Search results for: environmental quality and trace elements
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18576

Search results for: environmental quality and trace elements

1176 Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes

Authors: Dorothea Voß, Tobias Esser, Michael Huber, Jakob Albert

Abstract:

The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale.

Keywords: downstream processing, nanofiltration, polyoxometalates, homogeneous catalysis, green chemistry

Procedia PDF Downloads 89
1175 Understanding Complexity at Pre-Construction Stage in Project Planning of Construction Projects

Authors: Mehran Barani Shikhrobat, Roger Flanagan

Abstract:

The construction planning and scheduling based on using the current tools and techniques is resulted deterministic in nature (Gantt chart, CPM) or applying a very little probability of completion (PERT) for each task. However, every project embodies assumptions and influences and should start with a complete set of clearly defined goals and constraints that remain constant throughout the duration of the project. Construction planners continue to apply the traditional methods and tools of “hard” project management that were developed for “ideal projects,” neglecting the potential influence of complexity on the design and construction process. The aim of this research is to investigate the emergence and growth of complexity in project planning and to provide a model to consider the influence of complexity on the total project duration at the post-contract award pre-construction stage of a project. The literature review showed that complexity originates from different sources of environment, technical, and workflow interactions. They can be divided into two categories of complexity factors, first, project tasks, and second, project organisation management. Project tasks may originate from performance, lack of resources, or environmental changes for a specific task. Complexity factors that relate to organisation and management refer to workflow and interdependence of different parts. The literature review highlighted the ineffectiveness of traditional tools and techniques in planning for complexity. However, this research focus on understanding the fundamental causes of the complexity of construction projects were investigated through a questionnaire with industry experts. The results were used to develop a model that considers the core complexity factors and their interactions. System dynamics were used to investigate the model to consider the influence of complexity on project planning. Feedback from experts revealed 20 major complexity factors that impact project planning. The factors are divided into five categories known as core complexity factors. To understand the weight of each factor in comparison, the Analytical Hierarchy Process (AHP) analysis method is used. The comparison showed that externalities are ranked as the biggest influence across the complexity factors. The research underlines that there are many internal and external factors that impact project activities and the project overall. This research shows the importance of considering the influence of complexity on the project master plan undertaken at the post-contract award pre-construction phase of a project.

Keywords: project planning, project complexity measurement, planning uncertainty management, project risk management, strategic project scheduling

Procedia PDF Downloads 138
1174 Health Care Teams during COVID-19: Roles, Challenges, Emotional State and Perceived Preparedness to the Next Pandemic

Authors: Miriam Schiff, Hadas Rosenne, Ran Nir-Paz, Shiri Shinan Altman

Abstract:

To examine (1) the level, predictors, and subjective perception of professional quality of life (PRoQL), posttraumatic growth, roles, task changes during the pandemic, and perceived preparedness for the next pandemic. These variables were added as part of an international study on social workers in healthcare stress, resilience, and perceived preparedness we took part in, along with Australia, Canada, China, Hong Kong, Singapore, and Taiwan. (2) The extent to which background variables, rate of exposure to the virus, working in COVID wards, profession, personal resilience, and resistance to organizational change predict posttraumatic growth, perceived preparedness, and PRoQL (the latter was examined among social workers only). (3) The teams' perceptions of how the pandemic impacted them at the personal, professional, and organizational levels and what assisted them. Methodologies: Mixed quantitative and qualitative methods were used. 1039 hospital healthcare workers from various professions participated in the quantitative study while 32 participated in in-depth interviews. The same methods were used in six other countries. Findings: The level of PRoQL was moderate, with higher burnout and secondary traumatization level than during routine times. Differences between countries in the level of PRoQL were found as well. Perceived preparedness for the next pandemic at the personal level was moderate and similar among the different health professions. Higher exposure to the virus was associated with lower perceived preparedness of the hospitals. Compared to other professions, doctors and nurses perceived hospitals as significantly less prepared for the next pandemic. The preparedness of the State of Israel for the next pandemic is perceived as low by all healthcare professionals. A moderate level of posttraumatic growth was found. Staff who worked at the COVID ward reported a greater level of growth. Doctors reported the lowest level of growth. The staff's resilience was high, with no differences among professions or levels of exposure. Working in the COVID ward and resilience predicted better preparedness, while resistance to organizational change predicted worse preparedness. Findings from the qualitative part of the study revealed that healthcare workers reported challenges at the personal, professional and organizational level during the different waves of the pandemic. They also report on internal and external resources they either owned or obtained during that period. Conclusion: Exposure to the COVID-19 virus is associated with secondary traumatization on one hand and personal posttraumatic growth on the other hand. Personal and professional discoveries and a sense of mission helped cope with the pandemic that was perceived as a historical event, war, or mass casualty event. Personal resilience, along with the support of colleagues, family, and direct management, were seen as significant components of coping. Hospitals should plan ahead and improve their preparedness to the next pandemic.

Keywords: covid-19, health-care, social workers, burnout, preparedness, international perspective

Procedia PDF Downloads 74
1173 Effect of Water Addition on Catalytic Activity for CO2 Purification from Oxyfuel Combustion

Authors: Joudia Akil, Stephane Siffert, Laurence Pirault-Roy, Renaud Cousin, Christophe Poupin

Abstract:

Oxyfuel combustion is a promising method that enables to obtain a CO2 rich stream, with water vapor ( ̴10%), unburned components such as CO and NO, which must be cleaned before the use of CO2. Our objective is then the final treatment of CO and NO by catalysis. Three-way catalysts are well-developed material for simultaneous conversion of NO, CO and hydrocarbons. Pt and/or Rh ensure a quasi-complete removal of NOx, CO and HC and there is also a growing interest in partly replacing Pt with less-expensive Pd. The use of alumina and ceria as support ensures, respectively, the stabilization of such species in active state and discharging or storing oxygen to control the oxidation of CO and HC and the reduction of NOx. In this work, we will compare different metals (Pd, Rh and Pt) supported on Al2O3 and CeO2, for CO2 purification from oxyfuel combustion. The catalyst must reduce NO by CO in an oxidizing environment, in the presence of CO2 rich stream and resistant to water. In this study, Al2O3 and CeO2 were used as support materials of the catalysts. 1wt% M/Support where M = Pd, Rh or Pt catalysts were obtained by wet impregnation on supports with a precursor of palladium [Pd(acac)2], rhodium [Rh(NO3)3] and platinum [Pt(NO2)2(NO3)2]. Materials were characterized by BET surface area, H2 chemisorption, and TEM. Catalytic activity was evaluated in CO2 purification which is carried out in a fixed-bed flow reactor containing 150 mg of catalyst at atmospheric pressure. The flow of the reactant gases is composed of: 20% CO2, 10% O2, 0.5% CO, 0.02% NO and 8.2% H2O (He as eluent gas) with a total flow of 200 mL.min−1, with same GHSV (2.24x104 h-1). The catalytic performances of the samples were investigated with and without water. It shows that the total oxidation of CO occurred over the different materials. This study evidenced an important effect of the nature of the metals, supports and the presence or absence of H2O during the reduction of NO by CO in oxyfuel combustions conditions. Rh based catalysts show that the addition of water has a very positive influence especially on the Rh catalyst on CeO2. Pt based catalysts keep a good activity despite the addition of water on the both supports studied. For the NO reduction, addition of water act as a poison with Pd catalysts. The interesting results of Rh based catalysts with water can be explained by a production of hydrogen through the water gas shift reaction. The produced hydrogen acts as a more effective reductant than CO for NO removal. Furthermore, in TWCs, Rh is the main component responsible for NOx reduction due to its especially high activity for NO dissociation. Moreover, cerium oxide is a promotor for WGSR.

Keywords: carbon dioxide, environmental chemistry, heterogeneous catalysis

Procedia PDF Downloads 182
1172 Catalyst Assisted Microwave Plasma for NOx Formation

Authors: Babak Sadeghi, Rony Snyders, Marie-Paule.Delplancke-Ogletree

Abstract:

Nitrogen fixation (NF) is one of the crucial industrial processes. Many attempts have been made in order to artificially fix nitrogen, and among them, the Haber-Bosch’s (H-B) process is widely used. However, it presents two major drawbacks: huge fossil feedstock consumption and noticeable greenhouse gases emission. It is, therefore, necessary to develop alternatives. Plasma technology, as an inherent “green” technology, is considered to have a great potential for reducing the environmental impacts and improving the energy efficiency of the NF process. In this work, we have studied the catalyst assisted microwave plasma for NF application. Heterogeneous catalysts of MoO₃, with various loads 0, 5, 10, 20, and 30 wt%, supported on γ-alumina were prepared by conventional wet impregnation. Crystallinity, surface area, pore size, and microstructure were obtained by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption isotherm, Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The XRD patterns of calcined alumina confirm the γ- phase. Characteristic picks of MoO₃ could not be observed for low loads (< 20 wt%), likely indicating a high dispersion of metal oxide over the support. The specific surface area along with pores size are decreasing with increasing calcination temperature and MoO₃ loading. The MoO₃ loading does not modify the microstructure. TEM and SEM results for loading inferior to 20 wt% are coherent with a monolayer of MoO₃ on the support as proposed elsewhere. For loading of 20 wt% and more, TEM and Electron diffraction (ED) show nanocrystalline ₃-D MoO₃ particles. The catalytic performances of these catalysts were investigated in the post-discharge of a microwave plasma for NOx formation from N₂/O₂ mixtures. The plasma is sustained by a surface wave launched in a quartz tube via a surfaguide supplied by a 2.45 GHz microwave generator in pulse mode. In-situ identification and quantification of the products were carried out by Fourier-transform infrared spectroscopy (FTIR) in the post-discharge region. FTIR analysis of the exhausted gas reveal NO and NO₂ bands in presence of catalyst while only NO band were assigned without catalyst. On the other hand, in presence of catalyst, a 10% increase of NOₓ formation and of 20% increase in energy efficiency are observed.

Keywords: γ-Al2O₃-MoO₃, µ-waveplasma, N2 fixation, Plasma-catalysis, Plasma diagnostic

Procedia PDF Downloads 176
1171 Assessing Social Sustainability for Biofuels Supply Chains: The Case of Jet Biofuel in Brazil

Authors: Z. Wang, F. Pashaei Kamali, J. A. Posada Duque, P. Osseweijer

Abstract:

Globally, the aviation sector is seeking for sustainable solutions to comply with the pressure to reduce greenhouse gas emissions. Jet fuels derived from biomass are generally perceived as a sustainable alternative compared with their fossil counterparts. However, the establishment of jet biofuels supply chains will have impacts on environment, economy, and society. While existing studies predominantly evaluated environmental impacts and techno-economic feasibility of jet biofuels, very few studies took the social / socioeconomic aspect into consideration. Therefore, this study aims to provide a focused evaluation of social sustainability for aviation biofuels with a supply chain perspective. Three potential jet biofuel supply chains based on different feedstocks, i.e. sugarcane, eucalyptus, and macauba were analyzed in the context of Brazil. The assessment of social sustainability is performed with a process-based approach combined with input-output analysis. Over the supply chains, a set of social sustainability issues including employment, working condition (occupational accident and wage level), labour right, education, equity, social development (GDP and trade balance) and food security were evaluated in a (semi)quantitative manner. The selection of these social issues is based on two criteria: (1) the issues are highly relevant and important to jet biofuel production; (2) methodologies are available for assessing these issues. The results show that the three jet biofuel supply chains lead to a differentiated level of social effects. The sugarcane-based supply chain creates the highest number of jobs whereas the biggest contributor of GDP turns out to be the macauba-based supply chain. In comparison, the eucalyptus-based supply chain stands out regarding working condition. It is also worth noting that biojet fuel supply chain with high level of social benefits could result in high level of social concerns (such as occupational accident, violation of labour right and trade imbalance). Further research is suggested to investigate the possible interactions between different social issues. In addition, the exploration of a wider range of social effects is needed to expand the comprehension of social sustainability for biofuel supply chains.

Keywords: biobased supply chain, jet biofuel, social assessment, social sustainability, socio-economic impacts

Procedia PDF Downloads 265
1170 Rhizoremediation of Contaminated Soils in Sub-Saharan Africa: Experimental Insights of Microbe Growth and Effects of Paspalum Spp. for Degrading Hydrocarbons in Soils

Authors: David Adade-Boateng, Benard Fei Baffoe, Colin A. Booth, Michael A. Fullen

Abstract:

Remediation of diesel fuel, oil and grease in contaminated soils obtained from a mine site in Ghana are explored using rhizoremediation technology with different levels of nutrient amendments (i.e. N (nitrogen) in Compost (0.2, 0.5 and 0.8%), Urea (0.2, 0.5 and 0.8%) and Topsoil (0.2, 0.5 and 0.8%)) for a native species. A Ghanaian native grass species, Paspalum spp. from the Poaceae family, indicative across Sub-Saharan Africa, was selected following the development of essential and desirable growth criteria. Vegetative parts of the species were subjected to ten treatments in a Randomized Complete Block Design (RCBD) in three replicates. The plant-associated microbial community was examined in Paspalum spp. An assessment of the influence of Paspalum spp on the abundance and activity of micro-organisms in the rhizosphere revealed a build-up of microbial communities over a three month period. This was assessed using the MPN method, which showed rhizospheric samples from the treatments were significantly different (P <0.05). Multiple comparisons showed how microbial populations built-up in the rhizosphere for the different treatments. Treatments G (0.2% compost), H (0.5% compost) and I (0.8% compost) performed significantly better done other treatments, while treatments D (0.2% topsoil) and F (0.8% topsoil) were insignificant. Furthermore, treatment A (0.2% urea), B (0.5% urea), C (0.8% urea) and E (0.5% topsoil) also performed the same. Residual diesel and oil concentrations (as total petroleum hydrocarbons, TPH and oil and grease) were measured using infra-red spectroscopy and gravimetric methods, respectively. The presence of single species successfully enhanced the removal of hydrocarbons from soil. Paspalum spp. subjected to compost levels (0.5% and 0.8%) and topsoil levels (0.5% and 0.8%) showed significantly lower residual hydrocarbon concentrations compared to those treated with Urea. A strong relationship (p<0.001) between the abundance of hydrocarbon degrading micro-organisms in the rhizosphere and hydrocarbon biodegradation was demonstrated for rhizospheric samples with treatment G (0.2% compost), H (0.5% compost) and I (0.8% compost) (P <0.001). The same level of amendment with 0.8% compost (N-level) can improve the application effectiveness. These findings have wide-reaching implications for the environmental management of soils contaminated by hydrocarbons in Sub-Saharan Africa. However, it is necessary to further investigate the in situ rhizoremediation potential of Paspalum spp. at the field scale.

Keywords: rhizoremediation, microbial population, rhizospheric sample, treatments

Procedia PDF Downloads 325
1169 An Overview of the Wind and Wave Climate in the Romanian Nearshore

Authors: Liliana Rusu

Abstract:

The goal of the proposed work is to provide a more comprehensive picture of the wind and wave climate in the Romanian nearshore, using the results provided by numerical models. The Romanian coastal environment is located in the western side of the Black Sea, the more energetic part of the sea, an area with heavy maritime traffic and various offshore operations. Information about the wind and wave climate in the Romanian waters is mainly based on observations at Gloria drilling platform (70 km from the coast). As regards the waves, the measurements of the wave characteristics are not so accurate due to the method used, being also available for a limited period. For this reason, the wave simulations that cover large temporal and spatial scales represent an option to describe better the wave climate. To assess the wind climate in the target area spanning 1992–2016, data provided by the NCEP-CFSR (U.S. National Centers for Environmental Prediction - Climate Forecast System Reanalysis) and consisting in wind fields at 10m above the sea level are used. The high spatial and temporal resolution of the wind fields is good enough to represent the wind variability over the area. For the same 25-year period, as considered for the wind climate, this study characterizes the wave climate from a wave hindcast data set that uses NCEP-CFSR winds as input for a model system SWAN (Simulating WAves Nearshore) based. The wave simulation results with a two-level modelling scale have been validated against both in situ measurements and remotely sensed data. The second level of the system, with a higher resolution in the geographical space (0.02°×0.02°), is focused on the Romanian coastal environment. The main wave parameters simulated at this level are used to analyse the wave climate. The spatial distributions of the wind speed, wind direction and the mean significant wave height have been computed as the average of the total data. As resulted from the amount of data, the target area presents a generally moderate wave climate that is affected by the storm events developed in the Black Sea basin. Both wind and wave climate presents high seasonal variability. All the results are computed as maps that help to find the more dangerous areas. A local analysis has been also employed in some key locations corresponding to highly sensitive areas, as for example the main Romanian harbors.

