Search results for: feature detection and description
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5433

Search results for: feature detection and description

3693 Multi Biomertric Personal Identification System Based On Hybird Intellegence Method

Authors: Laheeb M. Ibrahim, Ibrahim A. Salih

Abstract:

Biometrics is a technology that has been widely used in many official and commercial identification applications. The increased concerns in security during recent years (especially during the last decades) have essentially resulted in more attention being given to biometric-based verification techniques. Here, a novel fusion approach of palmprint, dental traits has been suggested. These traits which are authentication techniques have been employed in a range of biometric applications that can identify any postmortem PM person and antemortem AM. Besides improving the accuracy, the fusion of biometrics has several advantages such as increasing, deterring spoofing activities and reducing enrolment failure. In this paper, a first unimodel biometric system has been made by using (palmprint and dental) traits, for each one classification applying an artificial neural network and a hybrid technique that combines swarm intelligence and neural network together, then attempt has been made to combine palmprint and dental biometrics. Principally, the fusion of palmprint and dental biometrics and their potential application has been explored as biometric identifiers. To address this issue, investigations have been carried out about the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. Also the results of the multimodal approach have been compared with each one of these two traits authentication approaches. This paper studies the features and decision fusion levels in multimodal biometrics. To determine the accuracy of GAR to parallel system decision-fusion including (AND, OR, Majority fating) has been used. The backpropagation method has been used for classification and has come out with result (92%, 99%, 97%) respectively for GAR, while the GAR) for this algorithm using hybrid technique for classification (95%, 99%, 98%) respectively. To determine the accuracy of the multibiometric system for feature level fusion has been used, while the same preceding methods have been used for classification. The results have been (98%, 99%) respectively while to determine the GAR of feature level different methods have been used and have come out with (98%).

Keywords: back propagation neural network BP ANN, multibiometric system, parallel system decision-fusion, practical swarm intelligent PSO

Procedia PDF Downloads 527
3692 The Relationship between Spindle Sound and Tool Performance in Turning

Authors: N. Seemuang, T. McLeay, T. Slatter

Abstract:

Worn tools have a direct effect on the surface finish and part accuracy. Tool condition monitoring systems have been developed over a long period and used to avoid a loss of productivity resulting from using a worn tool. However, the majority of tool monitoring research has applied expensive sensing systems not suitable for production. In this work, the cutting sound in turning machine was studied using microphone. Machining trials using seven cutting conditions were conducted until the observable flank wear width (FWW) on the main cutting edge exceeded 0.4 mm. The cutting inserts were removed from the tool holder and the flank wear width was measured optically. A microphone with built-in preamplifier was used to record the machining sound of EN24 steel being face turned by a CNC lathe in a wet cutting condition using constant surface speed control. The sound was sampled at 50 kS/s and all sound signals recorded from microphone were transformed into the frequency domain by FFT in order to establish the frequency content in the audio signature that could be then used for tool condition monitoring. The extracted feature from audio signal was compared to the flank wear progression on the cutting inserts. The spectrogram reveals a promising feature, named as ‘spindle noise’, which emits from the main spindle motor of turning machine. The spindle noise frequency was detected at 5.86 kHz of regardless of cutting conditions used on this particular CNC lathe. Varying cutting speed and feed rate have an influence on the magnitude of power spectrum of spindle noise. The magnitude of spindle noise frequency alters in conjunction with the tool wear progression. The magnitude increases significantly in the transition state between steady-state wear and severe wear. This could be used as a warning signal to prepare for tool replacement or adapt cutting parameters to extend tool life.

Keywords: tool wear, flank wear, condition monitoring, spindle noise

Procedia PDF Downloads 324
3691 Evaluation of Hydrogen Particle Volume on Surfaces of Selected Nanocarbons

Authors: M. Ziółkowska, J. T. Duda, J. Milewska-Duda

Abstract:

This paper describes an approach to the adsorption phenomena modeling aimed at specifying the adsorption mechanisms on localized or nonlocalized adsorbent sites, when applied to the nanocarbons. The concept comes from the fundamental thermodynamic description of adsorption equilibrium and is based on numerical calculations of the hydrogen adsorbed particles volume on the surface of selected nanocarbons: single-walled nanotube and nanocone. This approach enables to obtain information on adsorption mechanism and then as a consequence to take appropriate mathematical adsorption model, thus allowing for a more reliable identification of the material porous structure. Theoretical basis of the approach is discussed and newly derived results of the numerical calculations are presented for the selected nanocarbons.

Keywords: adsorption, mathematical modeling, nanocarbons, numerical analysis

Procedia PDF Downloads 256
3690 Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach

Authors: Surajit Chakrabarty, Piyush Chauhan, Subhasis Panda, Sujoy Bhattacharya

Abstract:

A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed.

