Search results for: transient fields
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2731

Search results for: transient fields

1021 Critical Behaviour and Filed Dependence of Magnetic Entropy Change in K Doped Manganites Pr₀.₈Na₀.₂−ₓKₓMnO₃ (X = .10 And .15)

Authors: H. Ben Khlifa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou

Abstract:

The orthorhombic Pr₀.₈Na₀.₂−ₓKₓMnO₃ (x = 0.10 and 0.15) manganites are prepared by using the solid-state reaction at high temperatures. The critical exponents (β, γ, δ) are investigated through various techniques such as modified Arrott plot, Kouvel-Fisher method, and critical isotherm analysis based on the data of the magnetic measurements recorded around the Curie temperature. The critical exponents are derived from the magnetization data using the Kouvel-Fisher method, are found to be β = 0.32(4) and γ = 1.29(2) at TC ~ 123 K for x = 0.10 and β = 0.31(1) and γ = 1.25(2) at TC ~ 133 K for x = 0.15. The critical exponent values obtained for both samples are comparable to the values predicted by the 3D-Ising model and have also been verified by the scaling equation of state. Such results demonstrate the existence of ferromagnetic short-range order in our materials. The magnetic entropy changes of polycrystalline samples with a second-order phase transition are investigated. A large magnetic entropy change deduced from isothermal magnetization curves, is observed in our samples with a peak centered on their respective Curie temperatures (TC). The field dependence of the magnetic entropy changes are analyzed, which shows power-law dependence ΔSmax ≈ a(μ0 H)n at the transition temperature. The values of n obey the Curie Weiss law above the transition temperature. It is shown that for the investigated materials, the magnetic entropy change follows a master curve behavior. The rescaled magnetic entropy change curves for different applied fields collapse onto a single curve for both samples.

Keywords: manganites, critical exponents, magnetization, magnetocaloric, master curve

Procedia PDF Downloads 161
1020 Comparative Analysis of Simulation-Based and Mixed-Integer Linear Programming Approaches for Optimizing Building Modernization Pathways Towards Decarbonization

Authors: Nico Fuchs, Fabian Wüllhorst, Laura Maier, Dirk Müller

Abstract:

The decarbonization of building stocks necessitates the modernization of existing buildings. Key measures for this include reducing energy demands through insulation of the building envelope, replacing heat generators, and installing solar systems. Given limited financial resources, it is impractical to modernize all buildings in a portfolio simultaneously; instead, prioritization of buildings and modernization measures for a given planning horizon is essential. Optimization models for modernization pathways can assist portfolio managers in this prioritization. However, modeling and solving these large-scale optimization problems, often represented as mixed-integer problems (MIP), necessitates simplifying the operation of building energy systems particularly with respect to system dynamics and transient behavior. This raises the question of which level of simplification remains sufficient to accurately account for realistic costs and emissions of building energy systems, ensuring a fair comparison of different modernization measures. This study addresses this issue by comparing a two-stage simulation-based optimization approach with a single-stage mathematical optimization in a mixed-integer linear programming (MILP) formulation. The simulation-based approach serves as a benchmark for realistic energy system operation but requires a restriction of the solution space to discrete choices of modernization measures, such as the sizing of heating systems. After calculating the operation of different energy systems in terms of the resulting final energy demands in simulation models on a first stage, the results serve as input for a second stage MILP optimization, where the design of each building in the portfolio is optimized. In contrast to the simulation-based approach, the MILP-based approach can capture a broader variety of modernization measures due to the efficiency of MILP solvers but necessitates simplifying the building energy system operation. Both approaches are employed to determine the cost-optimal design and dimensioning of several buildings in a portfolio to meet climate targets within limited yearly budgets, resulting in a modernization pathway for the entire portfolio. The comparison reveals that the MILP formulation successfully captures design decisions of building energy systems, such as the selection of heating systems and the modernization of building envelopes. However, the results regarding the optimal dimensioning of heating technologies differ from the results of the two-stage simulation-based approach, as the MILP model tends to overestimate operational efficiency, highlighting the limitations of the MILP approach.

Keywords: building energy system optimization, model accuracy in optimization, modernization pathways, building stock decarbonization

Procedia PDF Downloads 24
1019 Balancing Act: Political Dynamics of Economic and Climatological Security in the Politics of the Middle East

Authors: Zahra Bakhtiari

Abstract:

Middle East countries confront a multitude of main environmental challenges which are inevitable. The unstable economic and political structure which dominates numerous middle East countries makes it difficult to react effectively to unfavorable climate change impacts. This study applies a qualitative methodology and relies on secondary literature aimed to investigate how countries in the Middle East are balancing economic security and climatic security in terms of budgeting, infrastructure investment, political engagement (domestically through discourses or internationally in terms of participation in international organizations or bargaining, etc.) There has been provided an outline of innovative measures in both economic and environmental fields that are in progress in the Middle East countries and what capacity they have for economic development and environmental adaptation, as well as what has already been performed. The primary outcome is that countries that rely more on infrastructure investment such as negative emissions technologies (NET) through green social capital enterprises and political engagement, especially nationally determined contributions (NDCs) commitments and United Nations Framework Convention on Climate Change (UNFCCC), experience more economic and climatological security balance in the Middle East. Since implementing these measures is not the same in all countries in the region, we see different levels of balance between climate security and economic security. The overall suggestion is that the collaboration of both the bottom-up and top-down approaches helps create strategic environmental strategies which are in line with the economic circumstances of each country and creates the desired balance.

