Search results for: optimize profit
243 Psychophysiological Adaptive Automation Based on Fuzzy Controller
Authors: Liliana Villavicencio, Yohn Garcia, Pallavi Singh, Luis Fernando Cruz, Wilfrido Moreno
Abstract:
Psychophysiological adaptive automation is a concept that combines human physiological data and computer algorithms to create personalized interfaces and experiences for users. This approach aims to enhance human learning by adapting to individual needs and preferences and optimizing the interaction between humans and machines. According to neurosciences, the working memory demand during the student learning process is modified when the student is learning a new subject or topic, managing and/or fulfilling a specific task goal. A sudden increase in working memory demand modifies the level of students’ attention, engagement, and cognitive load. The proposed psychophysiological adaptive automation system will adapt the task requirements to optimize cognitive load, the process output variable, by monitoring the student's brain activity. Cognitive load changes according to the student’s previous knowledge, the type of task, the difficulty level of the task, and the overall psychophysiological state of the student. Scaling the measured cognitive load as low, medium, or high; the system will assign a task difficulty level to the next task according to the ratio between the previous-task difficulty level and student stress. For instance, if a student becomes stressed or overwhelmed during a particular task, the system detects this through signal measurements such as brain waves, heart rate variability, or any other psychophysiological variables analyzed to adjust the task difficulty level. The control of engagement and stress are considered internal variables for the hypermedia system which selects between three different types of instructional material. This work assesses the feasibility of a fuzzy controller to track a student's physiological responses and adjust the learning content and pace accordingly. Using an industrial automation approach, the proposed fuzzy logic controller is based on linguistic rules that complement the instrumentation of the system to monitor and control the delivery of instructional material to the students. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the delivery of academic content based on the working memory demand without compromising students’ health. This work has a potential application in the instructional design of virtual reality environments for training and education.Keywords: fuzzy logic controller, hypermedia control system, personalized education, psychophysiological adaptive automation
Procedia PDF Downloads 81242 Typology of Fake News Dissemination Strategies in Social Networks in Social Events
Authors: Mohadese Oghbaee, Borna Firouzi
Abstract:
The emergence of the Internet and more specifically the formation of social media has provided the ground for paying attention to new types of content dissemination. In recent years, Social media users share information, communicate with others, and exchange opinions on social events in this space. Many of the information published in this space are suspicious and produced with the intention of deceiving others. These contents are often called "fake news". Fake news, by disrupting the circulation of the concept and similar concepts such as fake news with correct information and misleading public opinion, has the ability to endanger the security of countries and deprive the audience of the basic right of free access to real information; Competing governments, opposition elements, profit-seeking individuals and even competing organizations, knowing about this capacity, act to distort and overturn the facts in the virtual space of the target countries and communities on a large scale and influence public opinion towards their goals. This process of extensive de-truthing of the information space of the societies has created a wave of harm and worries all over the world. The formation of these concerns has led to the opening of a new path of research for the timely containment and reduction of the destructive effects of fake news on public opinion. In addition, the expansion of this phenomenon has the potential to create serious and important problems for societies, and its impact on events such as the 2016 American elections, Brexit, 2017 French elections, 2019 Indian elections, etc., has caused concerns and led to the adoption of approaches It has been dealt with. In recent years, a simple look at the growth trend of research in "Scopus" shows an increasing increase in research with the keyword "false information", which reached its peak in 2020, namely 524 cases, reached, while in 2015, only 30 scientific-research contents were published in this field. Considering that one of the capabilities of social media is to create a context for the dissemination of news and information, both true and false, in this article, the classification of strategies for spreading fake news in social networks was investigated in social events. To achieve this goal, thematic analysis research method was chosen. In this way, an extensive library study was first conducted in global sources. Then, an in-depth interview was conducted with 18 well-known specialists and experts in the field of news and media in Iran. These experts were selected by purposeful sampling. Then by analyzing the data using the theme analysis method, strategies were obtained; The strategies achieved so far (research is in progress) include unrealistically strengthening/weakening the speed and content of the event, stimulating psycho-media movements, targeting emotional audiences such as women, teenagers and young people, strengthening public hatred, calling the reaction legitimate/illegitimate. events, incitement to physical conflict, simplification of violent protests and targeted publication of images and interviews were introduced.Keywords: fake news, social network, social events, thematic analysis
Procedia PDF Downloads 63241 Anesthetic Considerations for Spinal Cord Stimulators
Authors: Abuzar Baloach
Abstract:
Spinal cord stimulators (SCS) are increasingly used for managing chronic pain, but their presence requires careful anesthetic planning. This review explores critical anesthetic considerations for patients with SCS, encompassing preoperative, intraoperative, and acute pain management, as well as specific considerations for obstetric and out-of-operating-room procedures. Preoperative Evaluation: Thorough assessment is essential, including a detailed medical history of the SCS device, such as type, manufacturer, and settings. Additionally, a complete pain history and a physical exam are necessary to understand the patient’s baseline neurological function and assess mobility, which can impact anesthesia management. Intraoperative Considerations: Electrocautery poses a risk for patients with SCS due to potential interference. Monopolar electrocautery is discouraged, but if needed, the grounding pad should be positioned away from the device, and the device itself should be turned off. The SCS device can introduce ECG artifacts and potentially interfere with pacemakers and defibrillators (ICD), which may result in inappropriate pacing or shocks. Precautions, including baseline ECG and interrogation, are recommended if both devices are present. Furthermore, lithotripsy, though generally avoided, can be performed under certain conditions with caution. Obstetric Anesthesia: While SCS devices are generally turned off during pregnancy, they have shown no interference with fetal cardiotocography, and epidural placement can be safely