Keywords: numerical simulations, Romanian nearshore, waves, wind

Procedia PDF Downloads 344
1168 Assessment of Physical Activity Levels in Qatar: A Pedometer-Based Study

Authors: Souzan Al Sayegh, Izzeldin Ibrahim, Mercia Van Der Walt, Mohamed Al-Kuwari

Abstract:

Background: Walking is the most common form of physical activity which can promote a healthy well-being among people of different age groups. In this regard, pedometers are becoming more popular within research and are considered useful tools in monitoring physical activity levels based on individuals’ daily steps. A value of ˂5,000 steps/day is identified as a sedentary lifestyle index where individuals are physically inactive. Those achieving 5,000-7,499 steps/day have a low active lifestyle as they do not meet the moderate-to-vigorous physical activity (MVPA) recommendations. Moreover, individuals achieving ≥7,500 steps/day are classified as physically active. The objective of this study is to assess the physical activity levels of adult population in Qatar through a pedometer-based program over a one-year period. Methods: A cross-sectional analysis, as part of a longitudinal study, was carried out over one year to assess the daily step count. 'Step into Health' is a community-based program launched by Aspire as an approach for the purpose of improving physical activity across the population of Qatar. The program involves the distribution of pedometers to registered members which is supported by a self-monitoring online account and linked to a web database. Daily habitual physical activity (daily total step count) was assessed through Omron HJ-324U pedometer. Analyses were done on data extracted from the web database. Results: A total of 1,988 members were included in this study (males: n=1,143, 57%; females: n=845, 43%). Average age was 37.8±10.9 years distributed as 60% of age between age 25-54 (n=1,186), 27% of age 45-64 (n=546), and 13% of age 18-24 years (n=256). Majority were non-Qataris, 81% (n=1,609) compared with 19% of the Qatari nationality (n=379). Average body mass index (BMI) was 27.8±6.1 (kg/m2) where most of them (41%, n=809) were found to be overweight, between 25-30 kg/m2. Total average step count was 5,469±3,884. Majority were found to be sedentary (n=1110, 55.8%). Middle aged individuals were more active than the other two age groups. Males were seen as more active than females. Those who were less active had a higher BMI. Older individuals were more active. There was a variation in the physical activity level throughout the year period. Conclusion: It is essential to further develop the available intervention programs and increase their physical activity behavior. Planning such physical activity interventions for female population should involve aspects such as time, environmental variables and aerobic steps.

Keywords: adults, pedometer, physical activity, step-count

Procedia PDF Downloads 305
1167 Computer-Assisted Management of Building Climate and Microgrid with Model Predictive Control

Authors: Vinko Lešić, Mario Vašak, Anita Martinčević, Marko Gulin, Antonio Starčić, Hrvoje Novak

Abstract:

With 40% of total world energy consumption, building systems are developing into technically complex large energy consumers suitable for application of sophisticated power management approaches to largely increase the energy efficiency and even make them active energy market participants. Centralized control system of building heating and cooling managed by economically-optimal model predictive control shows promising results with estimated 30% of energy efficiency increase. The research is focused on implementation of such a method on a case study performed on two floors of our faculty building with corresponding sensors wireless data acquisition, remote heating/cooling units and central climate controller. Building walls are mathematically modeled with corresponding material types, surface shapes and sizes. Models are then exploited to predict thermal characteristics and changes in different building zones. Exterior influences such as environmental conditions and weather forecast, people behavior and comfort demands are all taken into account for deriving price-optimal climate control. Finally, a DC microgrid with photovoltaics, wind turbine, supercapacitor, batteries and fuel cell stacks is added to make the building a unit capable of active participation in a price-varying energy market. Computational burden of applying model predictive control on such a complex system is relaxed through a hierarchical decomposition of the microgrid and climate control, where the former is designed as higher hierarchical level with pre-calculated price-optimal power flows control, and latter is designed as lower level control responsible to ensure thermal comfort and exploit the optimal supply conditions enabled by microgrid energy flows management. Such an approach is expected to enable the inclusion of more complex building subsystems into consideration in order to further increase the energy efficiency.

Keywords: price-optimal building climate control, Microgrid power flow optimisation, hierarchical model predictive control, energy efficient buildings, energy market participation

Procedia PDF Downloads 465
1166 Applying Simulation-Based Digital Teaching Plans and Designs in Operating Medical Equipment

Authors: Kuo-Kai Lin, Po-Lun Chang

Abstract:

Background: The Emergency Care Research Institute released a list for the top 10 medical technology hazards in 2017, with the following hazard topping the list: ‘infusion errors can be deadly if simple safety steps are overlooked.’ In addition, hospitals use various assessment items to evaluate the safety of their medical equipment, confirming the importance of medical equipment safety. In recent years, the topic of patient safety has garnered increasing attention. Accordingly, various agencies have established patient safety-related committees to coordinate, collect, and analyze information regarding abnormal events associated with medical practice. Activities to promote and improve employee training have been introduced to diminish the recurrence of medical malpractice. Objective: To allow nursing personnel to acquire the skills needed to operate common medical equipment and update and review such skills whenever necessary to elevate medical care quality and reduce patient injuries caused by medical equipment operation errors. Method: In this study, a quasi-experimental design was adopted and nurses from a regional teaching hospital were selected as the study sample. Online videos instructing the operation method of common medical equipment were made and quick response codes were designed for the nursing personnel to quickly access the videos when necessary. Senior nursing supervisors and equipment experts were invited to formulate a ‘Scale-based Questionnaire for Assessing Nursing Personnel’s Operational Knowledge of Common Medical Equipment’ to evaluate the nursing personnel’s literacy regarding the operation of the medical equipment. From March to October 2017, an employee training on medical equipment operation and a practice course (simulation course) were implemented, after which the effectiveness of the training and practice course were assessed. Results: Prior to and after the training and practice course, the 66 participating nurses scored 58 and 87 on ‘operational knowledge of common medical equipment,’ respectively (showing a significant statistical difference; t = -9.407, p < .001); 53.5 and 86.3 on ‘operational knowledge of 12-lead electrocardiography’ (z = -2.087, p < .01), respectively; 40 and 79.5 on ‘operational knowledge of cardiac defibrillators’ (z = -3.849, p < .001), respectively; 90 and 98 on ‘operational knowledge of Abbott pumps’ (z = -1.841, p = 0.066), respectively; and 8.7 and 13.7 on ‘perceived competence’ (showing a significant statistical difference; t = -2.77, p < .05). In the participating hospital, medical equipment operation errors were observed in both 2016 and 2017. However, since the implementation of the intervention, medical equipment operation errors have not yet been observed up to October 2017, which can be regarded as the secondary outcome of this study. Conclusion: In this study, innovative teaching strategies were adopted to effectively enhance the professional literacy and skills of nursing personnel in operating medical equipment. The training and practice course also elevated the nursing personnel’s related literacy and perceived competence of operating medical equipment. The nursing personnel was thus able to accurately operate the medical equipment and avoid operational errors that might jeopardize patient safety.

Keywords: medical equipment, digital teaching plan, simulation-based teaching plan, operational knowledge, patient safety

Procedia PDF Downloads 138
1165 Data Model to Predict Customize Skin Care Product Using Biosensor

Authors: Ashi Gautam, Isha Shukla, Akhil Seghal

Abstract:

Biosensors are analytical devices that use a biological sensing element to detect and measure a specific chemical substance or biomolecule in a sample. These devices are widely used in various fields, including medical diagnostics, environmental monitoring, and food analysis, due to their high specificity, sensitivity, and selectivity. In this research paper, a machine learning model is proposed for predicting the suitability of skin care products based on biosensor readings. The proposed model takes in features extracted from biosensor readings, such as biomarker concentration, skin hydration level, inflammation presence, sensitivity, and free radicals, and outputs the most appropriate skin care product for an individual. This model is trained on a dataset of biosensor readings and corresponding skin care product information. The model's performance is evaluated using several metrics, including accuracy, precision, recall, and F1 score. The aim of this research is to develop a personalised skin care product recommendation system using biosensor data. By leveraging the power of machine learning, the proposed model can accurately predict the most suitable skin care product for an individual based on their biosensor readings. This is particularly useful in the skin care industry, where personalised recommendations can lead to better outcomes for consumers. The developed model is based on supervised learning, which means that it is trained on a labeled dataset of biosensor readings and corresponding skin care product information. The model uses these labeled data to learn patterns and relationships between the biosensor readings and skin care products. Once trained, the model can predict the most suitable skin care product for an individual based on their biosensor readings. The results of this study show that the proposed machine learning model can accurately predict the most appropriate skin care product for an individual based on their biosensor readings. The evaluation metrics used in this study demonstrate the effectiveness of the model in predicting skin care products. This model has significant potential for practical use in the skin care industry for personalised skin care product recommendations. The proposed machine learning model for predicting the suitability of skin care products based on biosensor readings is a promising development in the skin care industry. The model's ability to accurately predict the most appropriate skin care product for an individual based on their biosensor readings can lead to better outcomes for consumers. Further research can be done to improve the model's accuracy and effectiveness.

Keywords: biosensors, data model, machine learning, skin care

Procedia PDF Downloads 97
1164 Reduction of Nitrogen Monoxide with Carbon Monoxide from Gas Streams by 10% wt. Cu-Ce-Fe-Co/Activated Carbon

Authors: K. L. Pan, M. B. Chang

Abstract:

Nitrogen oxides (NOₓ) is regarded as one of the most important air pollutants. It not only causes adverse environmental effects but also harms human lungs and respiratory system. As a post-combustion treatment, selective catalytic reduction (SCR) possess the highest NO removal efficiency ( ≥ 85%), which is considered as the most effective technique for removing NO from gas streams. However, injection of reducing agent such as NH₃ is requested, and it is costly and may cause secondary pollution. Reduction of NO with carbon monoxide (CO) as reducing agent has been previously investigated. In this process, the key step involves the NO adsorption and dissociation. Also, the high performance mainly relies on the amounts of oxygen vacancy on catalyst surface and redox ability of catalyst, because oxygen vacancy can activate the N-O bond to promote its dissociation. Additionally, perfect redox ability can promote the adsorption of NO and oxidation of CO. Typically, noble metals such as iridium (Ir), platinum (Pt), and palladium (Pd) are used as catalyst for the reduction of NO with CO; however, high cost has limited their applications. Recently, transition metal oxides have been investigated for the reduction of NO with CO, especially CuₓOy, CoₓOy, Fe₂O₃, and MnOₓ are considered as effective catalysts. However, deactivation is inevitable as oxygen (O₂) exists in the gas streams because active sites (oxygen vacancies) of catalyst are occupied by O₂. In this study, Cu-Ce-Fe-Co is prepared and supported on activated carbon by impregnation method to form 10% wt. Cu-Ce-Fe-Co/activated carbon catalyst. Generally, addition of activated carbon on catalyst can bring several advantages: (1) NO can be effectively adsorbed by interaction between catalyst and activated carbon, resulting in the improvement of NO removal, (2) direct NO decomposition may be achieved over carbon associated with catalyst, and (3) reduction of NO could be enhanced by a reducing agent over carbon-supported catalyst. Therefore, 10% wt. Cu-Ce-Fe-Co/activated carbon may have better performance for reduction of NO with CO. Experimental results indicate that NO conversion achieved with 10% wt. Cu-Ce-Fe-Co/activated carbon reaches 83% at 150°C with 300 ppm NO and 10,000 ppm CO. As temperature is further increased to 200°C, 100% NO conversion could be achieved, implying that 10% wt. Cu-Ce-Fe-Co/activated carbon prepared has good activity for the reduction of NO with CO. In order to investigate the effect of O₂ on reduction of NO with CO, 1-5% O₂ are introduced into the system. The results indicate that NO conversions still maintain at ≥ 90% with 1-5% O₂ conditions at 200°C. It is worth noting that effect of O₂ on reduction of NO with CO could be significantly improved as carbon is used as support. It is inferred that carbon support can react with O₂ to produce CO₂ as O₂ exists in the gas streams. Overall, 10% wt. Cu-Ce-Fe-Co/activated carbon is demonstrated with good potential for reduction of NO with CO, and possible mechanisms will be elucidated in this paper.

Keywords: nitrogen oxides (NOₓ), carbon monoxide (CO), reduction of NO with CO, carbon material, catalysis

Procedia PDF Downloads 256
1163 Application of Typha domingensis Pers. in Artificial Floating for Sewage Treatment

Authors: Tatiane Benvenuti, Fernando Hamerski, Alexandre Giacobbo, Andrea M. Bernardes, Marco A. S. Rodrigues

Abstract:

Population growth in urban areas has caused damages to the environment, a consequence of the uncontrolled dumping of domestic and industrial wastewater. The capacity of some plants to purify domestic and agricultural wastewater has been demonstrated by several studies. Since natural wetlands have the ability to transform, retain and remove nutrients, constructed wetlands have been used for wastewater treatment. They are widely recognized as an economical, efficient and environmentally acceptable means of treating many different types of wastewater. T. domingensis Pers. species have shown a good performance and low deployment cost to extract, detoxify and sequester pollutants. Constructed Floating Wetlands (CFWs) consist of emergent vegetation established upon a buoyant structure, floating on surface waters. The upper parts of the vegetation grow and remain primarily above the water level, while the roots extend down in the water column, developing an extensive under water-level root system. Thus, the vegetation grows hydroponically, performing direct nutrient uptake from the water column. Biofilm is attached on the roots and rhizomes, and as physical and biochemical processes take place, the system functions as a natural filter. The aim of this study is to diagnose the application of macrophytes in artificial floating in the treatment of domestic sewage in south Brazil. The T. domingensis Pers. plants were placed in a flotation system (polymer structure), in full scale, in a sewage treatment plant. The sewage feed rate was 67.4 m³.d⁻¹ ± 8.0, and the hydraulic retention time was 11.5 d ± 1.3. This CFW treat the sewage generated by 600 inhabitants, which corresponds to 12% of the population served by this municipal treatment plant. During 12 months, samples were collected every two weeks, in order to evaluate parameters as chemical oxygen demand (COD), biochemical oxygen demand in 5 days (BOD5), total Kjeldahl nitrogen (TKN), total phosphorus, total solids, and metals. The average removal of organic matter was around 55% for both COD and BOD5. For nutrients, TKN was reduced in 45.9% what was similar to the total phosphorus removal, while for total solids the reduction was 33%. For metals, aluminum, copper, and cadmium, besides in low concentrations, presented the highest percentage reduction, 82.7, 74.4 and 68.8% respectively. Chromium, iron, and manganese removal achieved values around 40-55%. The use of T. domingensis Pers. in artificial floating for sewage treatment is an effective and innovative alternative in Brazilian sewage treatment systems. The evaluation of additional parameters in the treatment system may give useful information in order to improve the removal efficiency and increase the quality of the water bodies.

Keywords: constructed wetland, floating system, sewage treatment, Typha domingensis Pers.

Procedia PDF Downloads 210
1162 Recovering Trust in Institutions through Networked Governance: An Analytical Approach via the Study of the Provincial Government of Gipuzkoa

Authors: Xabier Barandiaran, Igone Guerra

Abstract:

The economic and financial crisis that hit European countries in 2008 revealed the inability of governments to respond unilaterally to the so-called “wicked” problems that affect our societies. Closely linked to this, the increasing disaffection of citizens towards politics has resulted in growing distrust of the citizenry not only in the institutions in general but also in the political system, in particular. Precisely, these two factors provoked the action of the local government of Gipuzkoa (Basque Country) to move from old ways of “doing politics” to a new way of “thinking politics” based on a collaborative approach, in which innovative modes of public decision making are prominent. In this context, in 2015, the initiative Etorkizuna Eraikiz (Building the Future), a contemporary form of networked governance, was launched by the Provincial Government. The paper focuses on the Etorkizuna Eraikiz initiative, a sound commitment from a local government to build jointly with the citizens the future of the territory. This paper will present preliminary results obtained from three different experiences of co-creation developed within Etorkizuna Eraikiz in which the formulation of networked governance is a mandatory pre-requisite. These experiences show how the network building approach among the different agents of the territory as well as the co-creation of public policies is the cornerstone of this challenging mission. Through the analysis of the information and documentation gathered during the four years of Etorkizuna-Eraikiz, and, specifically by delving into the strategy promoted by the initiative, some emerging analytical conclusions resulting from the promotion of this collaborative culture will be presented. For example, some preliminary results have shown a significant positive relationship between shared leadership and the formulation of the public good. In the period 2016-2018, a total of 73 projects were launched and funding by the Provincial Government of Gipuzkoa within the Etorkizuna Eraikiz initiative, that indicates greater engagement of the citizenry in the process of policy-making and therefore improving, somehow, the quality of the public policies. These statements have been supported by the last survey about the perspectives of the citizens toward politics and policies. Some of the more prominent results show us that there is still a high level of distrust in Politics (78,9% of respondents) but a greater trust in institutions such the Political Government of Gipuzkoa (40,8% of respondents declared as “good” the performance of this provincial institution). Regarding the Etorkizuna Eraikiz Initiative, it is being more readily recognized by citizens over this period of time (25,4% of the respondents in June 2018 agreed to know about the initiative giving it a mark of 5,89 ) and thus build trust and a sense of ownership. Although, there is a clear requirement for further research on the linkages between collaborative governance and level of trust, the paper, based on these findings, will provide some managerial and theoretical implications for collaborative governance in the territory.

Keywords: network governance, collaborative governance, public sector innovation, citizen participation, trust

Procedia PDF Downloads 122
1161 Development of a Fire Analysis Drone for Smoke Toxicity Measurement for Fire Prediction and Management

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

This research presents the design and creation of a drone gas analyser, aimed at addressing the need for independent data collection and analysis of gas emissions during large-scale fires, particularly wasteland fires. The analyser drone, comprising a lightweight gas analysis system attached to a remote-controlled drone, enables the real-time assessment of smoke toxicity and the monitoring of gases released into the atmosphere during such incidents. The key components of the analyser unit included two gas line inlets connected to glass wool filters, a pump with regulated flow controlled by a mass flow controller, and electrochemical cells for detecting nitrogen oxides, hydrogen cyanide, and oxygen levels. Additionally, a non-dispersive infrared (NDIR) analyser is employed to monitor carbon monoxide (CO), carbon dioxide (CO₂), and hydrocarbon concentrations. Thermocouples can be attached to the analyser to monitor temperature, as well as McCaffrey probes combined with pressure transducers to monitor air velocity and wind direction. These additions allow for monitoring of the large fire and can be used for predictions of fire spread. The innovative system not only provides crucial data for assessing smoke toxicity but also contributes to fire prediction and management. The remote-controlled drone's mobility allows for safe and efficient data collection in proximity to the fire source, reducing the need for human exposure to hazardous conditions. The data obtained from the gas analyser unit facilitates informed decision-making by emergency responders, aiding in the protection of both human health and the environment. This abstract highlights the successful development of a drone gas analyser, illustrating its potential for enhancing smoke toxicity analysis and fire prediction capabilities. The integration of this technology into fire management strategies offers a promising solution for addressing the challenges associated with wildfires and other large-scale fire incidents. The project's methodology and results contribute to the growing body of knowledge in the field of environmental monitoring and safety, emphasizing the practical utility of drones for critical applications.

Keywords: fire prediction, drone, smoke toxicity, analyser, fire management

Procedia PDF Downloads 89
1160 Multicultural Education in the National Context: A Study of Peoples' Friendship University of Russia

Authors: Maria V. Mishatkina

Abstract:

The modelling of dialogical environment is an essential feature of modern education. The dialogue of cultures is a foundation and an important prerequisite for a formation of a human’s main moral qualities such as an ability to understand another person, which is manifested in such values as tolerance, respect, mutual assistance and mercy. A formation of a modern expert occurs in an educational environment that is significantly different from what we had several years ago. Nowadays university education has qualitatively new characteristics. They may be observed in Peoples’ Friendship University of Russia (RUDN University), a top Russian higher education institution which unites representatives of more than 150 countries. The content of its educational strategies is not an adapted cultural experience but material between science and innovation. Besides, RUDN University’s profiles and specialization are not equal to the professional structures. People study not a profession in a strict sense but a basic scientific foundation of an activity in different socio-cultural areas (science, business and education). RUDN University also provides a considerable unit of professional education components. They are foreign languages skills, economic, political, ethnic, communication and computer culture, theory of information and basic management skills. Moreover, there is a rich social life (festive multicultural events, theme parties, journeys) and prospects concerning the inclusive approach to education (for example, a special course ‘Social Pedagogy: Issues of Tolerance’). In our research, we use such methods as analysis of modern and contemporary scientific literature, opinion poll (involving students, teachers and research workers) and comparative data analysis. We came to the conclusion that knowledge transfer of RUDN student in the activity happens through making goals, problems, issues, tasks and situations which simulate future innovative ambiguous environment that potentially prepares him/her to dialogical way of life. However, all these factors may not take effect if there is no ‘personal inspiration’ of students by communicative and dialogic values, their participation in a system of meanings and tools of learning activity that is represented by cooperation within the framework of scientific and pedagogical schools dialogue. We also found out that dominating strategies of ensuring the quality of education are those that put students in the position of the subject of their own education. Today these strategies and approaches should involve such approaches and methods as task, contextual, modelling, specialized, game-imitating and dialogical approaches, the method of practical situations, etc. Therefore, University in the modern sense is not only an educational institution, but also a generator of innovation, cooperation among nations and cultural progress. RUDN University has been performing exactly this mission for many decades.

Keywords: dialogical developing situation, dialogue of cultures, readiness for dialogue, university graduate

Procedia PDF Downloads 220
1159 Placement of Inflow Control Valve for Horizontal Oil Well

Authors: S. Thanabanjerdsin, F. Srisuriyachai, J. Chewaroungroj

Abstract:

Drilling horizontal well is one of the most cost-effective method to exploit reservoir by increasing exposure area between well and formation. Together with horizontal well technology, intelligent completion is often co-utilized to increases petroleum production by monitoring/control downhole production. Combination of both technological results in an opportunity to lower water cresting phenomenon, a detrimental problem that does not lower only oil recovery but also cause environmental problem due to water disposal. Flow of reservoir fluid is a result from difference between reservoir and wellbore pressure. In horizontal well, reservoir fluid around the heel location enters wellbore at higher rate compared to the toe location. As a consequence, Oil-Water Contact (OWC) at the heel side of moves upward relatively faster compared to the toe side. This causes the well to encounter an early water encroachment problem. Installation of Inflow Control Valve (ICV) in particular sections of horizontal well can involve several parameters such as number of ICV, water cut constrain of each valve, length of each section. This study is mainly focused on optimization of ICV configuration to minimize water production and at the same time, to enhance oil production. A reservoir model consisting of high aspect ratio of oil bearing zone to underneath aquifer is drilled with horizontal well and completed with variation of ICV segments. Optimization of the horizontal well configuration is firstly performed by varying number of ICV, segment length, and individual preset water cut for each segment. Simulation results show that installing ICV can increase oil recovery factor up to 5% of Original Oil In Place (OOIP) and can reduce of produced water depending on ICV segment length as well as ICV parameters. For equally partitioned-ICV segment, more number of segment results in better oil recovery. However, number of segment exceeding 10 may not give a significant additional recovery. In first production period, deformation of OWC strongly depends on number of segment along the well. Higher number of segment results in smoother deformation of OWC. After water breakthrough at heel location segment, the second production period begins. Deformation of OWC is principally dominated by ICV parameters. In certain situations that OWC is unstable such as high production rate, high viscosity fluid above aquifer and strong aquifer, second production period may give wide enough window to ICV parameter to take the roll.

Keywords: horizontal well, water cresting, inflow control valve, reservoir simulation

Procedia PDF Downloads 418
1158 Desulphurization of Waste Tire Pyrolytic Oil (TPO) Using Photodegradation and Adsorption Techniques

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng

Abstract:

The nature of tires makes them extremely challenging to recycle due to the available chemically cross-linked polymer and, therefore, they are neither fusible nor soluble and, consequently, cannot be remolded into other shapes without serious degradation. Open dumping of tires pollutes the soil, contaminates underground water and provides ideal breeding grounds for disease carrying vermins. The thermal decomposition of tires by pyrolysis produce char, gases and oil. The composition of oils derived from waste tires has common properties to commercial diesel fuel. The problem associated with the light oil derived from pyrolysis of waste tires is that it has a high sulfur content (> 1.0 wt.%) and therefore emits harmful sulfur oxide (SOx) gases to the atmosphere when combusted in diesel engines. Desulphurization of TPO is necessary due to the increasing stringent environmental regulations worldwide. Hydrodesulphurization (HDS) is the commonly practiced technique for the removal of sulfur species in liquid hydrocarbons. However, the HDS technique fails in the presence of complex sulfur species such as Dibenzothiopene (DBT) present in TPO. This study aims to investigate the viability of photodegradation (Photocatalytic oxidative desulphurization) and adsorptive desulphurization technologies for efficient removal of complex and non-complex sulfur species in TPO. This study focuses on optimizing the cleaning (removal of impurities and asphaltenes) process by varying process parameters; temperature, stirring speed, acid/oil ratio and time. The treated TPO will then be sent for vacuum distillation to attain the desired diesel like fuel. The effect of temperature, pressure and time will be determined for vacuum distillation of both raw TPO and the acid treated oil for comparison purposes. Polycyclic sulfides present in the distilled (diesel like) light oil will be oxidized dominantly to the corresponding sulfoxides and sulfone via a photo-catalyzed system using TiO2 as a catalyst and hydrogen peroxide as an oxidizing agent and finally acetonitrile will be used as an extraction solvent. Adsorptive desulphurization will be used to adsorb traces of sulfurous compounds which remained during photocatalytic desulphurization step. This desulphurization convoy is expected to give high desulphurization efficiency with reasonable oil recovery.

Keywords: adsorption, asphaltenes, photocatalytic oxidation, pyrolysis

Procedia PDF Downloads 272
1157 Groundwater Flow Dynamics in Shallow Coastal Plain Sands Aquifer, Abesan Area, Eastern Dahomey Basin, Southwestern Nigeria

Authors: Anne Joseph, Yinusa Asiwaju-Bello, Oluwaseun Olabode

Abstract:

Sustainable administration of groundwater resources tapped in Coastal Plain Sands aquifer in Abesan area, Eastern Dahomey Basin, Southwestern Nigeria necessitates the knowledge of the pattern of groundwater flow in meeting a suitable environmental need for habitation. Thirty hand-dug wells were identified and evaluated to study the groundwater flow dynamics and anionic species distribution in the study area. Topography and water table levels method with the aid of Surfer were adopted in the identification of recharge and discharge zones where six recharge and discharge zones were delineated correspondingly. Dissolved anionic species of HCO3-, Cl-, SO42-and NO3- were determined using titrimetric and spectrophotometric method. The trend of significant anionic concentrations of groundwater samples are in the order Cl- > HCO3-> SO42- > NO3-. The prominent anions in the discharge and recharge area are Cl- and HCO3- ranging from 0.22ppm to 3.67ppm and 2.59ppm to 0.72ppm respectively. Analysis of groundwater head distribution and the groundwater flow vector in Abesan area confirmed that Cl- concentration is higher than HCO3- concentration in recharge zones. Conversely, there is a high concentration of HCO3- than Cl- inland towards the continent; therefore, HCO3-concentration in the discharge zones is higher than the Cl- concentration. The anions were to be closely related to the recharge and discharge areas which were confirmed by comparison of activities such as rainfall regime and anthropogenic activities in Abesan area. A large percentage of the samples showed that HCO3-, Cl-, SO42-and NO3- falls within the permissible limit of the W.H.O standard. Most of the samples revealed Cl- / (CO3- + HCO3-) ratio higher than 0.5 indicating that there is saltwater intrusion imprints in the groundwater of the study area. Gibbs plot shown that most of the samples is from rock dominance, some from evaporation dominance and few from precipitation dominance. Potential salinity and SO42/ Cl- ratios signifies that most of the groundwater in Abesan is saline and falls in a water class found to be insuitable for irrigation. Continuous dissolution of these anionic species may pose a significant threat to the inhabitants of Abesan area in the nearest future.

Keywords: Abessan, Anionic species, Discharge, Groundwater flow, Recharge

Procedia PDF Downloads 124
1156 Investigation of the Bioactivity and Efficacy of Personal Care Products Formulated Using Extracts of Azadirachta indica A. Juss

Authors: Ade O. Oyewole, Sunday O. Okoh, Ruth O. Ishola, Adenike D. Odusote, Chima C. Igwe, Gloria N. Elemo, Anthony I. Okoh

Abstract:

Azadirachta indica (Neem tree) also referred to as an all-purpose tree is used in a wide range of medical preparations in tropical and subtropical countries for prevention and management of various livestock, crops products and human diseases. In Nigeria however, the potentials of this plant have not been fully exploited thus it causes an environmental nuisance during the fruiting season. With a rise in the demand for herbal personal care products globally extracts from different parts of the neem plant were used as the bio-active ingredients in the formulation of personal care products. In this study, formulated neem soap, body cream, lotion, toothpaste and shampoo are analyzed to determine their antibacterial, antifungal, and toxicity properties. The efficacies of these products for management of infectious diseases, both oral and dermal, were also investigated in vitro. Oil from the neem seeds obtained using a mechanical press and acetone extracts of both the neem bark and leaves obtained by the maceration method were used in the formulation and production of the neem personal care products. The antimicrobial and toxicity properties of these products were investigated by agar diffusion, and haemolytic methods respectively. The five neem products (NPs) exhibited strong antibacterial activities against four multi–drug resistant pathogenic and three none pathogenic bacterial strains (Escherichia coli (180), Listeria ivanovii, Staphylococcus aureus, Enterobacter cloacae, Vibro spp., Streptococcus uberis, Mycobacterium smegmatis), except the neem lotion with insignificant activity against E. coli and S. aureus. The minimum inhibitory concentration (MIC) range was between 0.20-0.40 mg/ mL. The 5 NPs demonstrated moderate activity against three clinical dermatophytes isolates (Tinea corporis, Tinea capitis, and Tinea cruiz) as well as one fungal strain (Candida albican) with the MIC ranging between 0.30 - 0.50 mg/ mL and 0.550 mg/mL respectively. The soap and shampoo were the most active against test bacteria and fungi. The haemolytic analysis results on the 5 NPs indicated none toxicity at 0.50 mg/ mL in sheep red blood cells (SRBC).

Keywords: antimicrobial, Azadirachta indica, multi–drug resistant pathogenic bacteria, personal care products

Procedia PDF Downloads 270
1155 Human Dental Pulp Stem Cells Attenuate Streptozotocin-Induced Parotid Gland Injury in Rats

Authors: Gehan ElAkabawy

Abstract:

Background: Diabetes mellitus causes severe deteriorations of almost all the organs and systems of the body, as well as significant damage to the oral cavity. The oral changes are mainly related to salivary glands dysfunction characterized by hyposalivation and xerostomia, which significantly reduce diabetic patients’ quality of life. Human dental pulp stem cells represent a promising source for cell-based therapies, owing to their easy, minimally invasive surgical access, and high proliferative capacity. It was reported that the trophic support mediated by dental pulp stem cells can rescue the functional and structural alterations of damaged salivary glands. However, potential differentiation and paracrine effects of human dental pulp stem cells in diabetic-induced parotid gland damage have not been previously investigated. Our study aimed to investigate the therapeutic effects of intravenous transplantation of human dental pulp stem cells (hDPSCs) on parotid gland injury in a rat model of streptozotocin (STZ)-induced type 1 diabetes. Methods: Thirty Sprague-Dawley male rats were randomly categorised into three groups: control, diabetic (STZ), and transplanted (STZ+hDPSCs). hDPSCs or vehicle was injected into the tail vein 7 days after STZ injection. The fasting blood glucose levels were monitored weekly. A glucose tolerance test was performed, and the parotid gland weight, salivary flow rate, oxidative stress indices, parotid gland histology, and caspase-3, vascular endothelial growth factor (VEGF), and proliferating cell nuclear antigen (PCNA) expression in parotid tissues were assessed 28 days post-transplantation. Results: Transplantation of hDPSCs downregulated blood glucose, improved the salivary flow rate, and reduced oxidative stress. The cells migrated to, survived, and differentiated into acinar, ductal, and myoepithelial cells in the STZ-injured parotid gland. Moreover, they downregulated the expression of caspase-3 and upregulated the expression of VEGF and PCNA, likely exerting pro-angiogenetic and antiapoptotic effects and promoting endogenous regeneration. In addition, the transplanted cells enhanced the parotid nitric oxide (NO) -tetrahydrobiopterin (BH4) pathway. Conclusions: Our results show that hDPSCs can migrate to and survive within the STZ-injured parotid gland, where they prevent its functional and morphological damage by restoring normal glucose levels, differentiating into parotid cell populations, and stimulating paracrine-mediated regeneration. Thus, hDPSCs may have therapeutic potential in the treatment of diabetes-induced parotid gland injury.

Keywords: dental pulp stem cells, diabetes, streptozotocin, parotid gland

Procedia PDF Downloads 196
1154 Strategies for Synchronizing Chocolate Conching Data Using Dynamic Time Warping

Authors: Fernanda A. P. Peres, Thiago N. Peres, Flavio S. Fogliatto, Michel J. Anzanello

Abstract:

Batch processes are widely used in food industry and have an important role in the production of high added value products, such as chocolate. Process performance is usually described by variables that are monitored as the batch progresses. Data arising from these processes are likely to display a strong correlation-autocorrelation structure, and are usually monitored using control charts based on multiway principal components analysis (MPCA). Process control of a new batch is carried out comparing the trajectories of its relevant process variables with those in a reference set of batches that yielded products within specifications; it is clear that proper determination of the reference set is key for the success of a correct signalization of non-conforming batches in such quality control schemes. In chocolate manufacturing, misclassifications of non-conforming batches in the conching phase may lead to significant financial losses. In such context, the accuracy of process control grows in relevance. In addition to that, the main assumption in MPCA-based monitoring strategies is that all batches are synchronized in duration, both the new batch being monitored and those in the reference set. Such assumption is often not satisfied in chocolate manufacturing process. As a consequence, traditional techniques as MPCA-based charts are not suitable for process control and monitoring. To address that issue, the objective of this work is to compare the performance of three dynamic time warping (DTW) methods in the alignment and synchronization of chocolate conching process variables’ trajectories, aimed at properly determining the reference distribution for multivariate statistical process control. The power of classification of batches in two categories (conforming and non-conforming) was evaluated using the k-nearest neighbor (KNN) algorithm. Real data from a milk chocolate conching process was collected and the following variables were monitored over time: frequency of soybean lecithin dosage, rotation speed of the shovels, current of the main motor of the conche, and chocolate temperature. A set of 62 batches with durations between 495 and 1,170 minutes was considered; 53% of the batches were known to be conforming based on lab test results and experts’ evaluations. Results showed that all three DTW methods tested were able to align and synchronize the conching dataset. However, synchronized datasets obtained from these methods performed differently when inputted in the KNN classification algorithm. Kassidas, MacGregor and Taylor’s (named KMT) method was deemed the best DTW method for aligning and synchronizing a milk chocolate conching dataset, presenting 93.7% accuracy, 97.2% sensitivity and 90.3% specificity in batch classification, being considered the best option to determine the reference set for the milk chocolate dataset. Such method was recommended due to the lowest number of iterations required to achieve convergence and highest average accuracy in the testing portion using the KNN classification technique.

Keywords: batch process monitoring, chocolate conching, dynamic time warping, reference set distribution, variable duration

Procedia PDF Downloads 167
1153 Are Oral Health Conditions Associated with Children’s School Performance and School Attendance in the Kingdom of Bahrain - A Life Course Approach

Authors: Seham A. S. Mohamed, Sarah R. Baker, Christopher Deery, Mario V. Vettore

Abstract:

Background: The link between oral health conditions and school performance and attendance remain unclear among Middle Eastern children. The association has been studied extensively in the Western region; however, several concerns have been raised regarding the reliability and validity of measures, low quality of studies, inadequate inclusion of potential confounders, and the lack of a conceptual framework. These limitations have meant that, to date, there has been no detailed understanding of the association or of the key social, clinical, behavioural and parental factors which may impact the association. Aim: To examine the association between oral health conditions and children’s school performance and attendance at Grade 2 in Muharraq city in the Kingdom of Bahrain using Heilmann et al.’s (2015) life course framework for oral health. Objectives: To (1) describe the prevalence of oral health conditions among 7-8 years old schoolchildren in the city of Muharraq; (2) analyse the social, biological, behavioural, and parental pathways that link early and current life exposures with children’s current oral health status; (3) examine the association between oral health conditions and school performance and attendance among schoolchildren; (4) explore the early and current life course social, biological, behavioural and parental factors associated with children’s school outcomes. Design: A time-ordered-cross-sectional study was conducted with 466 schoolchildren aged 7-8 years and their parents from Muharraq city in KoB. Data were collected through parents’ self-administered questionnaires, children’s face-face interviews, and dental clinical examinations. Outcome variables, including school performance and school attendance data, were obtained from the parents and school records. The data were analysed using structural equation modelling (SEM). Results: Dental caries, the consequence of dental caries (PUFA/pufa), and enamel developmental defects (EDD) prevalence were 93.4%, 25.7%, and 17.2%, respectively. The findings from the SEM showed that children born in families with high SES were less likely to suffer from dentine dental caries (β= -0.248) and more likely to earn high school performance (β= 0.136) at 7-8 years of age in Muharraq. From the current life course of children, the dental plaque was associated significantly and directly with enamel caries (β= 0.094), dentine caries (β= 0.364), treated teeth (filled or extracted because of dental caries) (β= 0.121), and indirectly associated with dental pain (β= 0.057). Further, dentine dental caries was associated significantly and directly with low school performance (β= -0.155). At the same time, the dental plaque was indirectly associated with low school performance via dental caries (β = −0.044). Conversely, treated teeth were associated directly with high school performance (β= 0.100). Notably, none of the OHCs, biological, SES, behavioural, or parental conditions was related to school attendance in children. Conclusion: The life course approach was adequate to examine the role of OHCs on children’s school performance and attendance. Birth and current (7-8-year-olds) social factors were significant predictors of poor OH and poor school performance.

Keywords: dental caries, life course, Bahrain, school outcomes

Procedia PDF Downloads 107
1152 Safety Evaluation of Post-Consumer Recycled PET Materials in Chilean Industry by Overall Migration Tests

Authors: Evelyn Ilabaca, Ximena Valenzuela, Alejandra Torres, María José Galotto, Abel Guarda

Abstract:

One of the biggest problems in food packaging industry, especially with the plastic materials, is the fact that these materials are usually obtained from non-renewable resources and also remain as waste after its use, causing environmental issues. This is an international concern and particular attention is given to reduction, reuse and recycling strategies for decreasing the waste from plastic packaging industry. In general, polyethylenes represent most plastic waste and recycling process of post-consumer polyethylene terephthalate (PCR-PET) has been studied. US Food and Drug Administration (FDA), European Food Safety Authority (EFSA) and Southern Common Market (MERCOSUR) have generated different legislative documents to control the use of PCR-PET in the production of plastic packaging intended direct food contact in order to ensure the capacity of recycling process to remove possible contaminants that can migrate into food. Consequently, it is necessary to demonstrate by challenge test that the recycling process is able to remove specific contaminants, obtaining a safe recycled plastic to human health. These documents establish that the concentration limit for substitute contaminants in PET is 220 ppb (ug/kg) and the specific migration limit is 10 ppb (ug/kg) for each contaminant, in addition to assure the sensorial characteristics of food are not affected. Moreover, under the Commission Regulation (EU) N°10/2011 on plastic materials and articles intended to come into contact with food, it is established that overall migration limit is 10 mg of substances per 1 dm2 of surface area of the plastic material. Thus, the aim of this work is to determine the safety of PCR-PET-containing food packaging materials in Chile by measuring their overall migration, and their comparison with the established limits at international level. This information will serve as a basis to provide a regulation to control and regulate the use of recycled plastic materials in the manufacture of plastic packaging intended to be in direct contact with food. The methodology used involves a procedure according to EN-1186:2002 with some modifications. The food simulants used were ethanol 10 % (v/v) and acetic acid 3 % (v/v) as aqueous food simulants, and ethanol 95 % (v/v) and isooctane as substitutes of fatty food simulants. In this study, preliminary results showed that Chilean food packaging plastics with different PCR-PET percentages agree with the European Legislation for food aqueous character.

Keywords: contaminants, polyethylene terephthalate, plastic food packaging, recycling

Procedia PDF Downloads 276
1151 Dyadic Video Evidence on How Emotions in Parent Verbal Bids Affect Child Compliance in a British Sample

Authors: Iris Sirirada Pattara-Angkoon, Rory Devine, Anja Lindberg, Wendy Browne, Sarah Foley, Gabrielle McHarg, Claire Hughes

Abstract:

Introduction: The “Terrible Twos” is a phrase used to describe toddlers 18-30 months old. It characterizes a transition from high dependency to their caregivers in infancy to more autonomy and mastery of the body and environment. Toddlers at this age may also show more willfulness and stubbornness that could predict a future trajectory leading to conduct disorders. Thus, an important goal for this age group is to promote responsiveness to their caregivers (i.e., compliance). Existing literature tends to focus on praise to increase desirable child behavior. However, this relationship is not always straightforward as some studies have found no or negative association between praise and child compliance. Research suggests positive emotions and affection showed through body language (e.g., smiles) and actions (e.g., hugs, kisses) along with positive parent-child relationship can strengthen the praise and child compliance association. Nonetheless, few studies have examined the influences of positive emotionality within the speech. This is important as implementing verbal positive emotionality is easier than physical adjustments. The literature also tends not to include fathers in the study sample as mothers were traditionally the primary caregiver. However, as child-caring duties are increasing shared equally between mothers and fathers, it is important to include fathers within the study as studies have frequently found differences between female and male caregiver characteristics. Thus, the study will address the literary gap in two ways: 1. explore the influences of positive emotionality in parental speech and 2. include an equal sample of mothers and fathers. Positive emotionality is expected to positively correlate with and predict child compliance. Methodology: This study analyzed toddlers (18-24 months) in their dyadic interactions with mothers and fathers. A Duplo (block) task was used where parents had to work with their children to build the Duplo according to the given photo for four minutes. Then, they would be told to clean up the blocks. Parental positive emotionality in different speech types (e.g., bids, praises, affirmations) and child compliance were measured. Results: The study found that mothers (M = 28.92, SD = 12.01) were significantly more likely than fathers (M = 23.01, SD = 12.28) to use positive verbal emotionality in their speech, t(105) = 4.35, p< .001. High positive emotionality in bids during Duplo task and Clean Up was positively correlated with more child compliance in each task, r(273) = .35, p< .001 and r(264) = .58, p< .001, respectively. Overall, parental positive emotionality in speech significantly predicted child compliance, F(6, 218) = 13.33, p< .001, R² = .27) with emotionality in verbal bids (t = 6.20, p< .001) and affirmations (t = 3.12, p = .002) being significant predictors. Conclusion: Positive verbal emotions may be useful for increasing compliance in toddlers. This can be beneficial for compliance interventions as well as to the parent-child relationship quality through reduction of conflict and child defiance. As this study is correlational in nature, it will be important for future research to test the directional influence of positive emotionality within speech.

Keywords: child temperament, compliance, positive emotion, toddler, verbal bids

Procedia PDF Downloads 183
1150 Integrating One Health Approach with National Policies to Improve Health Security post-COVID-19 in Vietnam

Authors: Yasser Sanad, Thu Trang Dao

Abstract:

Introduction: Implementing the One Health (OH) approach requires an integrated, interdisciplinary, and cross-sectoral methodology. OH is a key tool for developing and implementing programs and projects and includes developing ambitious policies that consider the common needs and benefits of human, animal, plant, and ecosystem health. OH helps humanity readjust its path to environmentally friendly and impartial sustainability. As co-leader of the Global Health Security Agenda’s Zoonotic Disease Action Package, Vietnam pioneered a strong OH approach to effectively address early waves of the COVID-19 outbreak in-country. Context and Aim: The repeated surges in COVID-19 in Vietnam challenged the capabilities of the national system and disclosed the gaps in multi-sectoral coordination and resilience. To address this, FHI 360 advocated for the standardization of the OH platform by government actors to increase the resiliency of the system during and post COVID-19. Methods: FHI 360 coordinated technical resources to develop and implement evidence-based OH policies, promoting high-level policy dialogue between the Ministries of Health, Agriculture, and the Environment, and policy research to inform developed policies and frameworks. Through discussions, an OH-building Partnership (OHP) was formed, linking climate change, the environment, and human and animal health. Findings: The OHP Framework created a favorable policy environment within and between sectors, as well as between governments and international health security partners. It also promoted strategic dialogue, resource mobilization, policy advocacy, and integration of international systems with National Steering Committees to ensure accountability and emphasize national ownership. Innovative contribution to policy, practice and/or research: OHP was an effective evidence-based research-to-policy platform linking to the National One Health Strategic Plan (2021-2025). Collectively they serve as a national framework for the implementation and monitoring of OH activities. Through the adoption of policies and plans, the risk of zoonotic pathogens, environmental agent spillover, and antimicrobial resistance can be minimized through strengthening multi-sectoral OH collaboration for health security.