Keywords: climate change, economic growth, sustainability, the Middle East, green economy, renewable energy

Procedia PDF Downloads 76
1018 Investigate and Compare the Characteristics of Entrepreneurship among Students in Senior Secondary Schools in the Academic

Authors: Khalil Aryanfar, Shahrzad Sanjari, Pariya Gholipor, Elmira Hafez

Abstract:

The present study aimed to investigate and compare the characteristics of entrepreneurship among students in senior secondary schools in the academic year 2008-2009 in Tabriz city. Research employed survey method respectively. The study population consisted of all students in the senior branch of theoretical, technical, professional and vocational (1033 patients) were included. Sample size of 493 was calculated according to Morgan table. Sampling method was random cluster and stratified sampling. Data collected by researcher made questionnaire based on the theory of MC clleland (1963) and Brvkhavs (1980). These tools would indicators be for achievement, Independence, disposition, creativity, risk-taking, self-control, tolerance for ambiguity, team work approach in the future. To determine the psychometric properties of the questionnaire, content validity of the survey was approved by relevant experts. In addition, to estimate the internal consistency of Cronbach's alpha coefficient was calculated for 84% of total inventory. Collected data Using mean, standard deviation and were analyzed by ANOVA. The results showed that there is a significant difference between students' entrepreneurial potential fields of theoretical, technical, professional and vocational level (0/01).

Keywords: entrepreneurship, achievement motivation, risk taking, creativity, self-control, independence, tolerance of ambiguity, foresight

Procedia PDF Downloads 395
1017 Isolated Iterating Fractal Independently Corresponds with Light and Foundational Quantum Problems

Authors: Blair D. Macdonald

Abstract:

After nearly one hundred years of its origin, foundational quantum mechanics remains one of the greatest unexplained mysteries in physicists today. Within this time, chaos theory and its geometry, the fractal, has developed. In this paper, the propagation behaviour with an iteration of a simple fractal, the Koch Snowflake, was described and analysed. From an arbitrary observation point within the fractal set, the fractal propagates forward by oscillation—the focus of this study and retrospectively behind by exponential growth from a point beginning. It propagates a potentially infinite exponential oscillating sinusoidal wave of discrete triangle bits sharing many characteristics of light and quantum entities. The model's wave speed is potentially constant, offering insights into the perception and a direction of time where, to an observer, when travelling at the frontier of propagation, time may slow to a stop. In isolation, the fractal is a superposition of component bits where position and scale present a problem of location. In reality, this problem is experienced within fractal landscapes or fields where 'position' is only 'known' by the addition of information or markers. The quantum' measurement problem', 'uncertainty principle,' 'entanglement,' and the classical-quantum interface are addressed; these are a problem of scale invariance associated with isolated fractality. Dual forward and retrospective perspectives of the fractal model offer the opportunity for unification between quantum mechanics and cosmological mathematics, observations, and conjectures. Quantum and cosmological problems may be different aspects of the one fractal geometry.

Keywords: measurement problem, observer, entanglement, unification

Procedia PDF Downloads 87
1016 Effect of Mach Number for Gust-Airfoil Interatcion Noise

Authors: ShuJiang Jiang

Abstract:

The interaction of turbulence with airfoil is an important noise source in many engineering fields, including helicopters, turbofan, and contra-rotating open rotor engines, where turbulence generated in the wake of upstream blades interacts with the leading edge of downstream blades and produces aerodynamic noise. One approach to study turbulence-airfoil interaction noise is to model the oncoming turbulence as harmonic gusts. A compact noise source produces a dipole-like sound directivity pattern. However, when the acoustic wavelength is much smaller than the airfoil chord length, the airfoil needs to be treated as a non-compact source, and the gust-airfoil interaction becomes more complicated and results in multiple lobes generated in the radiated sound directivity. Capturing the short acoustic wavelength is a challenge for numerical simulations. In this work, simulations are performed for gust-airfoil interaction at different Mach numbers, using a high-fidelity direct Computational AeroAcoustic (CAA) approach based on a spectral/hp element method, verified by a CAA benchmark case. It is found that the squared sound pressure varies approximately as the 5th power of Mach number, which changes slightly with the observer location. This scaling law can give a better sound prediction than the flat-plate theory for thicker airfoils. Besides, another prediction method, based on the flat-plate theory and CAA simulation, has been proposed to give better predictions than the scaling law for thicker airfoils.

Keywords: aeroacoustics, gust-airfoil interaction, CFD, CAA

Procedia PDF Downloads 70
1015 Quantitative, Qualitative, and Technological Challenges for Higher Education in Jordan Critical Analytical Study

Authors: Habes Moh’d Khalifeh Hatamleh, Shukri Refai Ibrahim Marashdh

Abstract:

The study came with the aim of identifying the most prominent quantitative, qualitative, and technological challenges facing the higher education system in Jordan as a dilemma in light of the technological revolution that had a radical contribution to changing the face of science and knowledge in various fields of higher education in Jordan. Human societies that require the adoption of scientific research and its basics as a clear entrance aimed at serving the community and upgrading it civilly. The number of private and public universities has increased, and many students have been accepted for all levels of study in the bachelor’s, higher diploma, master’s and doctoral programs, and the quantitative growth has been accompanied by many negatives, which requires renewal and development in the field of higher education, which led to the emergence of many challenges, and the qualitative challenge in terms of relevance, quality and goodness constitutes an important requirement for the improvement of teaching, scientific research and services in light of the social demand for higher education, in order to reach the quality. The real challenge facing our country is to enter the civilization of advanced technology, which has become the main factor and the starting point for preparing staff capable of accomplishing this transformation and creating an appropriate educational environment for the student to help him to use the sources of knowledge. This study can provide a set of recommendations and proposals that may contribute to addressing challenges and contributing to improving educational outcomes in light of the requirements of the labor market and the needs of society.

Keywords: quantitative, qualitative, technological, challenges, higher education

Procedia PDF Downloads 73
1014 Quantitative, Qualitative, and Technological Challenges for Higher Education in Jordan Critical Analytical Study

Authors: Habes Moh’d Khalifeh Hatamleh, Shukri Refai Ibrahim Marashdh

Abstract:

The study came with the aim of identifying the most prominent quantitative, qualitative, and technological challenges facing the higher education system in Jordan as a dilemma in light of the technological revolution that had a radical contribution to changing the face of science and knowledge in various fields of higher education in Jordan. Human societies that require the adoption of scientific research and its basics as a clear entrance aimed at serving the community and upgrading it civilly. The number of private and public universities has increased, and many students have been accepted for all levels of study in the bachelor’s, higher diploma, master’s and doctoral programs, and the quantitative growth has been accompanied by many negatives, which requires renewal and development in the field of higher education, which led to the emergence of many challenges, and the qualitative challenge in terms of relevance, quality and goodness constitutes an important requirement for the improvement of teaching, scientific research and services in light of the social demand for higher education, in order to reach the quality. The real challenge facing our country is to enter the civilization of advanced technology, which has become the main factor and the starting point for preparing staff capable of accomplishing this transformation and creating an appropriate educational environment for the student to help him to use the sources of knowledge. This study can provide a set of recommendations and proposals that may contribute to addressing challenges and contributing to improving educational outcomes in light of the requirements of the labor market and the needs of society.

Keywords: quantitative, qualitative, technological, challenges, higher education

Procedia PDF Downloads 71
1013 Microfluidic Manipulation for Biomedical and Biohealth Applications

Authors: Reza Hadjiaghaie Vafaie, Sevda Givtaj

Abstract:

Automation and control of biological samples and solutions at the microscale is a major advantage for biochemistry analysis and biological diagnostics. Despite the known potential of miniaturization in biochemistry and biomedical applications, comparatively little is known about fluid automation and control at the microscale. Here, we study the electric field effect inside a fluidic channel and proper electrode structures with different patterns proposed to form forward, reversal, and rotational flows inside the channel. The simulation results confirmed that the ac electro-thermal flow is efficient for the control and automation of high-conductive solutions. In this research, the fluid pumping and mixing effects were numerically studied by solving physic-coupled electric, temperature, hydrodynamic, and concentration fields inside a microchannel. From an experimental point of view, the electrode structures are deposited on a silicon substrate and bonded to a PDMS microchannel to form a microfluidic chip. The motions of fluorescent particles in pumping and mixing modes were captured by using a CCD camera. By measuring the frequency response of the fluid and exciting the electrodes with the proper voltage, the fluid motions (including pumping and mixing effects) are observed inside the channel through the CCD camera. Based on the results, there is good agreement between the experimental and simulation studies.

Keywords: microfluidic, nano/micro actuator, AC electrothermal, Reynolds number, micropump, micromixer, microfabrication, mass transfer, biomedical applications

Procedia PDF Downloads 54
1012 Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Authors: E. M. Hassan, A. L. Kalamkarov

Abstract:

Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.

Keywords: asymptotic homogenization method, finite element analysis, effective piezothermoelastic coefficients, 3D smart network composite structures

Procedia PDF Downloads 398
1011 Lattice Boltzmann Simulation of Fluid Flow and Heat Transfer Through Porous Media by Means of Pore-Scale Approach: Effect of Obstacles Size and Arrangement on Tortuosity and Heat Transfer for a Porosity Degree

Authors: Annunziata D’Orazio, Arash Karimipour, Iman Moradi

Abstract:

The size and arrangement of the obstacles in the porous media has an influential effect on the fluid flow and heat transfer, even in the same porosity. Regarding to this, in the present study, several different amounts of obstacles, in both regular and stagger arrangements, in the analogous porosity have been simulated through a channel. In order to compare the effect of stagger and regular arrangements, as well as different quantity of obstacles in the same porosity, on fluid flow and heat transfer. In the present study, the Single Relaxation Time Lattice Boltzmann Method, with Bhatnagar-Gross-Ktook (BGK) approximation and D2Q9 model, is implemented for the numerical simulation. Also, the temperature field is modeled through a Double Distribution Function (DDF) approach. Results are presented in terms of velocity and temperature fields, streamlines, percentage of pressure drop and Nusselt number of the obstacles walls. Also, the correlation between tortuosity and Nusselt number of the obstacles walls, for both regular and staggered arrangements, has been proposed. On the other hand, the results illustrated that by increasing the amount of obstacles, as well as changing their arrangement from regular to staggered, in the same porosity, the rate of tortuosity and Nusselt number of the obstacles walls increased.

Keywords: lattice boltzmann method, heat transfer, porous media, pore-scale, porosity, tortuosity

Procedia PDF Downloads 83
1010 Green Electrochemical Nitration of Bioactive Compounds: Biological Evaluation with Molecular Modelling

Authors: Sara Torabi, Sadegh Khazalpour, Mahdi Jamshidi

Abstract:

Nitro aromatic compounds are valuable materials because of their applications in the preparation of chemical intermediates for the synthesis of dyes, plastics, perfumes, energetic materials, and pharmaceuticals. Chemical and electrochemical procedures are reported for nitration of aromatic compounds. Flavonoid derivatives are present in many vegetables and fruits and are constituent of many common pharmaceuticals and dietary supplements. Electrochemistry provides very versatile means for the electrosynthesis, mechanistic and kinetic studies. To the best of our knowledge, and despite the importance of these compounds in numerous scientific fields, there are no reports on the electrochemical nitration of Quercetin derivatives. Herein, we describe a green electrochemical synthesis of a nitro compound. In this work, electrochemical oxidation of Quercetin has been studied in the presence of nitrite ion as a nucleophile in acetate buffer solution (c = 0.2 M, pH = 6.0), by means of cyclic voltammetry and controlled-potential coulometry. The results indicate the participation of produced o-benzoquinones in Michael reaction with nitrite ion (in the divided cell) to form the corresponding nitro diol (EC mechanism). The purity of product and characterization was done using ¹H NMR, ¹³C NMR, FTIR spectroscopic techniques. The presented strategies use a water/ethanol mixture as solvent. Ethanol as cosolvent was also used in the previous studies because of its low cost, safety, easy availability, recyclability, bioproductability, and biodegradability. These strategies represent a one-pot and facile process for the synthesis of nitro compound in high yield and purity under green conditions.

Keywords: electrochemical synthesis, green chemistry, cyclic voltammetry, molecular docking

Procedia PDF Downloads 140
1009 War and the Battle of Lebanese Television over Gender

Authors: Natalie M. Khazaal

Abstract:

The effects of the civil war on Lebanese women have been challenging to conceptualize. For some, war is a liberating and empowering force for women, while for others it is one that subjugates women and disempowers them in new ways. Scholars have explored the impact on the Lebanese civil war (1975-1990) on women in the fields of labor history, political activism and literary production. In all these arenas, women’s role and visibility were contested and negotiated in diverse ways. But probably the most visible arena where this contestation took place was television. Dramatized entertainment series were crucial sites where fictional women battled out the gender question, and which reflected and participated in the negotiations of gender politics. Even more stunningly, actual television stations became part of this battle through the plots and portrayals of women that they created. The state-backed Tele-Liban (TL) peddled patriarchal articulations of gender that directly competed with the edgy vision of liberated, independent women on the pirate Lebanese Broadcasting Corporation (LBC). This presentation explores how LBC used gender to distinguish its brand against the retrograde TL programing. Television series are an important medium for creating, testing and reenacting gender politics. They are even more consequential in another way. They are the sites where a dramatic shift in the relationship between Arab television and Arab publics—from benign neglect of public concerns towards engagement with audiences—took place for the first time. As this shift is at the heart of why Arab media was seen as a participant in the Arab uprisings, it is important to explore the roots of the shift in the dramas and comedy series of the mid-1980s Lebanese television. This presentation argues that television battles over gender were consequential and need serious consideration as sites of unexpected meaning.

Keywords: gender, Lebanon, television, war, women

Procedia PDF Downloads 631
1008 The Influence of Surface Roughness on the Flow Fields Generated by an Oscillating Cantilever

Authors: Ciaran Conway, Nick Jeffers, Jeff Punch

Abstract:

With the current trend of miniaturisation of electronic devices, piezoelectric fans have attracted increasing interest as an alternative means of forced convection over traditional rotary solutions. Whilst there exists an abundance of research on various piezo-actuated flapping fans in the literature, the geometries of these fans all consist of a smooth rectangular cross section with thicknesses typically of the order of 100 um. The focus of these studies is primarily on variables such as frequency, amplitude, and in some cases resonance mode. As a result, the induced flow dynamics are a direct consequence of the pressure differential at the fan tip as well as the pressure-driven ‘over the top’ vortices generated at the upper and lower edges of the fan. Rough surfaces such as golf ball dimples or vortex generators on an aircraft wing have proven to be beneficial by tripping the boundary layer and energising the adjacent air flow. This paper aims to examine the influence of surface roughness on the airflow generation of a flapping fan and determine whether the induced wake can be manipulated or enhanced by energising the airflow around the fan tip. Particle Image Velocimetry (PIV) is carried out on mechanically oscillated rigid fans with various surfaces consisting of pillars, perforations and cell-like grids derived from the wing topology of natural fliers. The results of this paper may be used to inform the design of piezoelectric fans and possibly aid in understanding the complex aerodynamics inherent in flapping wing flight.

Keywords: aerodynamics, oscillating cantilevers, PIV, vortices

Procedia PDF Downloads 214
1007 Two-Dimensional CFD Simulation of the Behaviors of Ferromagnetic Nanoparticles in Channel

Authors: Farhad Aalizadeh, Ali Moosavi

Abstract:

This paper presents a two-dimensional Computational Fluid Dynamics (CFDs) simulation for the steady, particle tracking. The purpose of this paper is applied magnetic field effect on Magnetic Nanoparticles velocities distribution. It is shown that the permeability of the particles determines the effect of the magnetic field on the deposition of the particles and the deposition of the particles is inversely proportional to the Reynolds number. Using MHD and its property it is possible to control the flow velocity, remove the fouling on the walls and return the system to its original form. we consider a channel 2D geometry and solve for the resulting spatial distribution of particles. According to obtained results when only magnetic fields are applied perpendicular to the flow, local particles velocity is decreased due to the direct effect of the magnetic field return the system to its original fom. In the method first, in order to avoid mixing with blood, the ferromagnetic particles are covered with a gel-like chemical composition and are injected into the blood vessels. Then, a magnetic field source with a specified distance from the vessel is used and the particles are guided to the affected area. This paper presents a two-dimensional Computational Fluid Dynamics (CFDs) simulation for the steady, laminar flow of an incompressible magnetorheological (MR) fluid between two fixed parallel plates in the presence of a uniform magnetic field. The purpose of this study is to develop a numerical tool that is able to simulate MR fluids flow in valve mode and determineB0, applied magnetic field effect on flow velocities and pressure distributions.

Keywords: MHD, channel clots, magnetic nanoparticles, simulations

Procedia PDF Downloads 365
1006 A Study of Flooding Detention Space Efficiency in Different Lands Uses : The Case in Zhoushui River Downstream Catchment in Taiwan

Authors: Jie-Ying Wu, Kuo-Hao Weng, Jin-Cheng Fu

Abstract:

This study proposes changes to land use for the purposes of water retention and runoff reduction, with the aim of reducing the frequency of flooding. This study uses the Zhuoshui River in Taiwan as a case study, designing different land use planning strategies, and setting up various detention spaces. The HEC-HMS model developed by the Hydrology Research Center of the U.S. Army Corps of Engineers is used to calculate the decrease in runoff using various planning strategies, during five precipitation events of increasing return periods. This study finds that a maximum decrease in runoff of 14 million square meters can result by changing the form of land cover and storm detention in non-urban agricultural and river zones. This is due to the fact that non-urban land accounts for 96% of the area under study. Greatest efficacy was demonstrated in a two-year return period, with results ranging from 16% to 52%. The efficacy of a 100-year return period rated from 3% to 8%. Urban area detentions consist of agricultural paddy fields, storm water ponds and rainwater retention systems in building basements. Although urban areas can provide one million cubic meters of runoff storage, this result is insignificant due to the fact that urban area constitutes only 4% of the study area. By changing land cover, a 2-year return period has a 9% efficacy, and a 100-year return period has a 2% efficacy.

Keywords: flood detention space, land-use, spatial planning, Zhuoshuei River, Taiwan

Procedia PDF Downloads 377
1005 Engaging Local Communities on Large-Scale Construction Project

Authors: Melissa Teo

Abstract:

It is increasingly important that project managers develop greater capabilities to better manage the social, cultural, political, environmental and economic impacts on proposed construction projects. These challenges are best resolved in consultation with communities rather than in conflict with them. This is particularly important on controversial projects which are projects that have obtained government sanctioned ‘development approval’ but not ‘community approval’. While a rich body of research and intellectual frameworks exist in the fields of urban geography and planning to understand and manage community concerns during the pre-development approval stages of new projects, current theoretical frameworks guiding community engagement in project management are inadequate. A new and innovative research agenda is needed to guide thinking about the role of local communities in the construction process and is an important research gap that needs to be filled. Within this context, this research aims to assess the effectiveness of strategies adopted by project teams to engage with local communities so as to capture lessons learnt to apply to future projects. This paper reports a research methodology which uses Arnstein’s model of participation to better understand how power differentials between the project team and local communities can influence the adoption of community engagement strategies. A case study approach is utilizing interviews and documentary analysis of a large-scale controversial construction project in Queensland, Australia is presented. The findings will result in a number of recommendations to guide community engagement practices on future projects.

Keywords: community engagement, construction, case study, project management

Procedia PDF Downloads 249
1004 The Nature of Borrowings into Arabic during Different Historical Periods

Authors: Maria L. Swanson

Abstract:

Language is a system which constantly changes and reflects social and cultural transformations of a speech community. If it is phonetic system, morphological patterns and syntactic arrangements undergo little charge and are not easily transferable from one language to another, the lexicon has a high degree of flexibility. Borrowings in Arabic have always been an interesting and important subject of study to various fields of linguistics, history and culturology, and there is quite number of works devoted to this subject (al-Khalīl, Sībawīḥ, Jeffery, Belkin, al-Maghribii, Holes, Stetkevich, el-Mawlūdī, between many others). At the same time, the history of borrowing has never been described as a process starting from its originating and up to the present time. Most of the researches study lexical and morphological adaptation of borrowed words for specific or several historical periods or delineate this process on the whole. Meanwhile, we have described the whole history of borrowings in Arabic with the brief depicting of lexical and morphological specifics for each historical period using quantitative method through dividing Arabic borrowings into several groups, basing on the specific of their adaptation of new vocabulary which is tightly related to the global transformations in the Arabic history. We explain reasons for borrowings of specific lexical layers for each historical period together with the description of its morphological specifics. We also use qualitative approach through performing statistics about the share of loan vocabulary in Arabic during different periods and the percentage of borrowings from donor languages. The history of a character and amount of borrowings is a good resource for theoretical and practical lexicography and morphology studies. It is also beneficial for researchers in the field of global and specific national, political and social developments, and different types of contacts.

Keywords: anthropological linguistics, borrowings, historical linguistics, sociolinguistics

Procedia PDF Downloads 444
1003 Performance Assessment Of An Existing Multi-effect Desalination System Driven By Solar Energy

Authors: B. Shahzamanian, S. Varga, D. C. Alarcón-Padilla

Abstract:

Desalination is considered the primary alternative to increase water supply for domestic, agricultural and industrial use. Sustainable desalination is only possible in places where renewable energy resources are available. Solar energy is the most relevant type of renewable energy to driving desalination systems since most of the areas suffering from water scarcity are characterized by a high amount of available solar radiation during the year. Multi-Effect Desalination (MED) technology integrated with solar thermal concentrators is a suitable combination for heat-driven desalination. It can also be coupled with thermal vapour compressors or absorption heat pumps to boost overall system performance. The most interesting advantage of MED is the suitability to be used with a transient source of energy like solar. An experimental study was carried out to assess the performance of the most important life-size multi-effect desalination plant driven by solar energy located in the Plataforma Solar de Almería (PSA). The MED plant is used as a reference in many studies regarding multi-effect distillation. The system consists of a 14-effect MED plant coupled with a double-effect absorption heat pump. The required thermal energy to run the desalination system is supplied by means of hot water generated from 60 static flat-plate solar collectors with a total aperture area of 606 m2. In order to compensate for the solar energy variation, a thermal storage system with two interconnected tanks and an overall volume of 40 m3 is coupled to the MED unit. The multi-effect distillation unit is built in a forward feed configuration, and the last effect is connected to a double-effect LiBr-H2O absorption heat pump. The heat pump requires steam at 180 ºC (10 bar a) that is supplied by a small-aperture parabolic trough solar field with a total aperture area of 230 m2. When needed, a gas boiler is used as an auxiliary heat source for operating the heat pump and the MED plant when solar energy is not available. A set of experiments was carried out for evaluating the impact of the heating water temperature (Th), top brine temperature (TBT) and temperature difference between effects (ΔT) on the performance ratio of the MED plant. The considered range for variation of Th, TBT and ΔT was 60-70°C, 54-63°C and 1.1-1.6°C, respectively. The performance ratio (PR), defined as kg of distillate produced for every 2326 kJ of thermal energy supplied to the MED system, was almost independent of the applied variables with a variation of less than 5% for all the cases. The maximum recorded PR was 12.4. The results indicated that the system demonstrated robustness for the whole range of operating conditions considered. Author gratitude is expressed to the PSA for providing access to its installations, the support of its scientific and technical staff, and the financial support of the SFERA-III project (Grant Agreement No 823802). Special thanks to the access provider staff members who ensured the access support.

Keywords: multi-effect distillation, performance ratio, robustness, solar energy

Procedia PDF Downloads 182
1002 Scientific and Technical Basis for the Application of Textile Structures in Glass Using Pate De Verre Technique

Authors: Walaa Hamed Mohamed Hamza

Abstract:

Textile structures are the way in which the threading process of both thread and loom is done together to form the woven. Different methods of attaching the clothing and the flesh produce different textile structures, which differ in their surface appearance from each other, including so-called simple textile structures. Textile compositions are the basis of woven fabric, through which aesthetic values can be achieved in the textile industry by weaving threads of yarn with the weft at varying degrees that may reach the total control of one of the two groups on the other. Hence the idea of how art and design can be used using different textile structures under the modern techniques of pate de verre. In the creation of designs suitable for glass products employed in the interior architecture. The problem of research: The textile structures, in general, have a significant impact on the appearance of the fabrics in terms of form and aesthetic. How can we benefit from the characteristics of different textile compositions in different glass designs with different artistic values. The research achieves its goal by the investment of simple textile structures in innovative artistic designs using the pate de verre technique, as well as the use of designs resulting from the textile structures in the external architecture to add various aesthetic values. The importance of research in the revival of heritage using ancient techniques, as well as synergy between different fields of applied arts such as glass and textile, and also study the different and diverse effects resulting from each fabric composition and the possibility of use in various designs in the interior architecture. The research will be achieved that by investing in simple textile compositions, innovative artistic designs produced using pate de verre technology can be used in interior architecture.

Keywords: glass, interior architecture, pate de verre, textile structures

Procedia PDF Downloads 291
1001 The Effect of a Saturated Kink on the Dynamics of Tungsten Impurities in the Plasma Core

Authors: H. E. Ferrari, R. Farengo, C. F. Clauser

Abstract:

Tungsten (W) will be used in ITER as one of the plasma facing components (PFCs). The W could migrate to the plasma center. This could have a potentially deleterious effect on plasma confinement. Electron cyclotron resonance heating (ECRH) can be used to prevent W accumulation. We simulated a series of H mode discharges in ASDEX U with PFC containing W, where central ECRH was used to prevent W accumulation in the plasma center. The experiments showed that the W density profiles were flat after a sawtooth crash, and become hollow in between sawtooth crashes when ECRH has been applied. It was also observed that a saturated kink mode was active in these conditions. We studied the effect of saturated kink like instabilities on the redistribution of W impurities. The kink was modeled as the sum of a simple analytical equilibrium (large aspect ratio, circular cross section) plus the perturbation produced by the kink. A numerical code that follows the exact trajectories of the impurity ions in the total fields and includes collisions was employed. The code is written in Cuda C and runs in Graphical Processing Units (GPUs), allowing simulations with a large number of particles with modest resources. Our simulations show that when the W ions have a thermal velocity distribution, the kink has no effect on the W density. When we consider the plasma rotation, the kink can affect the W density. When the average passing frequency of the W particles is similar to the frequency of the kink mode, the expulsion of W ions from the plasma core is maximum, and the W density shows a hollow structure. This could have implications for the mitigation of W accumulation.

Keywords: impurity transport, kink instability, tungsten accumulation, tungsten dynamics

Procedia PDF Downloads 169
1000 Diagnosis of Intermittent High Vibration Peaks in Industrial Gas Turbine Using Advanced Vibrations Analysis

Authors: Abubakar Rashid, Muhammad Saad, Faheem Ahmed

Abstract:

This paper provides a comprehensive study pertaining to diagnosis of intermittent high vibrations on an industrial gas turbine using detailed vibrations analysis, followed by its rectification. Engro Polymer & Chemicals Limited, a Chlor-Vinyl complex located in Pakistan has a captive combined cycle power plant having two 28 MW gas turbines (make Hitachi) & one 15 MW steam turbine. In 2018, the organization faced an issue of high vibrations on one of the gas turbines. These high vibration peaks appeared intermittently on both compressor’s drive end (DE) & turbine’s non-drive end (NDE) bearing. The amplitude of high vibration peaks was between 150-170% on the DE bearing & 200-300% on the NDE bearing from baseline values. In one of these episodes, the gas turbine got tripped on “High Vibrations Trip” logic actuated at 155µm. Limited instrumentation is available on the machine, which is monitored with GE Bently Nevada 3300 system having two proximity probes installed at Turbine NDE, Compressor DE &at Generator DE & NDE bearings. Machine’s transient ramp-up & steady state data was collected using ADRE SXP & DSPI 408. Since only 01 key phasor is installed at Turbine high speed shaft, a derived drive key phasor was configured in ADRE to obtain low speed shaft rpm required for data analysis. By analyzing the Bode plots, Shaft center line plot, Polar plot & orbit plots; rubbing was evident on Turbine’s NDE along with increased bearing clearance of Turbine’s NDE radial bearing. The subject bearing was then inspected & heavy deposition of carbonized coke was found on the labyrinth seals of bearing housing with clear rubbing marks on shaft & housing covering at 20-25 degrees on the inner radius of labyrinth seals. The collected coke sample was tested in laboratory & found to be the residue of lube oil in the bearing housing. After detailed inspection & cleaning of shaft journal area & bearing housing, new radial bearing was installed. Before assembling the bearing housing, cleaning of bearing cooling & sealing air lines was also carried out as inadequate flow of cooling & sealing air can accelerate coke formation in bearing housing. The machine was then taken back online & data was collected again using ADRE SXP & DSPI 408 for health analysis. The vibrations were found in acceptable zone as per ISO standard 7919-3 while all other parameters were also within vendor defined range. As a learning from subject case, revised operating & maintenance regime has also been proposed to enhance machine’s reliability.

Keywords: ADRE, bearing, gas turbine, GE Bently Nevada, Hitachi, vibration

Procedia PDF Downloads 141
999 A Collective Intelligence Approach to Safe Artificial General Intelligence

Authors: Craig A. Kaplan

Abstract:

If AGI proves to be a “winner-take-all” scenario where the first company or country to develop AGI dominates, then the first AGI must also be the safest. The safest, and fastest, path to Artificial General Intelligence (AGI) may be to harness the collective intelligence of multiple AI and human agents in an AGI network. This approach has roots in seminal ideas from four of the scientists who founded the field of Artificial Intelligence: Allen Newell, Marvin Minsky, Claude Shannon, and Herbert Simon. Extrapolating key insights from these founders of AI, and combining them with the work of modern researchers, results in a fast and safe path to AGI. The seminal ideas discussed are: 1) Society of Mind (Minsky), 2) Information Theory (Shannon), 3) Problem Solving Theory (Newell & Simon), and 4) Bounded Rationality (Simon). Society of Mind describes a collective intelligence approach that can be used with AI and human agents to create an AGI network. Information theory helps address the critical issue of how an AGI system will increase its intelligence over time. Problem Solving Theory provides a universal framework that AI and human agents can use to communicate efficiently, effectively, and safely. Bounded Rationality helps us better understand not only the capabilities of SuperIntelligent AGI but also how humans can remain relevant in a world where the intelligence of AGI vastly exceeds that of its human creators. Each key idea can be combined with recent work in the fields of Artificial Intelligence, Machine Learning, and Large Language Models to accelerate the development of a working, safe, AGI system.

Keywords: AI Agents, Collective Intelligence, Minsky, Newell, Shannon, Simon, AGI, AGI Safety

Procedia PDF Downloads 83
998 Evaluation of Residual Stresses in Human Face as a Function of Growth

Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan

Abstract:

Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of living tissues to mechanical loads is necessary for a wide range of developing fields such as prosthetics design or computerassisted surgical interventions. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically, growth is one of the main sources. Extracting body organ’s shapes from medical imaging does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is gravity since an organ grows under its influence from birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. This paper presents an original computational framework based on gradual growth to determine the residual stresses due to growth. To illustrate the method, we apply it to a finite element model of a healthy human face reconstructed from medical images. The distribution of residual stress in facial tissues is computed, which can overcome the effect of gravity and maintain tissues firmness. Our assumption is that tissue wrinkles caused by aging could be a consequence of decreasing residual stress and thus not counteracting gravity. Taking into account these stresses seems therefore extremely important in maxillofacial surgery. It would indeed help surgeons to estimate tissues changes after surgery.

Keywords: finite element method, growth, residual stress, soft tissue

Procedia PDF Downloads 265
997 Ranking of the Main Criteria for Contractor Selection Procedures on Major Construction Projects in Libya Using the Delphi Method

Authors: Othoman Elsayah, Naren Gupta, Binsheng Zhang

Abstract:

The construction sector constitutes one of the most important sectors in the economy of any country. Contractor selection is a critical decision that is undertaken by client organizations and is central to the success of any construction project. Contractor selection (CS) is a process which involves investigating, screening and determining whether candidate contractors have the technical and financial capability to be accepted to formally tender for construction work. The process should be conducted prior to the award of contract, characterized by many factors such as: contactor’s skills, experience on similar projects, track- record in the industry, and financial stability. However, this paper evaluates the current state of knowledge in relation to contractor selection process and demonstrates the findings from the analysis of the data collected from the Delphi questionnaire survey. The survey was conducted with a group of 12 experts working in the Libyan construction industry (LCI). The paper starts by briefly explaining the general outline of the questionnaire including the survey participation rate, the different fields the experts came from, and the business titles of the participants. Then, the paper describes the tests used to determine when the experts had reached consensus. The paper is based on research which aims to develop rank contractor selection criteria with specific application to make construction projects in the Libyan context. The findings of this study will be utilized to establish the scope of work that will be used as part of a PhD research.

Keywords: contractor selection, Libyan construction industry, decision experts, Delphi technique

Procedia PDF Downloads 329
996 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks

Authors: Lei Zhu, Nan Li

Abstract:

Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.

Keywords: springback, cold stamping, convolutional neural networks, machine learning

Procedia PDF Downloads 142
995 Numerical Investigation of Flow Boiling within Micro-Channels in the Slug-Plug Flow Regime

Authors: Anastasios Georgoulas, Manolia Andredaki, Marco Marengo

Abstract:

The present paper investigates the hydrodynamics and heat transfer characteristics of slug-plug flows under saturated flow boiling conditions within circular micro-channels. Numerical simulations are carried out, using an enhanced version of the open-source CFD-based solver ‘interFoam’ of OpenFOAM CFD Toolbox. The proposed user-defined solver is based in the Volume Of Fluid (VOF) method for interface advection, and the mentioned enhancements include the implementation of a smoothing process for spurious current reduction, the coupling with heat transfer and phase change as well as the incorporation of conjugate heat transfer to account for transient solid conduction. In all of the considered cases in the present paper, a single phase simulation is initially conducted until a quasi-steady state is reached with respect to the hydrodynamic and thermal boundary layer development. Then, a predefined and constant frequency of successive vapour bubbles is patched upstream at a certain distance from the channel inlet. The proposed numerical simulation set-up can capture the main hydrodynamic and heat transfer characteristics of slug-plug flow regimes within circular micro-channels. In more detail, the present investigation is focused on exploring the interaction between subsequent vapour slugs with respect to their generation frequency, the hydrodynamic characteristics of the liquid film between the generated vapour slugs and the channel wall as well as of the liquid plug between two subsequent vapour slugs. The proposed investigation is carried out for the 3 different working fluids and three different values of applied heat flux in the heated part of the considered microchannel. The post-processing and analysis of the results indicate that the dynamics of the evolving bubbles in each case are influenced by both the upstream and downstream bubbles in the generated sequence. In each case a slip velocity between the vapour bubbles and the liquid slugs is evident. In most cases interfacial waves appear close to the bubble tail that significantly reduce the liquid film thickness. Finally, in accordance with previous investigations vortices that are identified in the liquid slugs between two subsequent vapour bubbles can significantly enhance the convection heat transfer between the liquid regions and the heated channel walls. The overall results of the present investigation can be used to enhance the present understanding by providing better insight of the complex, underpinned heat transfer mechanisms in saturated boiling within micro-channels in the slug-plug flow regime.

Keywords: slug-plug flow regime, micro-channels, VOF method, OpenFOAM

Procedia PDF Downloads 260
994 Wear Resistance and Mechanical Performance of Ultra-High Molecular Weight Polyethylene Influenced by Temperature Change

Authors: Juan Carlos Baena, Zhongxiao Peng

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) is extensively used in industrial and biomedical fields. The slippery nature of UHMWPE makes this material suitable for surface bearing applications, however, the operational conditions limit the lubrication efficiency, inducing boundary and mixed lubrication in the tribological system. The lack of lubrication in a tribological system intensifies friction, contact stress and consequently, operating temperature. With temperature increase, the material’s mechanical properties are affected, and the lifespan of the component is reduced. The understanding of how mechanical properties and wear performance of UHMWPE change when the temperature is increased has not been clearly identified. The understanding of the wear and mechanical performance of UHMWPE at different temperature is important to predict and further improve the lifespan of these components. This study evaluates the effects of temperature variation in a range of 20 °C to 60 °C on the hardness and the wear resistance of UHMWPE. A reduction of the hardness and wear resistance was observed with the increase in temperature. The variation of the wear rate increased 94.8% when the temperature changed from 20 °C to 50 °C. Although hardness is regarded to be an indicator of the material wear resistance, this study found that wear resistance decreased more rapidly than hardness with the temperature increase, evidencing a low material stability of this component in a short temperature interval. The reduction of the hardness was reflected by the plastic deformation and abrasion intensity, resulting in a significant wear rate increase.

Keywords: hardness, surface bearing, tribological system, UHMWPE, wear

Procedia PDF Downloads 260
993 Fluorescence Effect of Carbon Dots Modified with Silver Nanoparticles

Authors: Anna Piasek, Anna Szymkiewicz, Gabriela Wiktor, Jolanta Pulit-Prociak, Marcin Banach

Abstract:

Carbon dots (CDs) have great potential for application in many fields of science. They are characterized by fluorescent properties that can be manipulated. The nanomaterial has many advantages in addition to its unique properties. CDs may be obtained easily, and they undergo surface functionalization in a simple way. In addition, there is a wide range of raw materials that can be used for their synthesis. An interesting possibility is the use of numerous waste materials of natural origin. In the research presented here, the synthesis of CDs was carried out according to the principles of Green chemistry. Beet molasses was used as a natural raw material. It has a high sugar content. This makes it an excellent high-carbon precursor for obtaining CDs. To increase the fluorescence effect, we modified the surface of CDs with silver (Ag-CDs) nanoparticles. The process of obtaining CQD was based on the hydrothermal method by applying microwave radiation. Silver nanoparticles were formed via the chemical reduction method. The synthesis plans were performed on the Design of the Experimental method (DoE). Variable process parameters such as concentration of beet molasses, temperature and concentration of nanosilver were used in these syntheses. They affected the obtained properties and particle parameters. The Ag-CDs were analyzed by UV-vis spectroscopy. The fluorescence properties and selection of the appropriate excitation light wavelength were performed by spectrofluorimetry. Particle sizes were checked using the DLS method. The influence of the input parameters on the obtained results was also studied.

Keywords: fluorescence, modification, nanosilver, molasses, Green chemistry, carbon dots

Procedia PDF Downloads 79
992 Public Participation in Science: The Case of Genetic Modified Organisms in Brazil

Authors: Maria Luisa Nozawa Ribeiro, Maria Teresa Miceli Kerbauy

Abstract:

This paper aims to present the theories of public participation in order to understand the context of the public GMO (Genetic Modified Organisms) policies in Brazil, highlighting the characteristics of its configuration and the dialog with the experts. As a controversy subject, the commercialization of GMO provoked manifestation of some popular and environmental representative groups questioning the decisions of policy makers and experts on the matter. Many aspects and consequences of the plantation and consumption of this crops emerged and the safety of this technology was questioned. Environmentalists, Civil Right's movement, representatives of rural workers, farmers and organics producers, etc. demonstrated their point of view, also sustained by some experts of medical, genetical, environmental, agronomical sciences, etc. fields. Despite this movement, the precautionary principle (risk management), implemented in 1987, suggested precaution facing new technologies and innovations in the sustainable development society. This principle influenced many legislation and regulation on GMO around the world, including Brazil, which became a reference among the world regulatory GMO systems. The Brazilian legislation ensures the citizens participation on GMO discussion, characteristic that was important to establish the connection between the subject and the participation theory. These deliberation spaces materialized in Brazil through the "Public Audiences", which are managed by the National Biosafety Technical Commission (CTNBio), the department responsible for controlling the research, production and commercialization of GMOs in Brazil.

Keywords: public engagement, public participation, science and technology studies, transgenic politics

Procedia PDF Downloads 299