achieved with a sterile technique below the SCS leads. Acute Pain Considerations: SCS placement is taken into account in pain management plans, especially with neuraxial anesthesia, as potential risks include infection, limited spread due to fibrous sheaths, and damage to the SCS leads. Out-of-Operating Room Procedures: MRI, previously contraindicated, is now conditionally safe with SCS devices, depending on manufacturer specifications. CT scans are generally safe, though radiation should be minimized to prevent device malfunction. For radiation therapy, specific safety measures are recommended, such as keeping the beam at least 1 cm away from the device and limiting the dose to prevent damage. In conclusion, anesthetic management for SCS patients requires meticulous planning across all stages of care. By understanding the unique interactions and potential risks associated with SCS and other devices, healthcare providers can enhance patient safety and improve outcomes. Further research and the establishment of standardized guidelines are essential to optimize perioperative care for this growing patient population.Keywords: anesthesia, chronic pain, spinal cord stimulator, SCS
Procedia PDF Downloads 7240 Creating Renewable Energy Investment Portfolio in Turkey between 2018-2023: An Approach on Multi-Objective Linear Programming Method
Authors: Berker Bayazit, Gulgun Kayakutlu
Abstract:
The World Energy Outlook shows that energy markets will substantially change within a few forthcoming decades. First, determined action plans according to COP21 and aim of CO₂ emission reduction have already impact on policies of countries. Secondly, swiftly changed technological developments in the field of renewable energy will be influential upon medium and long-term energy generation and consumption behaviors of countries. Furthermore, share of electricity on global energy consumption is to be expected as high as 40 percent in 2040. Electrical vehicles, heat pumps, new electronical devices and digital improvements will be outstanding technologies and innovations will be the testimony of the market modifications. In order to meet highly increasing electricity demand caused by technologies, countries have to make new investments in the field of electricity production, transmission and distribution. Specifically, electricity generation mix becomes vital for both prevention of CO₂ emission and reduction of power prices. Majority of the research and development investments are made in the field of electricity generation. Hence, the prime source diversity and source planning of electricity generation are crucial for improving the wealth of citizen life. Approaches considering the CO₂ emission and total cost of generation, are necessary but not sufficient to evaluate and construct the product mix. On the other hand, employment and positive contribution to macroeconomic values are important factors that have to be taken into consideration. This study aims to constitute new investments in renewable energies (solar, wind, geothermal, biogas and hydropower) between 2018-2023 under 4 different goals. Therefore, a multi-objective programming model is proposed to optimize the goals of minimizing the CO₂ emission, investment amount and electricity sales price while maximizing the total employment and positive contribution to current deficit. In order to avoid the user preference among the goals, Dinkelbach’s algorithm and Guzel’s approach have been combined. The achievements are discussed with comparison to the current policies. Our study shows that new policies like huge capacity allotment might be discussible although obligation for local production is positive. The improvements in grid infrastructure and re-design support for the biogas and geothermal can be recommended.Keywords: energy generation policies, multi-objective linear programming, portfolio planning, renewable energy
Procedia PDF Downloads 244239 Optimization of Artisanal Fishing Waste Fermentation for Volatile Fatty Acids Production
Authors: Luz Stella Cadavid-Rodriguez, Viviana E. Castro-Lopez
Abstract:
Fish waste (FW) has a high content of potentially biodegradable components, so it is amenable to be digested anaerobically. In this line, anaerobic digestion (AD) of FW has been studied for biogas production. Nevertheless, intermediate products such as volatile fatty acids (VFA), generated during the acidogenic stage, have been scarce investigated, even though they have a high potential as a renewable source of carbon. In the literature, there are few studies about the Inoculum-Substrate (I/S) ratio on acidogenesis. On the other hand, it is well known that pH is a critical factor in the production of VFA. The optimum pH for the production of VFA seems to change depending on the substrate and can vary in a range between 5.25 and 11. Nonetheless, the literature about VFA production from protein-rich waste, such as FW, is scarce. In this context, it is necessary to deepen on the determination of the optimal operating conditions of acidogenic fermentation for VFA production from protein-rich waste. Therefore, the aim of this research was to optimize the volatile fatty acid production from artisanal fishing waste, studying the effect of pH and the I/S ratio on the acidogenic process. For this research, the inoculum used was a methanogenic sludge (MS) obtained from a UASB reactor treating wastewater of a slaughterhouse plant, and the FW was collected in the port of Tumaco (Colombia) from the local artisanal fishers. The acidogenic fermentation experiments were conducted in batch mode, in 500 mL glass bottles as anaerobic reactors, equipped with rubber stoppers provided with a valve to release biogas. The effective volume used was 300 mL. The experiments were carried out for 15 days at a mesophilic temperature of 37± 2 °C and constant agitation of 200 rpm. The effect of 3 pH levels: 5, 7, 9, coupled with five I/S ratios, corresponding to 0.20, 0.15, 0.10, 0.05, 0.00 was evaluated taking as a response variable the production of VFA. A complete randomized block design was selected for the experiments in a 5x3 factorial arrangement, with two repetitions per treatment. At the beginning and during the process, pH in the experimental reactors was adjusted to the corresponding values of 5, 7, and 9 using 1M NaOH or 1M H2SO4, as was appropriated. In addition, once the optimum I/S ratio was determined, the process was evaluated at this condition without pH control. The results indicated that pH is the main factor in the production of VFA, obtaining the highest concentration with neutral pH. By reducing the I/S ratio, as low as 0.05, it was possible to maximize VFA production. Thus, the optimum conditions found were natural pH (6.6-7.7) and I/S ratio of 0.05, with which it was possible to reach a maximum total VFA concentration of 70.3 g Ac/L, whose major components were acetic acid (35%) and butyric acid (32%). The findings showed that the acidogenic fermentation of FW is an efficient way of producing VFA and that the operating conditions can be simple and economical.Keywords: acidogenesis, artisanal fishing waste, inoculum to substrate ratio, volatile fatty acids
Procedia PDF Downloads 125238 AS-Geo: Arbitrary-Sized Image Geolocalization with Learnable Geometric Enhancement Resizer
Authors: Huayuan Lu, Chunfang Yang, Ma Zhu, Baojun Qi, Yaqiong Qiao, Jiangqian Xu
Abstract:
Image geolocalization has great application prospects in fields such as autonomous driving and virtual/augmented reality. In practical application scenarios, the size of the image to be located is not fixed; it is impractical to train different networks for all possible sizes. When its size does not match the size of the input of the descriptor extraction model, existing image geolocalization methods usually directly scale or crop the image in some common ways. This will result in the loss of some information important to the geolocalization task, thus affecting the performance of the image geolocalization method. For example, excessive down-sampling can lead to blurred building contour, and inappropriate cropping can lead to the loss of key semantic elements, resulting in incorrect geolocation results. To address this problem, this paper designs a learnable image resizer and proposes an arbitrary-sized image geolocation method. (1) The designed learnable image resizer employs the self-attention mechanism to enhance the geometric features of the resized image. Firstly, it applies bilinear interpolation to the input image and its feature maps to obtain the initial resized image and the resized feature maps. Then, SKNet (selective kernel net) is used to approximate the best receptive field, thus keeping the geometric shapes as the original image. And SENet (squeeze and extraction net) is used to automatically select the feature maps with strong contour information, enhancing the geometric features. Finally, the enhanced geometric features are fused with the initial resized image, to obtain the final resized images. (2) The proposed image geolocalization method embeds the above image resizer as a fronting layer of the descriptor extraction network. It not only enables the network to be compatible with arbitrary-sized input images but also enhances the geometric features that are crucial to the image geolocalization task. Moreover, the triplet attention mechanism is added after the first convolutional layer of the backbone network to optimize the utilization of geometric elements extracted by the first convolutional layer. Finally, the local features extracted by the backbone network are aggregated to form image descriptors for image geolocalization. The proposed method was evaluated on several mainstream datasets, such as Pittsburgh30K, Tokyo24/7, and Places365. The results show that the proposed method has excellent size compatibility and compares favorably to recently mainstream geolocalization methods.Keywords: image geolocalization, self-attention mechanism, image resizer, geometric feature
Procedia PDF Downloads 214237 Dose Profiler: A Tracking Device for Online Range Monitoring in Particle Therapy
Authors: G. Battistoni, F. Collamati, E. De Lucia, R. Faccini, C. Mancini-Terracciano, M. Marafini, I. Mattei, S. Muraro, V. Patera, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, G. Traini, S. M. Valle, C. Voena
Abstract:
Accelerated charged particles, mainly protons and carbon ions, are presently used in Particle Therapy (PT) to treat solid tumors. The precision of PT exploiting the charged particle high localized dose deposition in tissues and biological effectiveness in killing cancer cells demands for an online dose monitoring technique, crucial to improve the quality assurance of treatments: possible patient mis-positionings and biological changes with respect to the CT scan could negatively affect the therapy outcome. In PT the beam range confined in the irradiated target can be monitored thanks to the secondary radiation produced by the interaction of the projectiles with the patient tissue. The Dose Profiler (DP) is a novel device designed to track charged secondary particles and reconstruct their longitudinal emission distribution, correlated to the Bragg peak position. The feasibility of this approach has been demonstrated by dedicated experimental measurements. The DP has been developed in the framework of the INSIDE project, MIUR, INFN and Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche 'E. Fermi', Roma, Italy and will be tested at the Proton Therapy center of Trento (Italy) within the end of 2017. The DP combines a tracker, made of six layers of two-view scintillating fibers with square cross section (0.5 x 0.5 mm2) with two layers of two-view scintillating bars (section 12.0 x 0.6 mm2). The electronic readout is performed by silicon photomultipliers. The sensitive area of the tracking planes is 20 x 20 cm2. To optimize the detector layout, a Monte Carlo (MC) simulation based on the FLUKA code has been developed. The complete DP geometry and the track reconstruction code have been fully implemented in the MC. In this contribution, the DP hardware will be described. The expected detector performance computed using a dedicated simulation of a 220 MeV/u carbon ion beam impinging on a PMMA target will be presented, and the result will be discussed in the standard clinical application framework. A possible procedure for real-time beam range monitoring is proposed, following the expectations in actual clinical operation.Keywords: online range monitoring, particle therapy, quality assurance, tracking detector
Procedia PDF Downloads 240236 Anaerobic Co-Digestion of Pressmud with Bagasse and Animal Waste for Biogas Production Potential
Authors: Samita Sondhi, Sachin Kumar, Chirag Chopra
Abstract:
The increase in population has resulted in an excessive feedstock production, which has in return lead to the accumulation of a large amount of waste from different resources as crop residues, industrial waste and solid municipal waste. This situation has raised the problem of waste disposal in present days. A parallel problem of depletion of natural fossil fuel resources has led to the formation of alternative sources of energy from the waste of different industries to concurrently resolve the two issues. The biogas is a carbon neutral fuel which has applications in transportation, heating and power generation. India is a nation that has an agriculture-based economy and agro-residues are a significant source of organic waste. Taking into account, the second largest agro-based industry that is sugarcane industry producing a high quantity of sugar and sugarcane waste byproducts such as Bagasse, Press Mud, Vinasse and Wastewater. Currently, there are not such efficient disposal methods adopted at large scales. According to manageability objectives, anaerobic digestion can be considered as a method to treat organic wastes. Press mud is lignocellulosic biomass and cannot be accumulated for Mono digestion because of its complexity. Prior investigations indicated that it has a potential for production of biogas. But because of its biological and elemental complexity, Mono-digestion was not successful. Due to the imbalance in the C/N ratio and presence of wax in it can be utilized with any other fibrous material hence will be digested properly under suitable conditions. In the first batch of Mono-digestion of Pressmud biogas production was low. Now, co-digestion of Pressmud with Bagasse which has desired C/N ratio will be performed to optimize the ratio for maximum biogas from Press mud. In addition, with respect to supportability, the main considerations are the monetary estimation of item result and ecological concerns. The work is designed in such a way that the waste from the sugar industry will be digested for maximum biogas generation and digestive after digestion will be characterized for its use as a bio-fertilizer for soil conditioning. Due to effectiveness demonstrated by studied setups of Mono-digestion and Co-digestion, this approach can be considered as a viable alternative for lignocellulosic waste disposal and in agricultural applications. Biogas produced from the Pressmud either can be used for Powerhouses or transportation. In addition, the work initiated towards the development of waste disposal for energy production will demonstrate balanced economy sustainability of the process development.Keywords: anaerobic digestion, carbon neutral fuel, press mud, lignocellulosic biomass
Procedia PDF Downloads 170235 Development of an Ecological Binder by Geopolymerization of Untreated Dredged Sediments
Authors: Lisa Monteiro, Jacqueline Saliba, Nadia Saiyouri, Humberto Y. Godoy
Abstract:
Theevolution of the global environmental context incites companies to reduce their impact by reusing local materials and promoting circular economy. Dredged sediments represent a potential source of materials due to their large volume. Indeed, the dredging operations carried out in Gironde alone generated an annual volume of sediment of approximately 9 million m³. Moreover, on the eve of the evolution of laws concerning dredging practices, the recovery of sediments is necessary to create a viable economy for their management. This thesis work is oriented towards the development of an ecological binder from the fine fraction of untreated dredged sediments. In fact, their physico-chemical properties make them favorable for the synthesis of geopolymer, current competitor of cement, thanks to its lower carbon footprint and environmental impact. However, several obstacles must be overcome before implementing this new family of materials: the use of sediments without thermal or chemical treatment, the absence of a formulation approach, ignorance of the reactions produced, etc. During the first year of the thesis, a physico-chemical characterization of the sediments made it possible to validate their use as precursors forgeopolymerization according to three criteria: their fineness, their mineralogical composition, and the percentage of amorphous phase. Following these results, several formulations have been defined, taking into account the environmental impact. The sediments were activated with an alkaline solution of sodium hydroxide and sodium silicate. Two other formulations with cement and blast furnace slag have been defined for comparison. The results highlighted the possibility of forming geopolymers from untreated and still wet dredged sediments. The development of structural bonds through the formation of hydrated sodium aluminosilicate thus leads to higher strengths at 90 days (4.78 MPa) than a mixture with cement (0.75 MPa). A 30% gain in CO₂ emissions has also been obtained compared to cement. In order to reduce the uncertainties linked to the absence of a formulation approach, to optimize the number of experiments to be carried out in the laboratory, and to obtain an optimal formulation, an analysis by mixing plan was conducted in order to frame the responses according to the proportions of the constituents. Following the obtaining of an optimal binder, the work will focus on the study of the durability and the interspecific variability of the sediments on the mechanical properties by testing the binder developed with different sediments dredged from the Bordeaux estuary. , the Grand Port Maritime of Bayonne, La Rochelle, and the Bassinsd'Arcachon.Keywords: compressive strength, dredged sediments, ecological binder, geopolymers
Procedia PDF Downloads 100234 Integration of an Innovative Complementary Approach Inspired by Clinical Hypnosis into Oncology Care: Nurses’ Perception of Comfort Talk
Authors: Danny Hjeij, Karine Bilodeau, Caroline Arbour
Abstract:
Background: Chemotherapy infusions often lead to a cluster of co-occurring and difficult-to-treat symptoms (nausea, tingling, etc.), which may negatively impact the treatment experience at the outpatient clinic. Although several complementary approaches have shown beneficial effects for chemotherapy-induced symptom management, they are not easily implementable during chemotherapy infusion. In response to this limitation, comfort talk (CT), a simple, fast conversational method inspired by the language principles of clinical hypnosis, is known to optimize the management of symptoms related to antineoplastic treatments. However, the perception of nurses who have had to integrate this practice into their care has never been documented. Study design: A qualitative descriptive study with iterative content analysis was conducted among oncology nurses working in a chemotherapy outpatient clinic who had previous experience with CT. Semi-structured interviews were conducted by phone, using a pre-tested interview guide and a sociodemographic survey to document their perception of CT. The conceptual framework. Results: A total of six nurses (4 women, 2 men) took part in the interviews (N=6). The average age of participants was 49 years (36-61 years). Participants had an average of 24 years of experience (10-38 years) as a nurse, including 14.5 years in oncology (5-32 years). Data saturation (i.e., redundancy of words) was observed around the fifth interview. A sixth interview was conducted as confirmation. Six themes emerged: two addressing contextual and organizational obstacles at the chemotherapy outpatient clinic, and three addressing the added value of CT for oncology nursing care. Specific themes included: 1) the outpatient oncology clinic, a saturated care setting, 2) the keystones that support the integration of CT into care, 3) added value for patients, 4) a positive and rewarding experience for nurses, 5) collateral benefits, and 6) CT an approach to consider during the COVID-19 pandemic. Conclusion: For the first time, this study describes nurses' perception of the integration of CT into the care surrounding the administration of chemotherapy at the outpatient oncology clinic. In summary, contextual and organizational difficulties, as well as the lack of training, are among the main obstacles that could hinder the integration of CT in oncology. Still, the experience was reported mostly as positive. Indeed, nurses saw HC as an added value to patient care and meeting their need for holistic care. HC also appears to be beneficial for patients on several levels (for pain management in particular). Results will be used to inform future knowledge transfer activities related to CT in oncology nursing.Keywords: cancer, chemotherapy, comfort talk, oncology nursing role
Procedia PDF Downloads 81233 Active Learning Methods in Mathematics
Authors: Daniela Velichová
Abstract:
Plenty of ideas on how to adopt active learning methods in education are available nowadays. Mathematics is a subject where the active involvement of students is required in particular in order to achieve desirable results regarding sustainable knowledge and deep understanding. The present article is based on the outcomes of an Erasmus+ project DrIVE-MATH, that was aimed at developing a novel and integrated framework to teach maths classes in engineering courses at the university level. It is fundamental for students from the early years of their academic life to have agile minds. They must be prepared to adapt to their future working environments, where enterprises’ views are always evolving, where all collaborate in teams, and relations between peers are thought for the well-being of the whole - workers and company profit. This reality imposes new requirements on higher education in terms of adaptation of different pedagogical methods, such as project-based and active-learning methods used within the course curricula. Active learning methodologies are regarded as an effective way to prepare students to meet the challenges posed by enterprises and to help them in building critical thinking, analytic reasoning, and insight to the solved complex problems from different perspectives. Fostering learning-by-doing activities in the pedagogical process can help students to achieve learning independence, as they could acquire deeper conceptual understanding by experimenting with the abstract concept in a more interesting, useful, and meaningful way. Clear information about learning outcomes and goals might help students to take more responsibility for their learning results. Active learning methods implemented by the project team members in their teaching practice, eduScrum and Jigsaw in particular, proved to provide better scientific and soft skills support to students than classical teaching methods. EduScrum method enables teachers to generate a working environment that stimulates students' working habits and self-initiative as they become aware of their responsibilities within the team, their own acquired knowledge, and their abilities to solve problems independently, though in collaboration with other team members. This method enhances collaborative learning, as students are working in teams towards a common goal - knowledge acquisition, while they are interacting with each other and evaluated individually. Teams consisting of 4-5 students work together on a list of problems - sprint; each member is responsible for solving one of them, while the group leader – a master, is responsible for the whole team. A similar principle is behind the Jigsaw technique, where the classroom activity makes students dependent on each other to succeed. Students are divided into groups, and assignments are split into pieces, which need to be assembled by the whole group to complete the (Jigsaw) puzzle. In this paper, analysis of students’ perceptions concerning the achievement of deeper conceptual understanding in mathematics and the development of soft skills, such as self-motivation, critical thinking, flexibility, leadership, responsibility, teamwork, negotiation, and conflict management, is presented. Some new challenges are discussed as brought by introducing active learning methods in the basic mathematics courses. A few examples of sprints developed and used in teaching basic maths courses at technical universities are presented in addition.Keywords: active learning methods, collaborative learning, conceptual understanding, eduScrum, Jigsaw, soft skills
Procedia PDF Downloads 54232 Urinary Incontinence and Performance in Elite Athletes
Authors: María Barbaño Acevedo Gómez, Elena Sonsoles Rodríguez López, Sofía Olivia Calvo Moreno, Ángel Basas García, Christophe RamíRez Parenteau
Abstract:
Introduction: Urinary incontinence (UI) is defined as the involuntary leakage of urine. In persons who practice sport, its prevalence is 36.1% (95% CI 26.5% –46.8%) and varies as it seems to depend on the intensity of exercise, movements and impact on the ground. Such high impact sports are likely to generate higher intra-abdominal pressures and leading to pelvic floor muscle weakness. Although physical exercise reduces the risk of suffering from many diseases the mentality of an elite athlete is not to optimize their health, achieving their goals can put their health at risk. Furthermore, feeling or suffering from any discomfort during training seems to be normal within the elite sport demands. Objective: The main objective of the present study was to know the effects of UI in sports performance in athletes. Methods: This was an observational study conducted in 754 elite athletes. After collecting questions about pelvic floor, UI and sport-related data, participants completed the questionnaire International Consultation on Incontinence Questionnaire-UI Short- Form (ICIQ-SF) and ISI (index of incontinence severity). Results: 48.8% of the athletes declare having losses also in rest, preseason and / or competition (χ2 [3] = 3.64; p = 0.302), being the competition period (29.1%) the most frequent where suffer from urine leakage. Of the elite athletes surveyed, 33% had UI according ICIQ-SF (mean age 23.75 ± 7.74 years). Elite athletes with UI (5.31 ± 1.07 days) dedicate significantly more days per week to training [M = 0.28; 95% CI = 0.08-0.48; t (752) = 2.78; p = 0.005] than those without UI. Regarding frequency, 59.7% lose urine once a week, 25.6% lose urine more than 3 times a week, and 14.7% daily. Based on the amount, approximately 15% claim to lose a moderate and abundant. Athletes with the highest number of urine leaks during their training, the UI affects them more in their daily life (r = 0.259; p = 0.001), they present a greater number of losses in their day to day (r = 0.341; p <0.001 ) and greater severity of UI (r = 0.341; p <0.001). Conclusions: Athletes consider that UI affects them negatively in their daily routine, 30.9% affirm having a severity between moderate and severe in their daily routine, and 29.1% loss urine in competition period. An interesting fact is that more than half of the samples collected were elite athletes who compete at the highest level (Olympic Games, World and European Championship), the dedication to sport occupies a big piece in their life. The most frequent period where athletes suffers urine leakage is in competition and there are many emotions that athletes manage to get their best performance, if we add urine losses in that moments it is possible that their performance could be affected.Keywords: athletes, performance, prevalence, sport, training, urinary incontinence
Procedia PDF Downloads 131231 Detection of Glyphosate Using Disposable Sensors for Fast, Inexpensive and Reliable Measurements by Electrochemical Technique
Authors: Jafar S. Noori, Jan Romano-deGea, Maria Dimaki, John Mortensen, Winnie E. Svendsen
Abstract:
Pesticides have been intensively used in agriculture to control weeds, insects, fungi, and pest. One of the most commonly used pesticides is glyphosate. Glyphosate has the ability to attach to the soil colloids and degraded by the soil microorganisms. As glyphosate led to the appearance of resistant species, the pesticide was used more intensively. As a consequence of the heavy use of glyphosate, residues of this compound are increasingly observed in food and water. Recent studies reported a direct link between glyphosate and chronic effects such as teratogenic, tumorigenic and hepatorenal effects although the exposure was below the lowest regulatory limit. Today, pesticides are detected in water by complicated and costly manual procedures conducted by highly skilled personnel. It can take up to several days to get an answer regarding the pesticide content in water. An alternative to this demanding procedure is offered by electrochemical measuring techniques. Electrochemistry is an emerging technology that has the potential of identifying and quantifying several compounds in few minutes. It is currently not possible to detect glyphosate directly in water samples, and intensive research is underway to enable direct selective and quantitative detection of glyphosate in water. This study focuses on developing and modifying a sensor chip that has the ability to selectively measure glyphosate and minimize the signal interference from other compounds. The sensor is a silicon-based chip that is fabricated in a cleanroom facility with dimensions of 10×20 mm. The chip is comprised of a three-electrode configuration. The deposited electrodes consist of a 20 nm layer chromium and 200 nm gold. The working electrode is 4 mm in diameter. The working electrodes are modified by creating molecularly imprinted polymers (MIP) using electrodeposition technique that allows the chip to selectively measure glyphosate at low concentrations. The modification included using gold nanoparticles with a diameter of 10 nm functionalized with 4-aminothiophenol. This configuration allows the nanoparticles to bind to the working electrode surface and create the template for the glyphosate. The chip was modified using electrodeposition technique. An initial potential for the identification of glyphosate was estimated to be around -0.2 V. The developed sensor was used on 6 different concentrations and it was able to detect glyphosate down to 0.5 mgL⁻¹. This value is below the accepted pesticide limit of 0.7 mgL⁻¹ set by the US regulation. The current focus is to optimize the functionalizing procedure in order to achieve glyphosate detection at the EU regulatory limit of 0.1 µgL⁻¹. To the best of our knowledge, this is the first attempt to modify miniaturized sensor electrodes with functionalized nanoparticles for glyphosate detection.Keywords: pesticides, glyphosate, rapid, detection, modified, sensor
Procedia PDF Downloads 177230 Wildlife Habitat Corridor Mapping in Urban Environments: A GIS-Based Approach Using Preliminary Category Weightings
Authors: Stefan Peters, Phillip Roetman
Abstract:
The global loss of biodiversity is threatening the benefits nature provides to human populations and has become a more pressing issue than climate change and requires immediate attention. While there have been successful global agreements for environmental protection, such as the Montreal Protocol, these are rare, and we cannot rely on them solely. Thus, it is crucial to take national and local actions to support biodiversity. Australia is one of the 17 countries in the world with a high level of biodiversity, and its cities are vital habitats for endangered species, with more of them found in urban areas than in non-urban ones. However, the protection of biodiversity in metropolitan Adelaide has been inadequate, with over 130 species disappearing since European colonization in 1836. In this research project we conceptualized, developed and implemented a framework for wildlife Habitat Hotspots and Habitat Corridor modelling in an urban context using geographic data and GIS modelling and analysis. We used detailed topographic and other geographic data provided by a local council, including spatial and attributive properties of trees, parcels, water features, vegetated areas, roads, verges, traffic, and census data. Weighted factors considered in our raster-based Habitat Hotspot model include parcel size, parcel shape, population density, canopy cover, habitat quality and proximity to habitats and water features. Weighted factors considered in our raster-based Habitat Corridor model include habitat potential (resulting from the Habitat Hotspot model), verge size, road hierarchy, road widths, human density, and presence of remnant indigenous vegetation species. We developed a GIS model, using Python scripting and ArcGIS-Pro Model-Builder, to establish an automated reproducible and adjustable geoprocessing workflow, adaptable to any study area of interest. Our habitat hotspot and corridor modelling framework allow to determine and map existing habitat hotspots and wildlife habitat corridors. Our research had been applied to the study case of Burnside, a local council in Adelaide, Australia, which encompass an area of 30 km2. We applied end-user expertise-based category weightings to refine our models and optimize the use of our habitat map outputs towards informing local strategic decision-making.Keywords: biodiversity, GIS modeling, habitat hotspot, wildlife corridor
Procedia PDF Downloads 115229 Energy and Nutrient Intakes in Cystic Fibrosis: Do They Achieve Guidelines ?
Authors: Hatice Akbıyık, Hülya Gökmen Özel, Nagehan Emiralioğlu, Elmas Ebru Güneş Yalçın, Deniz Doğru Ersöz, Hayriye Uğur Özçelik, Nural Kiper
Abstract:
Background: Dietary recommendations in cystic fibrosis (CF) are based on the need to compensate for the increased energy needs of infection, the increased energy cost of breathing and the losses, incurred from malabsorption. Studies in CF indicate that dietary recommendations for CF patients can be difficult to achieve Aim: The aim of this study was to evaluate the energy and nutrient intakes and to compare in accordance with CF dietary guidelines in CF. Methods: One-hundred sixty patients with CF, aged between 2 to 20 years (mean±SD= 7.4±4.8 years) attending Hacettepe University, Faculty of Medicine, Department of Pediatric Pulmonary Diseases were included. Energy and nutrient intakes from foods and enteral products were calculated using a-24-hour dietary recall method with BEBIS 7.2 programme. Percentages of energy and nutrient intakes were compared in accordance with CF dietary guidelines. Patients or/and parents completed a questionnaire showing mealtime problems, usage of alternative therapies and type of nutrition. Statistical analyses were done using SPSS 16.0 programme. Results: It was obtained that 14.5% and 46.9% of the total energy intake were from proteins and carbohydrates, respectively. The actual contribution of total, saturated, monounsaturated and polyunsaturated fats to the total caloric intake was 37.5%, 14.3%, 14.9%, 9.9%, respectively. It was found that 87.7% of energy, 85% of protein 91.7% of carbohydrate, 81.1% of fat intakes were met, when compared CF recommended intakes of 120% RDA. Additionally 67%, 69.5%, 68.2% and 68.9% of the subjects did not achieve CF recommended intakes of 120% RDA for energy, protein, carbohydrate and fat, respectively. Patients with CF had low intakes for age for almost all vitamins and minerals, although supplementation was given. Especially most patients did not achieve the minimum recommended vitamin K intake of 120% RDA. The percentage meeting 120% RDA was 75.9% for vitamin K. It was shown that 41% of the patients had mealtime problems and they skipped the breakfast. Moreover 25.4% of the patients used alternative products outside the standard treatment (such as omega-3, ginger, turmeric, local honey). It was also showed that 60.8% of patients were using enteral products in addition to normal foods, the remaining patients were on only normal foods. Conclusion: The aims of improving nutritional status in children are to achieve normal weight gain and growth; optimize vitamin and mineral status; and slow the rate of clinical decline. In this study although enteral products were used in patients with CF, it was found that energy and nutrient requirements were unable to meet. Because dietary assessment is essential to identify the need for earlier nutritional intervention, in each visit patients need to be referred to CF specialist dietitian.Keywords: cystic fibrosis, energy and nutrient intakes, mealtime problems, malabsorbtion
Procedia PDF Downloads 459228 Testing of Canadian Integrated Healthcare and Social Services Initiatives with an Evidence-Based Case Definition for Healthcare and Social Services Integrations
Authors: S. Cheng, C. Catallo
Abstract:
Introduction: Canada's healthcare and social services systems are failing high risk, vulnerable older adults. Care for vulnerable older Canadians (65 and older) is not optimal in Canada. It does not address the care needs of vulnerable, high risk adults using a holistic approach. Given the growing aging population, and the care needs for seniors with complex conditions is one of the highest in Canada's health care system, there is a sense of urgency to optimize care. Integration of health and social services is an emerging trend in Canada when compared to European countries. There is no common and universal understanding of healthcare and social services integration within the country. Consequently, a clear understanding and definition of integrated health and social services are absent in Canada. Objectives: A study was undertaken to develop a case definition for integrated health and social care initiatives that serve older adults, which was then tested against three Canadian integrated initiatives. Methodology: A limited literature review was undertaken to identify common characteristics of integrated health and social care initiatives that serve older adults, and comprised both scientific and grey literature, in order to develop a case definition. Three Canadian integrated initiatives that are located in the province of Ontario, were identified using an online search and a screening process. They were surveyed to determine if the literature-based integration definition applied to them. Results: The literature showed that there were 24 common healthcare and social services integration characteristics that could be categorized into ten themes: 1) patient-care approach; 2) program goals; 3) measurement; 4) service and care quality; 5) accountability and responsibility; 6) information sharing; 7) Decision-making and problem-solving; 8) culture; 9) leadership; and 10) staff and professional interaction. The three initiatives showed agreement on all the integration characteristics except for those characteristics associated with healthcare and social care professional interaction, collaborative leadership and shared culture. This disagreement may be due to several reasons, including the existing governance divide between the healthcare and social services sectors within the province of Ontario that has created a ripple effect in how professions in the two different sectors interact. In addition, the three initiatives may be at maturing levels of integration, which may explain disagreement on the characteristics associated with leadership and culture. Conclusions: The development of a case definition for healthcare and social services integration that incorporates common integration characteristics can act as a useful instrument in identifying integrated healthcare and social services, particularly given the emerging and evolutionary state of this phenomenon within Canada.Keywords: Canada, case definition, healthcare and social services integration, integration, seniors health, services delivery
Procedia PDF Downloads 155227 Unveiling Microbial Potential: Investigating Zinc-Solubilizing Fungi in Rhizospheric Soil Through Isolation, Characterization and Selection
Authors: Pukhrambam Helena Chanu, Janardan Yadav
Abstract:
This study investigates the potential of various fungal isolates to solubilize zinc and counteract rice pathogens, with the aim of mitigating zinc deficiency and disease prevalence in rice farming. Soil samples from the rhizosphere were collected, and zinc-solubilizing fungi were isolated and purified. Molecular analysis identified Talaromyces sp, Talaromyces versatilis, Talaromyces pinophilus, and Aspergillus terreus as effective zinc solubilizers. Through qualitative and quantitative assessments, it was observed that solubilization efficiencies varied among the isolates over time, with Talaromyces versatilis displaying the highest capacity for solubilization. This variability in solubilization rates may be attributed to differences in fungal metabolic activity and their ability to produce organic acids that facilitate zinc release from insoluble sources in the soil. In inhibition assays against rice pathogens, the fungal isolates exhibited antagonistic properties, with Talaromyces versatilis demonstrating the most significant inhibition rates. This antagonistic activity may be linked to the production of secondary metabolites, such as antibiotics or lytic enzymes by fungi, which inhibit the growth of rice pathogens. The ability of Talaromyces versatilis to outperform other isolates in both zinc solubilization and pathogen inhibition highlights its potential as a multifunctional biocontrol agent in rice cultivation systems. These findings emphasize the potential of fungi as natural solutions for enhancing zinc uptake and managing diseases in rice cultivation. Utilizing indigenous zinc-solubilizing fungi offers a sustainable and environmentally friendly approach to addressing zinc deficiency in soils, reducing the need for chemical fertilizers. Moreover, harnessing the antagonistic activity of these fungi can contribute to integrated disease management strategies, minimizing reliance on synthetic pesticides and promoting ecological balance in agroecosystems. Additionally, the study included the evaluation of dipping time under different concentrations, viz.,10 ppm, 20 ppm, and 30 ppm of biosynthesized nano ZnO on rice seedlings. This investigation aimed to optimize the application of nano ZnO for efficient zinc uptake by rice plants while minimizing potential risks associated with excessive nanoparticle exposure. Evaluating the effects of varying concentrations and dipping durations provides valuable insights into the safe and effective utilization of nano ZnO as a micronutrient supplement in rice farming practices.Keywords: biosynthesized nano ZnO, rice, root dipping, zinc solubilizing fungi.
Procedia PDF Downloads 49226 Protected Cultivation of Horticultural Crops: Increases Productivity per Unit of Area and Time
Authors: Deepak Loura
Abstract:
The most contemporary method of producing horticulture crops both qualitatively and quantitatively is protected cultivation, or greenhouse cultivation, which has gained widespread acceptance in recent decades. Protected farming, commonly referred to as controlled environment agriculture (CEA), is extremely productive, land- and water-wise, as well as environmentally friendly. The technology entails growing horticulture crops in a controlled environment where variables such as temperature, humidity, light, soil, water, fertilizer, etc. are adjusted to achieve optimal output and enable a consistent supply of them even during the off-season. Over the past ten years, protected cultivation of high-value crops and cut flowers has demonstrated remarkable potential. More and more agricultural and horticultural crop production systems are moving to protected environments as a result of the growing demand for high-quality products by global markets. By covering the crop, it is possible to control the macro- and microenvironments, enhancing plant performance and allowing for longer production times, earlier harvests, and higher yields of higher quality. These shielding features alter the environment of the plant while also offering protection from wind, rain, and insects. Protected farming opens up hitherto unexplored opportunities in agriculture as the liberalised economy and improved agricultural technologies advance. Typically, the revenues from fruit, vegetable, and flower crops are 4 to 8 times higher than those from other crops. If any of these high-value crops are cultivated in protected environments like greenhouses, net houses, tunnels, etc., this profit can be multiplied. Vegetable and cut flower post-harvest losses are extremely high (20–0%), however sheltered growing techniques and year-round cropping can greatly minimize post-harvest losses and enhance yield by 5–10 times. Seasonality and weather have a big impact on the production of vegetables and flowers. The variety of their products results in significant price and quality changes for vegetables. For the application of current technology in crop production, achieving a balance between year-round availability of vegetables and flowers with minimal environmental impact and remaining competitive is a significant problem. The future of agriculture will be protected since population growth is reducing the amount of land that may be held. Protected agriculture is a particularly profitable endeavor for tiny landholdings. Small greenhouses, net houses, nurseries, and low tunnel greenhouses can all be built by farmers to increase their income. Protected agriculture is also aided by the rise in biotic and abiotic stress factors. As a result of the greater productivity levels, these technologies are not only opening up opportunities for producers with larger landholdings, but also for those with smaller holdings. Protected cultivation can be thought of as a kind of precise, forward-thinking, parallel agriculture that covers almost all aspects of farming and is rather subject to additional inspection for technical applicability to circumstances, farmer economics, and market economics.Keywords: protected cultivation, horticulture, greenhouse, vegetable, controlled environment agriculture
Procedia PDF Downloads 76225 Finite Element Analysis of the Drive Shaft and Jacking Frame Interaction in Micro-Tunneling Method: Case Study of Tehran Sewerage
Authors: B. Mohammadi, A. Riazati, P. Soltan Sanjari, S. Azimbeik
Abstract:
The ever-increasing development of civic demands on one hand; and the urban constrains for newly establish of infrastructures, on the other hand, perforce the engineering committees to apply non-conflicting methods in order to optimize the results. One of these optimized procedures to establish the main sewerage networks is the pipe jacking and micro-tunneling method. The raw information and researches are based on the experiments of the slurry micro-tunneling project of the Tehran main sewerage network that it has executed by the KAYSON co. The 4985 meters route of the mentioned project that is located nearby the Azadi square and the most vital arteries of Tehran is faced to 45% physical progress nowadays. The boring machine is made by the Herrenknecht and the diameter of the using concrete-polymer pipes are 1600 and 1800 millimeters. Placing and excavating several shafts on the ground and direct Tunnel boring between the axes of issued shafts is one of the requirements of the micro-tunneling. Considering the stream of the ground located shafts should care the hydraulic circumstances, civic conditions, site geography, traffic cautions and etc. The profile length has to convert to many shortened segment lines so the generated angle between the segments will be based in the manhole centers. Each segment line between two continues drive and receive the shaft, displays the jack location, driving angle and the path straight, thus, the diversity of issued angle causes the variety of jack positioning in the shaft. The jacking frame fixing conditions and it's associated dynamic load direction produces various patterns of Stress and Strain distribution and creating fatigues in the shaft wall and the soil surrounded the shaft. This pattern diversification makes the shaft wall transformed, unbalanced subsidence and alteration in the pipe jacking Stress Contour. This research is based on experiments of the Tehran's west sewerage plan and the numerical analysis the interaction of the soil around the shaft, shaft walls and the Jacking frame direction and finally, the suitable or unsuitable location of the pipe jacking shaft will be determined.Keywords: underground structure, micro-tunneling, fatigue analysis, dynamic-soil–structure interaction, underground water, finite element analysis
Procedia PDF Downloads 318224 Data Analysis Tool for Predicting Water Scarcity in Industry
Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse
Abstract:
Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.Keywords: data mining, industry, machine Learning, shortage, water resources
Procedia PDF Downloads 121223 Automatic Aggregation and Embedding of Microservices for Optimized Deployments
Authors: Pablo Chico De Guzman, Cesar Sanchez
Abstract:
Microservices are a software development methodology in which applications are built by composing a set of independently deploy-able, small, modular services. Each service runs a unique process and it gets instantiated and deployed in one or more machines (we assume that different microservices are deployed into different machines). Microservices are becoming the de facto standard for developing distributed cloud applications due to their reduced release cycles. In principle, the responsibility of a microservice can be as simple as implementing a single function, which can lead to the following issues: - Resource fragmentation due to the virtual machine boundary. - Poor communication performance between microservices. Two composition techniques can be used to optimize resource fragmentation and communication performance: aggregation and embedding of microservices. Aggregation allows the deployment of a set of microservices on the same machine using a proxy server. Aggregation helps to reduce resource fragmentation, and is particularly useful when the aggregated services have a similar scalability behavior. Embedding deals with communication performance by deploying on the same virtual machine those microservices that require a communication channel (localhost bandwidth is reported to be about 40 times faster than cloud vendor local networks and it offers better reliability). Embedding can also reduce dependencies on load balancer services since the communication takes place on a single virtual machine. For example, assume that microservice A has two instances, a1 and a2, and it communicates with microservice B, which also has two instances, b1 and b2. One embedding can deploy a1 and b1 on machine m1, and a2 and b2 are deployed on a different machine m2. This deployment configuration allows each pair (a1-b1), (a2-b2) to communicate using the localhost interface without the need of a load balancer between microservices A and B. Aggregation and embedding techniques are complex since different microservices might have incompatible runtime dependencies which forbid them from being installed on the same machine. There is also a security concern since the attack surface between microservices can be larger. Luckily, container technology allows to run several processes on the same machine in an isolated manner, solving the incompatibility of running dependencies and the previous security concern, thus greatly simplifying aggregation/embedding implementations by just deploying a microservice container on the same machine as the aggregated/embedded microservice container. Therefore, a wide variety of deployment configurations can be described by combining aggregation and embedding to create an efficient and robust microservice architecture. This paper presents a formal method that receives a declarative definition of a microservice architecture and proposes different optimized deployment configurations by aggregating/embedding microservices. The first prototype is based on i2kit, a deployment tool also submitted to ICWS 2018. The proposed prototype optimizes the following parameters: network/system performance, resource usage, resource costs and failure tolerance.Keywords: aggregation, deployment, embedding, resource allocation
Procedia PDF Downloads 203222 Enhancing Athlete Training using Real Time Pose Estimation with Neural Networks
Authors: Jeh Patel, Chandrahas Paidi, Ahmed Hambaba
Abstract:
Traditional methods for analyzing athlete movement often lack the detail and immediacy required for optimal training. This project aims to address this limitation by developing a Real-time human pose estimation system specifically designed to enhance athlete training across various sports. This system leverages the power of convolutional neural networks (CNNs) to provide a comprehensive and immediate analysis of an athlete’s movement patterns during training sessions. The core architecture utilizes dilated convolutions to capture crucial long-range dependencies within video frames. