs and to forge human-environment relationships by providing farmers with insightful information for improving their agricultural productivity. For the forecast, we will adopt an EO4AI method of our platform ISME-HYDRO, in which we employ a pipeline of neural networks applied to in-situ measurements and satellite data of meteorological factors influencing the hydrological and hydrodynamic status of rivers and dams, such as precipitations, soil moisture, vegetation index, snow cover to model flood events and their span. ISME-HYDRO platform is an e-infrastructure for water resources management based on linked data, extended with further intelligence that generates forecasts with the method described above, throws alerts, formulates queries, provides superior interactivity and drives communication with the users. It provides synchronized visualization of table views, graphviews and interactive maps. It will be federated with the DestinE platform.Keywords: flood simulation, AI, Earth observation, e-Infrastructure, flood forecasting, flood areas localization, response planning, resource estimation
Procedia PDF Downloads 21860 Using the Geographical Information Systems Story Maps in the Planning and Implementation of the Integrated Development Plan at the City of Umhlathuze, South Africa
Authors: Sibonakaliso Shadrack Nhlabathi
Abstract:
In South Africa local governments which are charged with the provision of services and amenities, frequently, face challenges of public protests against what the public perceives to be poor services. Public protests are common, even though the Integrated Development Plan, a central public participation document, which informs local government planning and resources management, ought to be a reflection of the voices of the beneficiary communities. The Integrated Development Plan concept –which evolved from the international discourse on governance, planning, and urban management of the 1990s, and, which bears similarities to the UK’s approaches to urban management and planning– is a significant concept in the planning practice in South Africa. Against this backdrop of the spread of public protests and the supposedly public participation in IDP formulation, this study investigated the extent to which residents of the city of uMhlathuze municipality, South Africa, could use Geographical Information Systems (GIS) Story Maps to enhance public participation in the provision of services and amenities. To this effect, this study collected and analysed data obtained through interactive web maps or hard copy maps; this map data was accompanied by research participants’ attributes data. Research participants identified positive or negative service delivery areas. Positive places were the places which the residents represented as good infrastructural, and amenities areas and weak places were marked as poor amenities. Participants then located each of their identified strong or weak places as points on the GIS Story Maps or on hard copy maps of the city. The information which participants provided was subsequently analysed to produce maps of patterns of service provision. In this way, the study succeeded to identify places that needed attention regarding delivery of services and amenities. Thus, this study advanced service provision through GIS Story Maps.Keywords: GIS, IPD, South Africa, story maps
Procedia PDF Downloads 125859 Facade Design Impact on the Urban Landscape
Authors: Seyyed Hossein Alavi, Soudabe Mehri Talarposhti
Abstract:
Passages urban landscape is made up of various components that the component parts of the whole and vice versa has relationships. In today’s cities, we have not seen a dual relationship and only one side of the equation which is the relationships of the component parts are considered. However, the effect of the component to whole is stronger and also longer. This means that every time the outer shell of the building was constructed instant impact on the viewers while it takes a long time to understand the impact of the building in its environment and basically, it seems city portrait has the sensory and untouchable effect on observer. Today, building facades are designated individually and in isolation from the context. Designers are familiar with the details of the facade, but they are not informed with the science of combination and its impact on portrait. The importance of city and also more important than that, the city portrait haven’t confirmed for those involved in the building and authorities and the construction been changed to a market for more glaring taste of designers and attracting more business and the city and its landscape has been forgotten. This essay is an attempt to collect a part of the principles and definitions needed on perspective issues and portrait, and it is hoped that it will open arena for more research and studies in this field and other related fields.Keywords: facade, urban housing, urban design, sustainable architecture
Procedia PDF Downloads 485858 Product Feature Modelling for Integrating Product Design and Assembly Process Planning
Authors: Baha Hasan, Jan Wikander
Abstract:
This paper describes a part of the integrating work between assembly design and assembly process planning domains (APP). The work is based, in its first stage, on modelling assembly features to support APP. A multi-layer architecture, based on feature-based modelling, is proposed to establish a dynamic and adaptable link between product design using CAD tools and APP. The proposed approach is based on deriving “specific function” features from the “generic” assembly and form features extracted from the CAD tools. A hierarchal structure from “generic” to “specific” and from “high level geometrical entities” to “low level geometrical entities” is proposed in order to integrate geometrical and assembly data extracted from geometrical and assembly modelers to the required processes and resources in APP. The feature concept, feature-based modelling, and feature recognition techniques are reviewed.Keywords: assembly feature, assembly process planning, feature, feature-based modelling, form feature, ontology
Procedia PDF Downloads 309857 The Effectiveness of Laughing Qigong for Women with Breast Cancer in Community
Authors: Chueh Chang, Chia-jung Hsieh, Fu-yu Yu, Yu-Hwa Lin
Abstract:
Background:The majority of women diagnosed with breast cancer undergo treatment involving surgery and radiotherapy or chemotherapy, or both. With these major advances in breast cancer management, many patients still have to deal with short or long-term side effects and psychological distress related to the disease and treatment, which have a substantial impact on their quality of life. The Laughing Qigong Program (LQP) is an interactive laughter program that combines the physical and physiological benefits of laughter with the mental benefits of Chinese qigong. Purpose: In order to improve the quality of life for breast cancer women in the community as well as echoing the WHO 2004 “Promoting Mental Health” for every one. This study focused on how to promote the positive mental health for women of breast cancer through the “laughter program” in Taiwan. During the presentation, how to practice Laughing Qigong will be demonstrated. Method: Using nonequivalent pretest-posttest design, ix-one breast cancer patients were volunteered to enroll in this study from the Taiwan Breast Cancer Alliance (TBCA). Thirty patients were assigned to the experimental group and the other 31 patients were assigned to the control group. The women who were assigned to the experimental group received laughter program one hour per session, once a week, totally 12 sessions. All subjects were tested before and after the intervention on the following: Self-Esteem scale (RSE), Face Scale (FS), Anxiety and pain experience were measured as psychological markers; saliva cortisol (CS) as an immunological marker; blood pressure (BP), heart rate (HR),and heart rate variability (HRV) as physiological markers of the body’s response to stress. Results: After comparing the experimental and control groups, the results revealed that those breast cancer women with “laughing program” their sense of humor were improved, less uncomfortable on self report physical conditions, more positive attitudes toward stress management by using laughter, and had emotional improvement according to the face scale.Keywords: mental health promotion, breast cancer, laughing Qigong, women
Procedia PDF Downloads 489856 Assessing Impacts of Climate Variability and Change on Water Productivity and Nutrient Use Efficiency of Maize in the Semi-arid Central Rift Valley of Ethiopia
Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke
Abstract:
Changes in precipitation, temperature and atmospheric CO2 concentration are expected to alter agricultural productivity patterns worldwide. The interactive effects of soil moisture and nutrient availability are the two key edaphic factors that determine crop yield and are sensitive to climatic changes. The study assessed the potential impacts of climate change on maize yield and corresponding water productivity and nutrient use efficiency under climate change scenarios for the Central Rift Valley of Ethiopia by mid (2041-2070) and end century (2071-2100). Projected impacts were evaluated using climate scenarios generated from four General Circulation Models (GCMs) dynamically downscaled by the Swedish RCA4 Regional Climate Model (RCM) in combination with two Representative Concentration Pathways (RCP 4.5 and RCP8.5). Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate yield, water and nutrient use for the study periods. Results indicate that rainfed maize yield might decrease on average by 16.5 and 23% by the 2050s and 2080s, respectively, due to climate change. Water productivity is expected to decline on average by 2.2 and 12% in the CRV by mid and end centuries with respect to the baseline. Nutrient uptake and corresponding nutrient use efficiency (NUE) might also be negatively affected by climate change. Phosphorus uptake probably will decrease in the CRV on average by 14.5 to 18% by 2050s, while N uptake may not change significantly at Melkassa. Nitrogen and P use efficiency indicators showed decreases in the range between 8.5 to 10.5% and between 9.3 to 10.5%, respectively, by 2050s relative to the baseline average. The simulation results further indicated that a combination of increased water availability and optimum nutrient application might increase both water productivity and nutrient use efficiency in the changed climate, which can ensure modest production in the future. Potential options that can improve water availability and nutrient uptake should be identified for the study locations using a crop modeling approach.Keywords: crop model, climate change scenario, nutrient uptake, nutrient use efficiency, water productivity
Procedia PDF Downloads 86855 Animations for Teaching Food Chemistry: A Design Approach for Linking Chemistry Theory to Everyday Food
Authors: Paulomi (Polly) Burey, Zoe Lynch
Abstract:
In STEM education, students often have difficulty linking static images and words from textbooks or online resources, to the underlying mechanisms of the topic of study. This can often dissuade some students from pursuing study in the physical and chemical sciences. A growing movement in current day students demonstrates that the YouTube generation feel they learn best from video or dynamic, interactive learning tools, and will seek these out as alternatives to their textbooks and the classroom learning environment. Chemistry, and in particular visualization of molecular structures in everyday materials, can prove difficult to comprehend without significant interaction with the teacher of the content and concepts, beyond the timeframe of a typical class. This can cause a learning hurdle for distance education students, and so it is necessary to provide strong electronic tools and resources to aid their learning. As one of the electronic resources, an animation design approach to link everyday materials to their underlying chemistry would be beneficial for student learning, with the focus here being on food. These animations were designed and storyboarded with a scaling approach and commence with a focus on the food material itself and its component parts. This is followed by animated transitions to its underlying microstructure and identifying features, and finally showing the molecules responsible for these microstructural features. The animation ends with a reverse transition back through the molecular structure, microstructure, all the way back to the original food material, and also animates some reactions that may occur during food processing to demonstrate the purpose of the underlying chemistry and how it affects the food we eat. Using this cyclical approach of linking students’ existing knowledge of food to help guide them to understanding more complex knowledge, and then reinforcing their learning by linking back to their prior knowledge again, enhances student understanding. Food is also an ideal material system for students to interact with, in a hands-on manner to further reinforce their learning. These animations were launched this year in a 2nd year University Food Chemistry course with improved learning outcomes for the cohort.Keywords: chemistry, food science, future pedagogy, STEM Education
Procedia PDF Downloads 159854 150 KVA Multifunction Laboratory Test Unit Based on Power-Frequency Converter
Authors: Bartosz Kedra, Robert Malkowski
Abstract:
This paper provides description and presentation of laboratory test unit built basing on 150 kVA power frequency converter and Simulink RealTime platform. Assumptions, based on criteria which load and generator types may be simulated using discussed device, are presented, as well as control algorithm structure. As laboratory setup contains transformer with thyristor controlled tap changer, a wider scope of setup capabilities is presented. Information about used communication interface, data maintenance, and storage solution as well as used Simulink real-time features is presented. List and description of all measurements are provided. Potential of laboratory setup modifications is evaluated. For purposes of Rapid Control Prototyping, a dedicated environment was used Simulink RealTime. Therefore, load model Functional Unit Controller is based on a PC computer with I/O cards and Simulink RealTime software. Simulink RealTime was used to create real-time applications directly from Simulink models. In the next step, applications were loaded on a target computer connected to physical devices that provided opportunity to perform Hardware in the Loop (HIL) tests, as well as the mentioned Rapid Control Prototyping process. With Simulink RealTime, Simulink models were extended with I/O cards driver blocks that made automatic generation of real-time applications and performing interactive or automated runs on a dedicated target computer equipped with a real-time kernel, multicore CPU, and I/O cards possible. Results of performed laboratory tests are presented. Different load configurations are described and experimental results are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area and arbitrary active and reactive power regulation basing on defined schedule.Keywords: MATLAB, power converter, Simulink Real-Time, thyristor-controlled tap changer
Procedia PDF Downloads 323853 Mitigating Self-Regulation Issues in the Online Instruction of Math
Authors: Robert Vanderburg, Michael Cowling, Nicholas Gibson
Abstract:
Mathematics is one of the core subjects taught in the Australian K-12 education system and is considered an important component for future studies in areas such as engineering and technology. In addition to this, Australia has been a world leader in distance education due to the vastness of its geographic landscape. Despite this, research is still needed on distance math instruction. Even though delivery of curriculum has given way to online studies, and there is a resultant push for computer-based (PC, tablet, smartphone) math instruction, much instruction still involves practice problems similar to those original curriculum packs, without the ability for students to self-regulate their learning using the full interactive capabilities of these devices. Given this need, this paper addresses issues students have during online instruction. This study consists of 32 students struggling with mathematics enrolled in a math tutorial conducted in an online setting. The study used a case study design to understand some of the blockades hindering the students’ success. Data was collected by tracking students practice and quizzes, tracking engagement of the site, recording one-on-one tutorials, and collecting data from interviews with the students. Results revealed that when students have cognitively straining tasks in an online instructional setting, the first thing to dissipate was their ability to self-regulate. The results also revealed that instructors could ameliorate the situation and provided useful data on strategies that could be used for designing future online tasks. Specifically, instructors could utilize cognitive dissonance strategies to reduce the cognitive drain of the tasks online. They could segment the instruction process to reduce the cognitive demands of the tasks and provide in-depth self-regulatory training, freeing mental capacity for the mathematics content. Finally, instructors could provide specific scheduling and assignment structure changes to reduce the amount of student centered self-regulatory tasks in the class. These findings will be discussed in more detail and summarized in a framework that can be used for future work.Keywords: digital education, distance education, mathematics education, self-regulation
Procedia PDF Downloads 136852 Brief Guide to Cloud-Based AI Prototyping: Key Insights from Selected Case Studies Using Google Cloud Platform
Authors: Kamellia Reshadi, Pranav Ragji, Theodoros Soldatos
Abstract:
Recent advancements in cloud computing and storage, along with rapid progress in artificial intelligence (AI), have transformed approaches to developing efficient, scalable applications. However, integrating AI with cloud computing poses challenges as these fields are often disjointed, and many advancements remain difficult to access, obscured in complex documentation or scattered across research reports. For this reason, we share experiences from prototype projects combining these technologies. Specifically, we focus on Google Cloud Platform (GCP) functionalities and describe vision and speech activities applied to labeling, subtitling, and urban traffic flow tasks. We describe challenges, pricing, architecture, and other key features, considering the goal of real-time performance. We hope our demonstrations provide not only essential guidelines for using these functionalities but also enable more similar approaches.Keywords: artificial intelligence, cloud computing, real-time applications, case studies, knowledge management, research and development, text labeling, video annotation, urban traffic analysis, public safety, prototyping, Google Cloud Platform
Procedia PDF Downloads 12851 Ensemble of Deep CNN Architecture for Classifying the Source and Quality of Teff Cereal
Authors: Belayneh Matebie, Michael Melese
Abstract:
The study focuses on addressing the challenges in classifying and ensuring the quality of Eragrostis Teff, a small and round grain that is the smallest cereal grain. Employing a traditional classification method is challenging because of its small size and the similarity of its environmental characteristics. To overcome this, this study employs a machine learning approach to develop a source and quality classification system for Teff cereal. Data is collected from various production areas in the Amhara regions, considering two types of cereal (high and low quality) across eight classes. A total of 5,920 images are collected, with 740 images for each class. Image enhancement techniques, including scaling, data augmentation, histogram equalization, and noise removal, are applied to preprocess the data. Convolutional Neural Network (CNN) is then used to extract relevant features and reduce dimensionality. The dataset is split into 80% for training and 20% for testing. Different classifiers, including FVGG16, FINCV3, QSCTC, EMQSCTC, SVM, and RF, are employed for classification, achieving accuracy rates ranging from 86.91% to 97.72%. The ensemble of FVGG16, FINCV3, and QSCTC using the Max-Voting approach outperforms individual algorithms.Keywords: Teff, ensemble learning, max-voting, CNN, SVM, RF