Keywords: one health, national policies, health security, COVID-19, Vietnam

Procedia PDF Downloads 105
1149 Solids and Nutrient Loads Exported by Preserved and Impacted Low-Order Streams: A Comparison among Water Bodies in Different Latitudes in Brazil

Authors: Nicolas R. Finkler, Wesley A. Saltarelli, Taison A. Bortolin, Vania E. Schneider, Davi G. F. Cunha

Abstract:

Estimating the relative contribution of nonpoint or point sources of pollution in low-orders streams is an important tool for the water resources management. The location of headwaters in areas with anthropogenic impacts from urbanization and agriculture is a common scenario in developing countries. This condition can lead to conflicts among different water users and compromise ecosystem services. Water pollution also contributes to exporting organic loads to downstream areas, including higher order rivers. The purpose of this research is to preliminarily assess nutrients and solids loads exported by water bodies located in watersheds with different types of land uses in São Carlos - SP (Latitude. -22.0087; Longitude. -47.8909) and Caxias do Sul - RS (Latitude. -29.1634, Longitude. -51.1796), Brazil, using regression analysis. The variables analyzed in this study were Total Kjeldahl Nitrogen (TKN), Nitrate (NO3-), Total Phosphorus (TP) and Total Suspended Solids (TSS). Data were obtained in October and December 2015 for São Carlos (SC) and in November 2012 and March 2013 for Caxias do Sul (CXS). Such periods had similar weather patterns regarding precipitation and temperature. Altogether, 11 sites were divided into two groups, some classified as more pristine (SC1, SC4, SC5, SC6 and CXS2), with predominance of native forest; and others considered as impacted (SC2, SC3, CXS1, CXS3, CXS4 and CXS5), presenting larger urban and/or agricultural areas. Previous linear regression was applied for data on flow and drainage area of each site (R² = 0.9741), suggesting that the loads to be assessed had a significant relationship with the drainage areas. Thereafter, regression analysis was conducted between the drainage areas and the total loads for the two land use groups. The R² values were 0.070, 0.830, 0.752 e 0.455 respectively for SST, TKN, NO3- and TP loads in the more preserved areas, suggesting that the loads generated by runoff are significant in these locations. However, the respective R² values for sites located in impacted areas were respectively 0.488, 0.054, 0.519 e 0.059 for SST, TKN, NO3- and P loads, indicating a less important relationship between total loads and runoff as compared to the previous scenario. This study suggests three possible conclusions that will be further explored in the full-text article, with more sampling sites and periods: a) In preserved areas, nonpoint sources of pollution are more significant in determining water quality in relation to the studied variables; b) The nutrient (TKN and P) loads in impacted areas may be associated with point sources such as domestic wastewater discharges with inadequate treatment levels; and c) The presence of NO3- in impacted areas can be associated to the runoff, particularly in agricultural areas, where the application of fertilizers is common at certain times of the year.

Keywords: land use, linear regression, point and non-point pollution sources, streams, water resources management

Procedia PDF Downloads 306
1148 Risks beyond Cyber in IoT Infrastructure and Services

Authors: Mattias Bergstrom

Abstract:

Significance of the Study: This research will provide new insights into the risks with digital embedded infrastructure. Through this research, we will analyze each risk and its potential negation strategies, especially for AI and autonomous automation. Moreover, the analysis that is presented in this paper will convey valuable information for future research that can create more stable, secure, and efficient autonomous systems. To learn and understand the risks, a large IoT system was envisioned, and risks with hardware, tampering, and cyberattacks were collected, researched, and evaluated to create a comprehensive understanding of the potential risks. Potential solutions have then been evaluated on an open source IoT hardware setup. This list shows the identified passive and active risks evaluated in the research. Passive Risks: (1) Hardware failures- Critical Systems relying on high rate data and data quality are growing; SCADA systems for infrastructure are good examples of such systems. (2) Hardware delivers erroneous data- Sensors break, and when they do so, they don’t always go silent; they can keep going, just that the data they deliver is garbage, and if that data is not filtered out, it becomes disruptive noise in the system. (3) Bad Hardware injection- Erroneous generated sensor data can be pumped into a system by malicious actors with the intent to create disruptive noise in critical systems. (4) Data gravity- The weight of the data collected will affect Data-Mobility. (5) Cost inhibitors- Running services that need huge centralized computing is cost inhibiting. Large complex AI can be extremely expensive to run. Active Risks: Denial of Service- It is one of the most simple attacks, where an attacker just overloads the system with bogus requests so that valid requests disappear in the noise. Malware- Malware can be anything from simple viruses to complex botnets created with specific goals, where the creator is stealing computer power and bandwidth from you to attack someone else. Ransomware- It is a kind of malware, but it is so different in its implementation that it is worth its own mention. The goal with these pieces of software is to encrypt your system so that it can only be unlocked with a key that is held for ransom. DNS spoofing- By spoofing DNS calls, valid requests and data dumps can be sent to bad destinations, where the data can be extracted for extortion or to corrupt and re-inject into a running system creating a data echo noise loop. After testing multiple potential solutions. We found that the most prominent solution to these risks was to use a Peer 2 Peer consensus algorithm over a blockchain to validate the data and behavior of the devices (sensors, storage, and computing) in the system. By the devices autonomously policing themselves for deviant behavior, all risks listed above can be negated. In conclusion, an Internet middleware that provides these features would be an easy and secure solution to any future autonomous IoT deployments. As it provides separation from the open Internet, at the same time, it is accessible over the blockchain keys.

Keywords: IoT, security, infrastructure, SCADA, blockchain, AI

Procedia PDF Downloads 107
1147 Effects of Culture Conditions on the Adhesion of Yeast Candida spp. and Pichia spp. to Stainless Steel with Different Polishing and Their Control

Authors: Ružica Tomičić, Zorica Tomičić, Peter Raspor

Abstract:

An abundant growth of unwanted yeasts in food processing plants can lead to problems in quality and safety with significant financial losses. Candida and Pichia are the genera mainly involved in spoilage of products in the food and beverage industry. These contaminating microorganisms can form biofilms on food contact surfaces, being difficult to eradicate, increasing the probability of microbial survival and further dissemination during food processing. It is well known that biofilms are more resistant to antimicrobial agents compared to planktonic cells and this makes them difficult to eliminate. Among the strategies used to overcome resistance to antifungal drugs and preservatives, the use of natural substances such as plant extracts has shown particular promise, and many natural substances have been found to exhibit antifungal properties. This study aimed to investigated the impact of growth medium (Malt Extract broth (MEB) or Yeast Peptone Dextrose (YPD) broth) and temperatures (7°C, 37°C, 43°C for Candida strains and 7°C, 27°C, 32°C for Pichia strains) on the adhesion of Candida spp. and Pichia spp. to stainless steel (AISI 304) discs with different degrees of surface roughness (Ra = 25.20 – 961.9 nm), a material commonly used in the food industry. We also evaluated the antifungal and antiadhesion activity of plant extracts such as Humulus lupulus, Alpinia katsumadai and Evodia rutaecarpa against C. albicans, C glabrata and P. membranifaciens and investigated whether these plant extracts can interfere with biofilm formation. The adhesion was assessed by the crystal violet staining method, while the broth microdilution method CLSI M27-A3 was used to determine the minimum inhibitory concentration (MIC) of plant extracts. Our results indicated that the nutrient content of the medium significantly influenced the amount of adhered cells of the tested yeasts. The growth medium which resulted in a higher adhesion of C. albicans and C. glabrata was MEB, while for C. parapsilosis and C. krusei was YPD. In the case of P. pijperi and P. membranifaciens, YPD broth was more effective in promoting adhesion than MEB. Regarding the effect of temperature, C. albicans strain adhered to stainless steel surfaces in significantly higher level at a temperature of 43°C, while on the other hand C. glabrata, C. parapsilosis and C. krusei showed a different behavior with significantly higher adhesion at 37°C than at 7°C and 43°C. Further, the adherence ability of Pichia strains was highest at 27°C. Based on the MIC values, all plant extracts exerted significant antifungal effects with MIC values ranged from 100 to 400 μg/mL. It was observed that biofilm of C. glabrata were more resistance to plant extracts as compared to C. albicans. However, extracts of A. katsumadai and E. rutaecarpa promoted the growth and development of the preformed biofilm of P. membranifaciens. Thus, the knowledge of how these microorganisms adhere and which factors affect this phenomenon is of great importance in order to avoid their colonization on food contact surfaces.

Keywords: adhesion, Candida spp., Pichia spp., plant extracts

Procedia PDF Downloads 194