Keywords: deep learning, hidden Markov model, pothole, speed breaker

Procedia PDF Downloads 133
3689 Electrochemical Impedance Spectroscopy Based Label-Free Detection of TSG101 by Electric Field Lysis of Immobilized Exosomes from Human Serum

Authors: Nusrat Praween, Krishna Thej Pammi Guru, Palash Kumar Basu

Abstract:

Designing non-invasive biosensors for cancer diagnosis is essential for developing an affordable and specific tool to measure cancer-related exosome biomarkers. Exosomes, released by healthy as well as cancer cells, contain valuable information about the biomarkers of various diseases, including cancer. Despite the availability of various isolation techniques, ultracentrifugation is the standard technique that is being employed. Post isolation, exosomes are traditionally exposed to detergents for extracting their proteins, which can often lead to protein degradation. Further to this, it is very essential to develop a sensing platform for the quantification of clinically relevant proteins in a wider range to ensure practicality. In this study, exosomes were immobilized on the Au Screen Printed Electrode (SPE) using EDC/NHS chemistry to facilitate binding. After immobilizing the exosomes on the screen-printed electrode (SPE), we investigated the impact of the electric field by applying various voltages to induce exosome lysis and release their contents. The lysed solution was used for sensing TSG101, a crucial biomarker associated with various cancers, using both faradaic and non-faradaic electrochemical impedance spectroscopy (EIS) methods. The results of non-faradaic and faradaic EIS were comparable and showed good consistency, indicating that non-faradaic sensing can be a reliable alternative. Hence, the non-faradaic sensing technique was used for label-free quantification of the TSG101 biomarker. The results were validated using ELISA. Our electrochemical immunosensor demonstrated a consistent response of TSG101 from 125 pg/mL to 8000 pg/mL, with a detection limit of 0.125 pg/mL at room temperature. Additionally, since non-faradic sensing is label-free, the ease of usage and cost of the final sensor developed can be reduced. The proposed immunosensor is capable of detecting the TSG101 protein at low levels in healthy serum with good sensitivity and specificity, making it a promising platform for biomarker detection.

Keywords: biosensor, exosomes isolation on SPE, electric field lysis of exosome, EIS sensing of TSG101

Procedia PDF Downloads 31
3688 Performance Analysis of Traffic Classification with Machine Learning

Authors: Htay Htay Yi, Zin May Aye

Abstract:

Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.

Keywords: false negative rate, intrusion detection system, machine learning methods, performance

Procedia PDF Downloads 110
3687 UV-Enhanced Room-Temperature Gas-Sensing Properties of ZnO-SnO2 Nanocomposites Obtained by Hydrothermal Treatment

Authors: Luís F. da Silva, Ariadne C. Catto, Osmando F. Lopes, Khalifa Aguir, Valmor R. Mastelaro, Caue Ribeiro, Elson Longo

Abstract:

Gas detection is important for controlling industrial, and vehicle emissions, agricultural residues, and environmental control. In last decades, several semiconducting oxides have been used to detect dangerous or toxic gases. The excellent gas-sensing performance of these devices have been observed at high temperatures (~250 °C), which forbids the use for the detection of flammable and explosive gases. In this way, ultraviolet light activated gas sensors have been a simple and promising alternative to achieve room temperature sensitivity. Among the semiconductor oxides which exhibit a good performance as gas sensor, the zinc oxide (ZnO) and tin oxide (SnO2) have been highlighted. Nevertheless, their poor selectivity is the main disadvantage for application as gas sensor devices. Recently, heterostructures combining these two semiconductors (ZnO-SnO2) have been studied as an alternative way to enhance the gas sensor performance (sensitivity, selectivity, and stability). In this work, we investigated the influence of mass ratio Zn:Sn on the properties of ZnO-SnO2 nanocomposites prepared by hydrothermal treatment for 4 hours at 200 °C. The crystalline phase, surface, and morphological features were characterized by X-ray diffraction (XRD), high-resolution transmission electron (HR-TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The gas sensor measurements were carried out at room-temperature under ultraviolet (UV) light irradiation using different ozone levels (0.06 to 0.61 ppm). The XRD measurements indicate the presence of ZnO and SnO2 crystalline phases, without the evidence of solid solution formation. HR-TEM analysis revealed that a good contact between the SnO2 nanoparticles and the ZnO nanorods, which are very important since interface characteristics between nanostructures are considered as challenge to development new and efficient heterostructures. Electrical measurements proved that the best ozone gas-sensing performance is obtained for ZnO:SnO2 (50:50) nanocomposite under UV light irradiation. Its sensitivity was around 6 times higher when compared to SnO2 pure, a traditional ozone gas sensor. These results demonstrate the potential of ZnO-SnO2 heterojunctions for the detection of ozone gas at room-temperature when irradiated with UV light irradiation.

Keywords: hydrothermal, zno-sno2, ozone sensor, uv-activation, room-temperature

Procedia PDF Downloads 275
3686 L2 Reading in Distance Education: Analysis of Students' Reading Attitude and Interests

Authors: Ma. Junithesmer, D. Rosales

Abstract:

The study is a baseline description of students’ attitude and interests about L2 reading in a state university in the Philippines that uses distance education as a delivery mode. Most research conducted on this area dealt with the analysis of reading in a traditional school set-up. For this reason, this research was written to discover if there are implications as regards students’ preferences, interests and attitude reveal about L2 reading in a non-traditional set-up. To form the corpus of this study, it included the literature and studies about reading, preferred technological devices, titles of books and authors, reading medium traditional/ print and electronic books that juxtapose with students’ interest and feelings when reading at home and in school; and their views about their strengths and weaknesses as readers.

Keywords: distance education, L2 reading, reading, reading attitude

Procedia PDF Downloads 334
3685 Development and Validation of a HPLC Method for 6-Gingerol and 6-Shogaol in Joint Pain Relief Gel Containing Ginger (Zingiber officinale)

Authors: Tanwarat Kajsongkram, Saowalux Rotamporn, Sirinat Limbunruang, Sirinan Thubthimthed.