Procedia PDF Downloads 53850 A Smart Contract Project: Peer-to-Peer Energy Trading with Price Forecasting in Microgrid
Authors: Şakir Bingöl, Abdullah Emre Aydemir, Abdullah Saado, Ahmet Akıl, Elif Canbaz, Feyza Nur Bulgurcu, Gizem Uzun, Günsu Bilge Dal, Muhammedcan Pirinççi
Abstract:
Smart contracts, which can be applied in many different areas, from financial applications to the internet of things, come to the fore with their security, low cost, and self-executing features. In this paper, it is focused on peer-to-peer (P2P) energy trading and the implementation of the smart contract on the Ethereum blockchain. It is assumed a microgrid consists of consumers and prosumers that can produce solar and wind energy. The proposed architecture is a system where the prosumer makes the purchase or sale request in the smart contract and the maximum price obtained through the distribution system operator (DSO) by forecasting. It is aimed to forecast the hourly maximum unit price of energy by using deep learning instead of a fixed pricing. In this way, it will make the system more reliable as there will be more dynamic and accurate pricing. For this purpose, Istanbul's energy generation, energy consumption and market clearing price data were used. The consistency of the available data and forecasting results is observed and discussed with graphs.Keywords: energy trading smart contract, deep learning, microgrid, forecasting, Ethereum, peer to peer
Procedia PDF Downloads 138849 High Performance Field Programmable Gate Array-Based Stochastic Low-Density Parity-Check Decoder Design for IEEE 802.3an Standard
Authors: Ghania Zerari, Abderrezak Guessoum, Rachid Beguenane
Abstract:
This paper introduces high-performance architecture for fully parallel stochastic Low-Density Parity-Check (LDPC) field programmable gate array (FPGA) based LDPC decoder. The new approach is designed to decrease the decoding latency and to reduce the FPGA logic utilisation. To accomplish the target logic utilisation reduction, the routing of the proposed sub-variable node (VN) internal memory is designed to utilize one slice distributed RAM. Furthermore, a VN initialization, using the channel input probability, is achieved to enhance the decoder convergence, without extra resources and without integrating the output saturated-counters. The Xilinx FPGA implementation, of IEEE 802.3an standard LDPC code, shows that the proposed decoding approach attain high performance along with reduction of FPGA logic utilisation.Keywords: low-density parity-check (LDPC) decoder, stochastic decoding, field programmable gate array (FPGA), IEEE 802.3an standard
Procedia PDF Downloads 297848 Enhancing the Effectiveness of Air Defense Systems through Simulation Analysis
Authors: F. Felipe
Abstract:
Air Defense Systems contain high-value assets that are expected to fulfill their mission for several years - in many cases, even decades - while operating in a fast-changing, technology-driven environment. Thus, it is paramount that decision-makers can assess how effective an Air Defense System is in the face of new developing threats, as well as to identify the bottlenecks that could jeopardize the security of the airspace of a country. Given the broad extent of activities and the great variety of assets necessary to achieve the strategic objectives, a systems approach was taken in order to delineate the core requirements and the physical architecture of an Air Defense System. Then, value-focused thinking helped in the definition of the measures of effectiveness. Furthermore, analytical methods were applied to create a formal structure that preliminarily assesses such measures. To validate the proposed methodology, a powerful simulation was also used to determine the measures of effectiveness, now in more complex environments that incorporate both uncertainty and multiple interactions of the entities. The results regarding the validity of this methodology suggest that the approach can support decisions aimed at enhancing the capabilities of Air Defense Systems. In conclusion, this paper sheds some light on how consolidated approaches of Systems Engineering and Operations Research can be used as valid techniques for solving problems regarding a complex and yet vital matter.Keywords: air defense, effectiveness, system, simulation, decision-support
Procedia PDF Downloads 156