Abstract:

High-Performance Liquid Chromatography (HPLC) method was developed and validated for simultaneous estimation of 6-Gingerol(6G) and 6-Shogaol(6S) in joint pain relief gel containing ginger extract. The chromatographic separation was achieved by using C18 column, 150 x 4.6mm i.d., 5μ Luna, mobile phase containing acetonitrile and water (gradient elution). The flow rate was 1.0 ml/min and the absorbance was monitored at 282 nm. The proposed method was validated in terms of the analytical parameters such as specificity, accuracy, precision, linearity, range, limit of detection (LOD), limit of quantification (LOQ), and determined based on the International Conference on Harmonization (ICH) guidelines. The linearity ranges of 6G and 6S were obtained over 20-60 and 6-18 µg/ml respectively. Good linearity was observed over the above-mentioned range with linear regression equation Y= 11016x- 23778 for 6G and Y = 19276x-19604 for 6S (x is concentration of analytes in μg/ml and Y is peak area). The value of correlation coefficient was found to be 0.9994 for both markers. The limit of detection (LOD) and limit of quantification (LOQ) for 6G were 0.8567 and 2.8555 µg/ml and for 6S were 0.3672 and 1.2238 µg/ml respectively. The recovery range for 6G and 6S were found to be 91.57 to 102.36 % and 84.73 to 92.85 % for all three spiked levels. The RSD values from repeated extractions for 6G and 6S were 3.43 and 3.09% respectively. The validation of developed method on precision, accuracy, specificity, linearity, and range were also performed with well-accepted results.

Keywords: ginger, 6-gingerol, HPLC, 6-shogaol

Procedia PDF Downloads 429
3684 Representation of Memory of Forced Displacement in Central and Eastern Europe after World War II in Polish and German Cinemas

Authors: Ilona Copik

Abstract:

The aim of this study is to analyze the representation of memories of the forced displacement of Poles and Germans from the eastern territories in 1945 as depicted by Polish and German feature films between the years 1945-1960. The aftermath of World War II and the Allied agreements concluded at Yalta and Potsdam (1945) resulted in changes in national borders in Central and Eastern Europe and the large-scale transfer of civilians. The westward migration became a symbol of the new post-war division of Europe, new spheres of influence separated by the Iron Curtain. For years it was a controversial topic in both Poland and Germany due to the geopolitical alignment (the socialist East and capitalist West of Europe), as well as the unfinished debate between the victims and perpetrators of the war. The research premise is to take a comparative view of the conflicted cultures of Polish and German memory, to reflect on the possibility of an international dialogue about the past recorded in film images, and to discover the potential of film as a narrative warning against totalitarian inclinations. Until now, films made between 1945 and 1960 in Poland and the German occupation zones have been analyzed mainly in the context of artistic strategies subordinated to ideology and historical politics. In this study, the intention is to take a critical approach leading to the recognition of how films work as collective memory media, how they reveal the mechanisms of memory/forgetting, and what settlement topoi and migration myths they contain. The main hypothesis is that feature films about forced displacement, in addition to the politics of history - separate in each country - reveal comparable transnational individual experiences: the chaos of migration, the trauma of losing one's home, the conflicts accompanying the familiar/foreign, the difficulty of cultural adaptation, the problem of lost identity, etc.

Keywords: forced displacement, Polish and German cinema, war victims, World War II

Procedia PDF Downloads 62
3683 Computational Pipeline for Lynch Syndrome Detection: Integrating Alignment, Variant Calling, and Annotations

Authors: Rofida Gamal, Mostafa Mohammed, Mariam Adel, Marwa Gamal, Marwa kamal, Ayat Saber, Maha Mamdouh, Amira Emad, Mai Ramadan

Abstract:

Lynch Syndrome is an inherited genetic condition associated with an increased risk of colorectal and other cancers. Detecting Lynch Syndrome in individuals is crucial for early intervention and preventive measures. This study proposes a computational pipeline for Lynch Syndrome detection by integrating alignment, variant calling, and annotation. The pipeline leverages popular tools such as FastQC, Trimmomatic, BWA, bcftools, and ANNOVAR to process the input FASTQ file, perform quality trimming, align reads to the reference genome, call variants, and annotate them. It is believed that the computational pipeline was applied to a dataset of Lynch Syndrome cases, and its performance was evaluated. It is believed that the quality check step ensured the integrity of the sequencing data, while the trimming process is thought to have removed low-quality bases and adaptors. In the alignment step, it is believed that the reads were accurately mapped to the reference genome, and the subsequent variant calling step is believed to have identified potential genetic variants. The annotation step is believed to have provided functional insights into the detected variants, including their effects on known Lynch Syndrome-associated genes. The results obtained from the pipeline revealed Lynch Syndrome-related positions in the genome, providing valuable information for further investigation and clinical decision-making. The pipeline's effectiveness was demonstrated through its ability to streamline the analysis workflow and identify potential genetic markers associated with Lynch Syndrome. It is believed that the computational pipeline presents a comprehensive and efficient approach to Lynch Syndrome detection, contributing to early diagnosis and intervention. The modularity and flexibility of the pipeline are believed to enable customization and adaptation to various datasets and research settings. Further optimization and validation are believed to be necessary to enhance performance and applicability across diverse populations.

Keywords: Lynch Syndrome, computational pipeline, alignment, variant calling, annotation, genetic markers

Procedia PDF Downloads 61
3682 Mothers’ Experiences of Continuing Their Pregnancy after Prenatally Receiving a Diagnosis of Down Syndrome

Authors: Sevinj Asgarova

Abstract:

Within the last few decades, major advances in the field of prenatal testing have transpired yet little research regarding the experiences of mothers who chose to continue their pregnancies after prenatally receiving a diagnosis of Down Syndrome (DS) has been undertaken. Using social constructionism and interpretive description, this retrospective research study explores this topic from the point of view of the mothers involved and provides insight as to how the experience could be improved. Using purposive sampling, 23 mothers were recruited from British Columbia (n=11) and Ontario (n=12) in Canada. Data retrieved through semi-structured in-depth interviews were analyzed using inductive, constant comparative analysis, the major analytical techniques of interpretive description. Four primary phases emerged from the data analysis 1) healthcare professional-mothers communications, 2) initial emotional response, 3) subsequent decision-making and 4) an adjustment and reorganization of lifestyle to the preparation for the birth of the child. This study validates the individualized and contextualized nature of mothers’ decisions as influenced by multiple factors, with moral values/spiritual beliefs being significant. The mothers’ ability to cope was affected by the information communicated to them about their unborn baby’s diagnosis and the manner in which that information was delivered to them. Mothers used emotional coping strategies, dependent upon support from partners, family, and friends, as well as from other families who have children with DS. Additionally, they employed practical coping strategies, such as engaging in healthcare planning, seeking relevant information, and reimagining and reorganizing their lifestyle. Over time many families gained a sense of control over their situation and readjusted to the preparation for the birth of the child. Many mothers expressed the importance of maintaining positivity and hopefulness with respect to positive outcomes and opportunities for their children. The comprehensive information generated through this study will also provide healthcare professionals with relevant information to assist them in understanding the informational and emotional needs of these mothers. This should lead to an improvement in their practice and enhance their ability to intervene appropriately and effectively, better offering improved support to parents dealing with a diagnosis of DS for their child.

Keywords: continuing affected pregnancy, decision making, disability, down syndrome, eugenic social attitudes, inequalities, life change events, prenatal care, prenatal testing, qualitative research, social change, social justice

Procedia PDF Downloads 95
3681 Mineralogical Characterization and Petrographic Classification of the Soil of Casablanca City

Authors: I. Fahi, T. Remmal, F. El Kamel, B. Ayoub

Abstract:

The treatment of the geotechnical database of the region of Casablanca was difficult to achieve due to the heterogeneity of the nomenclature of the lithological formations composing its soil. It appears necessary to harmonize the nomenclature of the facies and to produce cartographic documents useful for construction projects and studies before any investment program. To achieve this, more than 600 surveys made by the Public Laboratory for Testing and Studies (LPEE) in the agglomeration of Casablanca, were studied. Moreover, some local observations were made in different places of the metropolis. Each survey was the subject of a sheet containing lithological succession, macro and microscopic description of petrographic facies with photographic illustration, as well as measurements of geomechanical tests. In addition, an X-ray diffraction analysis was made in order to characterize the surficial formations of the region.

Keywords: Casablanca, guidebook, petrography, soil

Procedia PDF Downloads 284
3680 A Differential Detection Method for Chip-Scale Spin-Exchange Relaxation Free Atomic Magnetometer

Authors: Yi Zhang, Yuan Tian, Jiehua Chen, Sihong Gu

Abstract:

Chip-scale spin-exchange relaxation free (SERF) atomic magnetometer makes use of millimeter-scale vapor cells micro-fabricated by Micro-electromechanical Systems (MEMS) technique and SERF mechanism, resulting in the characteristics of high spatial resolution and high sensitivity. It is useful for biomagnetic imaging including magnetoencephalography and magnetocardiography. In a prevailing scheme, circularly polarized on-resonance laser beam is adapted for both pumping and probing the atomic polarization. And the magnetic-field-sensitive signal is extracted by transmission laser intensity enhancement as a result of atomic polarization increase on zero field level crossing resonance. The scheme is very suitable for integration, however, the laser amplitude modulation (AM) noise and laser frequency modulation to amplitude modulation (FM-AM) noise is superimposed on the photon shot noise reducing the signal to noise ratio (SNR). To suppress AM and FM-AM noise the paper puts forward a novel scheme which adopts circularly polarized on-resonance light pumping and linearly polarized frequency-detuning laser probing. The transmission beam is divided into transmission and reflection beams by a polarization analyzer, the angle between the analyzer's transmission polarization axis and frequency-detuning laser polarization direction is set to 45°. The magnetic-field-sensitive signal is extracted by polarization rotation enhancement of frequency-detuning laser which induces two beams intensity difference increase as the atomic polarization increases. Therefore, AM and FM-AM noise in two beams are common-mode and can be almost entirely canceled by differential detection. We have carried out an experiment to study our scheme. The experiment reveals that the noise in the differential signal is obviously smaller than that in each beam. The scheme is promising to be applied for developing more sensitive chip-scale magnetometer.

Keywords: atomic magnetometer, chip scale, differential detection, spin-exchange relaxation free

Procedia PDF Downloads 161
3679 Molecular Detection of Leishmania from the Phlebotomus Genus: Tendency towards Leishmaniasis Regression in Constantine, North-East of Algeria

Authors: K. Frahtia, I. Mihoubi, S. Picot

Abstract:

Leishmaniasis is a group of parasitic disease with a varied clinical expression caused by flagellate protozoa of the Leishmania genus. These diseases are transmitted to humans and animals by the sting of a vector insect, the female sandfly. Among the groups of dipteral disease vectors, Phlebotominae occupy a prime position and play a significant role in human pathology, such as leishmaniasis that affects nearly 350 million people worldwide. The vector control operation launched by health services throughout the country proves to be effective since despite the prevalence of the disease remains high especially in rural areas, leishmaniasis appears to be declining in Algeria. In this context, this study mainly concerns molecular detection of Leishmania from the vector. Furthermore, a molecular diagnosis has also been made on skin samples taken from patients in the region of Constantine, located in the North-East of Algeria. Concerning the vector, 5858 sandflies were captured, including 4360 males and 1498 females. Male specimens were identified based on their morphological. The morphological identification highlighted the presence of the Phlebotomus genus with a prevalence of 93% against 7% represented by the Sergentomyia genus. About the identified species, P. perniciosus is the most abundant with 59.4% of the male identified population followed by P. longicuspis with 24.7% of the workforce. P. perfiliewi is poorly represented by 6.7% of specimens followed by P. papatasi with 2.2% and 1.5% S. dreyfussi. Concerning skin samples, 45/79 (56.96%) collected samples were found positive by real-time PCR. This rate appears to be in sharp decline compared to previous years (alert peak of 30,227 cases in 2005). Concerning the detection of Leishmania from sandflies by RT-PCR, the results show that 3/60 PCR performed genus are positive with melting temperatures corresponding to that of the reference strain (84.1 +/- 0.4 ° C for L. infantum). This proves that the vectors were parasitized. On the other side, identification by RT-PCR species did not give any results. This could be explained by the presence of an insufficient amount of leishmanian DNA in the vector, and therefore support the hypothesis of the regression of leishmaniasis in Constantine.

Keywords: Algeria, molecular diagnostic, phlebotomus, real time PCR

Procedia PDF Downloads 261
3678 Understanding Jordanian Women's Values and Beliefs Related to Prevention and Early Detection of Breast Cancer

Authors: Khlood F. Salman, Richard Zoucha, Hani Nawafleh

Abstract:

Introduction: Jordan ranks the fourth highest breast cancer prevalence after Lebanon, Bahrain, and Kuwait. Considerable evidence showed that cultural, ethnic, and economic differences influence a woman’s practice to early detection and prevention of breast cancer. Objectives: To understand women’s health beliefs and values in relation to early detection of breast cancer; and to explore the impact of these beliefs on their decisions regarding reluctance or acceptance of early detection measures such as mammogram screening. Design: A qualitative focused ethnography was used to collect data for this study. Settings: The study was conducted in the second largest city surrounded by a large rural area in Ma’an- Jordan. Participants: A total of twenty seven women, with no history of breast cancer, between the ages of 18 and older, who had prior health experience with health providers, and were willing to share elements of personal health beliefs related to breast health within the larger cultural context. The participants were recruited using the snowball method and words of mouth. Data collection and analysis: A short questionnaire was designed to collect data related to socio demographic status (SDQ) from all participants. A Semi-structured interviews guide was used to elicit data through interviews with the informants. Nvivo10 a data manager was utilized to assist with data analysis. Leininger’s four phases of qualitative data analysis was used as a guide for the data analysis. The phases used to analyze the data included: 1) Collecting and documenting raw data, 2) Identifying of descriptors and categories according to the domains of inquiry and research questions. Emic and etic data is coded for similarities and differences, 3) Identifying patterns and contextual analysis, discover saturation of ideas and recurrent patterns, and 4) Identifying themes and theoretical formulations and recommendations. Findings: Three major themes were emerged within the cultural and religious context; 1. Fear, denial, embarrassment and lack of knowledge were common perceptions of Ma’anis’ women regarding breast health and screening mammography, 2. Health care professionals in Jordan were not quick to offer information and education about breast cancer and screening, and 3. Willingness to learn about breast health and cancer prevention. Conclusion: The study indicated the disparities between the infrastructure and resourcing in rural and urban areas of Jordan, knowledge deficit related to breast cancer, and lack of education about breast health may impact women’s decision to go for a mammogram screening. Cultural beliefs, fear, embarrassments as well as providers lack of focus on breast health were significant contributors against practicing breast health. Health providers and policy makers should provide resources for the establishment health education programs regarding breast cancer early detection and mammography screening. Nurses should play a major role in delivering health education about breast health in general and breast cancer in particular. A culturally appropriate health awareness messages can be used in creating educational programs which can be employed at the national levels.

Keywords: breast health, beliefs, cultural context, ethnography, mammogram screening

Procedia PDF Downloads 280
3677 Development of Sulfite Biosensor Based on Sulfite Oxidase Immobilized on 3-Aminoproplytriethoxysilane Modified Indium Tin Oxide Electrode

Authors: Pawasuth Saengdee, Chamras Promptmas, Ting Zeng, Silke Leimkühler, Ulla Wollenberger

Abstract:

Sulfite has been used as a versatile preservative to limit the microbial growth and to control the taste in some food and beverage. However, it has been reported to cause a wide spectrum of severe adverse reactions. Therefore, it is important to determine the amount of sulfite in food and beverage to ensure consumer safety. An efficient electrocatalytic biosensor for sulfite detection was developed by immobilizing of human sulfite oxidase (hSO) on 3-aminoproplytriethoxysilane (APTES) modified indium tin oxide (ITO) electrode. Cyclic voltammetry was employed to investigate the electrochemical characteristics of the hSO modified ITO electrode for various pretreatment and binding conditions. Amperometry was also utilized to demonstrate the current responses of the sulfite sensor toward sodium sulfite in an aqueous solution at a potential of 0 V (vs. Ag/AgCl 1 M KCl). The proposed sulfite sensor has a linear range between 0.5 to 2 mM with a correlation coefficient 0.972. Then, the additional polymer layer of PVA was introduced to extend the linear range of sulfite sensor and protect the enzyme. The linear range of sulfite sensor with 5% coverage increases from 2.8 to 20 mM at a correlation coefficient of 0.983. In addition, the stability of sulfite sensor with 5% PVA coverage increases until 14 days when kept in 0.5 mM Tris-buffer, pH 7.0 at 4 8C. Therefore, this sensor could be applied for the detection of sulfite in the real sample, especially in food and beverage.

Keywords: sulfite oxidase, bioelectrocatalytsis, indium tin oxide, direct electrochemistry, sulfite sensor

Procedia PDF Downloads 219
3676 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems

Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano

Abstract:

The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.

Keywords: environmental internet of things, EIoT, machine learning, anomaly detection, environment monitoring

Procedia PDF Downloads 141
3675 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method

Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson

Abstract:

Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 181
3674 pscmsForecasting: A Python Web Service for Time Series Forecasting

Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou

Abstract:

pscmsForecasting is an open-source web service that implements a variety of time series forecasting algorithms and exposes them to the user via the ubiquitous HTTP protocol. It allows developers to enhance their applications by adding time series forecasting functionalities through an intuitive and easy-to-use interface. This paper provides some background on time series forecasting and gives details about the implemented algorithms, aiming to enhance the end user’s understanding of the underlying methods before incorporating them into their applications. A detailed description of the web service’s interface and its various parameterizations is also provided. Being an open-source project, pcsmsForecasting can also be easily modified and tailored to the specific needs of each application.

Keywords: time series, forecasting, web service, open source

Procedia PDF Downloads 71
3673 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves

Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira

Abstract:

Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.

Keywords: artificial neural networks, digital image processing, pattern recognition, phytosanitary

Procedia PDF Downloads 319
3672 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 59
3671 Accomplishing Mathematical Tasks in Bilingual Primary Classrooms

Authors: Gabriela Steffen

Abstract:

Learning in a bilingual classroom not only implies learning in two languages or in an L2, it also means learning content subjects through the means of bilingual or plurilingual resources, which is of a qualitatively different nature than ‘monolingual’ learning. These resources form elements of a didactics of plurilingualism, aiming not only at the development of a plurilingual competence, but also at drawing on plurilingual resources for nonlinguistic subject learning. Applying a didactics of plurilingualism allows for taking account of the specificities of bilingual content subject learning in bilingual education classrooms. Bilingual education is used here as an umbrella term for different programs, such as bilingual education, immersion, CLIL, bilingual modules in which one or several non-linguistic subjects are taught partly or completely in an L2. This paper aims at discussing first results of a study on pupil group work in bilingual classrooms in several Swiss primary schools. For instance, it analyses two bilingual classes in two primary schools in a French-speaking region of Switzerland that follows a part of their school program through German in addition to French, the language of instruction in this region. More precisely, it analyses videotaped classroom interaction and in situ classroom practices of pupil group work in a mathematics lessons. The ethnographic observation of pupils’ group work and the analysis of their interaction (analytical tools of conversational analysis, discourse analysis and plurilingual interaction) enhance the description of whole-class interaction done in the same (and several other) classes. While the latter are teacher-student interactions, the former are student-student interactions giving more space to and insight into pupils’ talk. This study aims at the description of the linguistic and multimodal resources (in German L2 and/or French L1) pupils mobilize while carrying out a mathematical task. The analysis shows that the accomplishment of the mathematical task takes place in a bilingual mode, whether the whole-class interactions are conducted rather in a bilingual (German L2-French L1) or a monolingual mode in L2 (German). The pupils make plenty of use of German L2 in a setting that lends itself to use French L1 (peer groups with French as a dominant language, in absence of the teacher and a task with a mathematical aim). They switch from French to German and back ‘naturally’, which is regular for bilingual speakers. Their linguistic resources in German L2 are not sufficient to allow them to (inter-)act well enough to accomplish the task entirely in German L2, despite their efforts to do so. However, this does not stop them from carrying out the task in mathematics adequately, which is the main objective, by drawing on the bilingual resources at hand.

Keywords: bilingual content subject learning, bilingual primary education, bilingual pupil group work, bilingual teaching/learning resources, didactics of plurilingualism

Procedia PDF Downloads 153
3670 Fusion Models for Cyber Threat Defense: Integrating Clustering, Random Forests, and Support Vector Machines to Against Windows Malware

Authors: Azita Ramezani, Atousa Ramezani

Abstract:

In the ever-escalating landscape of windows malware the necessity for pioneering defense strategies turns into undeniable this study introduces an avant-garde approach fusing the capabilities of clustering random forests and support vector machines SVM to combat the intricate web of cyber threats our fusion model triumphs with a staggering accuracy of 98.67 and an equally formidable f1 score of 98.68 a testament to its effectiveness in the realm of windows malware defense by deciphering the intricate patterns within malicious code our model not only raises the bar for detection precision but also redefines the paradigm of cybersecurity preparedness this breakthrough underscores the potential embedded in the fusion of diverse analytical methodologies and signals a paradigm shift in fortifying against the relentless evolution of windows malicious threats as we traverse through the dynamic cybersecurity terrain this research serves as a beacon illuminating the path toward a resilient future where innovative fusion models stand at the forefront of cyber threat defense.

Keywords: fusion models, cyber threat defense, windows malware, clustering, random forests, support vector machines (SVM), accuracy, f1-score, cybersecurity, malicious code detection

Procedia PDF Downloads 59
3669 Bridging Urban Planning and Environmental Conservation: A Regional Analysis of Northern and Central Kolkata

Authors: Tanmay Bisen, Aastha Shayla

Abstract:

This study introduces an advanced approach to tree canopy detection in urban environments and a regional analysis of Northern and Central Kolkata that delves into the intricate relationship between urban development and environmental conservation. Leveraging high-resolution drone imagery from diverse urban green spaces in Kolkata, we fine-tuned the deep forest model to enhance its precision and accuracy. Our results, characterized by an impressive Intersection over Union (IoU) score of 0.90 and a mean average precision (mAP) of 0.87, underscore the model's robustness in detecting and classifying tree crowns amidst the complexities of aerial imagery. This research not only emphasizes the importance of model customization for specific datasets but also highlights the potential of drone-based remote sensing in urban forestry studies. The study investigates the spatial distribution, density, and environmental impact of trees in Northern and Central Kolkata. The findings underscore the significance of urban green spaces in met-ropolitan cities, emphasizing the need for sustainable urban planning that integrates green infrastructure for ecological balance and human well-being.

Keywords: urban greenery, advanced spatial distribution analysis, drone imagery, deep learning, tree detection

Procedia PDF Downloads 40
3668 Detection of Some Drugs of Abuse from Fingerprints Using Liquid Chromatography-Mass Spectrometry

Authors: Ragaa T. Darwish, Maha A. Demellawy, Haidy M. Megahed, Doreen N. Younan, Wael S. Kholeif

Abstract:

The testing of drug abuse is authentic in order to affirm the misuse of drugs. Several analytical approaches have been developed for the detection of drugs of abuse in pharmaceutical and common biological samples, but few methodologies have been created to identify them from fingerprints. Liquid Chromatography-Mass Spectrometry (LC-MS) plays a major role in this field. The current study aimed at assessing the possibility of detection of some drugs of abuse (tramadol, clonazepam, and phenobarbital) from fingerprints using LC-MS in drug abusers. The aim was extended in order to assess the possibility of detection of the above-mentioned drugs in fingerprints of drug handlers till three days of handling the drugs. The study was conducted on randomly selected adult individuals who were either drug abusers seeking treatment at centers of drug dependence in Alexandria, Egypt or normal volunteers who were asked to handle the different studied drugs (drug handlers). An informed consent was obtained from all individuals. Participants were classified into 3 groups; control group that consisted of 50 normal individuals (neither abusing nor handling drugs), drug abuser group that consisted of 30 individuals who abused tramadol, clonazepam or phenobarbital (10 individuals for each drug) and drug handler group that consisted of 50 individuals who were touching either the powder of drugs of abuse: tramadol, clonazepam or phenobarbital (10 individuals for each drug) or the powder of the control substances which were of similar appearance (white powder) and that might be used in the adulteration of drugs of abuse: acetyl salicylic acid and acetaminophen (10 individuals for each drug). Samples were taken from the handler individuals for three consecutive days for the same individual. The diagnosis of drug abusers was based on the current Diagnostic and Statistical Manual of Mental disorders (DSM-V) and urine screening tests using immunoassay technique. Preliminary drug screening tests of urine samples were also done for drug handlers and the control groups to indicate the presence or absence of the studied drugs of abuse. Fingerprints of all participants were then taken on a filter paper previously soaked with methanol to be analyzed by LC-MS using SCIEX Triple Quad or QTRAP 5500 System. The concentration of drugs in each sample was calculated using the regression equations between concentration in ng/ml and peak area of each reference standard. All fingerprint samples from drug abusers showed positive results with LC-MS for the tested drugs, while all samples from the control individuals showed negative results. A significant difference was noted between the concentration of the drugs and the duration of abuse. Tramadol, clonazepam, and phenobarbital were also successfully detected from fingerprints of drug handlers till 3 days of handling the drugs. The mean concentration of the chosen drugs of abuse among the handlers group decreased when the days of samples intake increased.

Keywords: drugs of abuse, fingerprints, liquid chromatography–mass spectrometry, tramadol

Procedia PDF Downloads 106
3667 Nondecoupling Signatures of Supersymmetry and an Lμ-Lτ Gauge Boson at Belle-II

Authors: Heerak Banerjee, Sourov Roy

Abstract:

Supersymmetry, one of the most celebrated fields of study for explaining experimental observations where the standard model (SM) falls short, is reeling from the lack of experimental vindication. At the same time, the idea of additional gauge symmetry, in particular, the gauged Lμ-Lτ symmetric models have also generated significant interest. They have been extensively proposed in order to explain the tantalizing discrepancy in the predicted and measured value of the muon anomalous magnetic moment alongside several other issues plaguing the SM. While very little parameter space within these models remain unconstrained, this work finds that the γ + Missing Energy (ME) signal at the Belle-II detector will be a smoking gun for supersymmetry (SUSY) in the presence of a gauged U(1)Lμ-Lτ symmetry. A remarkable consequence of breaking the enhanced symmetry appearing in the limit of degenerate (s)leptons is the nondecoupling of the radiative contribution of heavy charged sleptons to the γ-Z΄ kinetic mixing. The signal process, e⁺e⁻ →γZ΄→γ+ME, is an outcome of this ubiquitous feature. Taking the severe constraints on gauged Lμ-Lτ models by several low energy observables into account, it is shown that any significant excess in all but the highest photon energy bin would be an undeniable signature of such heavy scalar fields in SUSY coupling to the additional gauge boson Z΄. The number of signal events depends crucially on the logarithm of the ratio of stau to smuon mass in the presence of SUSY. In addition, the number is also inversely proportional to the e⁺e⁻ collision energy, making a low-energy, high-luminosity collider like Belle-II an ideal testing ground for this channel. This process can probe large swathes of the hitherto free slepton mass ratio vs. additional gauge coupling (gₓ) parameter space. More importantly, it can explore the narrow slice of Z΄ mass (MZ΄) vs. gₓ parameter space still allowed in gauged U(1)Lμ-Lτ models for superheavy sparticles. The spectacular finding that the signal significance is independent of individual slepton masses is an exciting prospect indeed. Further, the prospect that signatures of even superheavy SUSY particles that may have escaped detection at the LHC may show up at the Belle-II detector is an invigorating revelation.

Keywords: additional gauge symmetry, electron-positron collider, kinetic mixing, nondecoupling radiative effect, supersymmetry

Procedia PDF Downloads 119
3666 The Role of Vernacular Radio Stations in Enhancing Agricultural Development in Kenya; A Case of KASS FM

Authors: Thomas Kipkurgat, Silahs Chemwaina

Abstract:

Communication and ICT is a crucial component in realization of vision 2030, radio has played a key role in dissemination of information to mass audience. Since time immemorial, mass media has played a vital role in passing information on agricultural development issues both locally and internationally. This paper aimed at assessing the role of community radio stations in enhancing agricultural development in Kenya. The paper sought to identify the main contributions of KASS FM radio in the agricultural development especially in rural areas, the study also aimed to establish the appropriate adjustments in editorial policies of KASS FM radio in helping to promote agricultural development related programmes in rural areas. Despite some weaknesses in radio programming and the mode of interaction with the rural people, the findings of this study showed that the rural communities are better off today than in the old days when FM radios were non-existent. KASS FM has come up with different developmental programmes that have positively contributed to changing the rural people’s ways of life. These programmes include farming, health, marital values, environment, cultural issues, human rights, democracy, religious teachings, peace and reconciliation. Such programmes feature experts, professionals and opinion leaders who address numerous topics of interest to the community. The local people participate in the production of these programmes through letters to the editor, and phone-ins, among others. Programmes such as political talk shows, which feature in KASS FM, has become one of the most important ways of community participation. The interpretation and conclusions are based on the empirical data analysis and the theories of development advanced by international development communication scholars, as presented in the paper. The study ends with some recommendations on how KASS FM can best serve the interests of the poor people in rural areas, and helps improve their lives.

Keywords: agriculture, development, communication, KASS FM, radio, rural areas, Kenya

Procedia PDF Downloads 280
3665 Speech Emotion Recognition: A DNN and LSTM Comparison in Single and Multiple Feature Application

Authors: Thiago Spilborghs Bueno Meyer, Plinio Thomaz Aquino Junior

Abstract:

Through speech, which privileges the functional and interactive nature of the text, it is possible to ascertain the spatiotemporal circumstances, the conditions of production and reception of the discourse, the explicit purposes such as informing, explaining, convincing, etc. These conditions allow bringing the interaction between humans closer to the human-robot interaction, making it natural and sensitive to information. However, it is not enough to understand what is said; it is necessary to recognize emotions for the desired interaction. The validity of the use of neural networks for feature selection and emotion recognition was verified. For this purpose, it is proposed the use of neural networks and comparison of models, such as recurrent neural networks and deep neural networks, in order to carry out the classification of emotions through speech signals to verify the quality of recognition. It is expected to enable the implementation of robots in a domestic environment, such as the HERA robot from the RoboFEI@Home team, which focuses on autonomous service robots for the domestic environment. Tests were performed using only the Mel-Frequency Cepstral Coefficients, as well as tests with several characteristics of Delta-MFCC, spectral contrast, and the Mel spectrogram. To carry out the training, validation and testing of the neural networks, the eNTERFACE’05 database was used, which has 42 speakers from 14 different nationalities speaking the English language. The data from the chosen database are videos that, for use in neural networks, were converted into audios. It was found as a result, a classification of 51,969% of correct answers when using the deep neural network, when the use of the recurrent neural network was verified, with the classification with accuracy equal to 44.09%. The results are more accurate when only the Mel-Frequency Cepstral Coefficients are used for the classification, using the classifier with the deep neural network, and in only one case, it is possible to observe a greater accuracy by the recurrent neural network, which occurs in the use of various features and setting 73 for batch size and 100 training epochs.

Keywords: emotion recognition, speech, deep learning, human-robot interaction, neural networks

Procedia PDF Downloads 149
3664 On the Use of Machine Learning for Tamper Detection

Authors: Basel Halak, Christian Hall, Syed Abdul Father, Nelson Chow Wai Kit, Ruwaydah Widaad Raymode

Abstract:

The attack surface on computing devices is becoming very sophisticated, driven by the sheer increase of interconnected devices, reaching 50B in 2025, which makes it easier for adversaries to have direct access and perform well-known physical attacks. The impact of increased security vulnerability of electronic systems is exacerbated for devices that are part of the critical infrastructure or those used in military applications, where the likelihood of being targeted is very high. This continuously evolving landscape of security threats calls for a new generation of defense methods that are equally effective and adaptive. This paper proposes an intelligent defense mechanism to protect from physical tampering, it consists of a tamper detection system enhanced with machine learning capabilities, which allows it to recognize normal operating conditions, classify known physical attacks and identify new types of malicious behaviors. A prototype of the proposed system has been implemented, and its functionality has been successfully verified for two types of normal operating conditions and further four forms of physical attacks. In addition, a systematic threat modeling analysis and security validation was carried out, which indicated the proposed solution provides better protection against including information leakage, loss of data, and disruption of operation.

Keywords: anti-tamper, hardware, machine learning, physical security, embedded devices, ioT

Procedia PDF Downloads 142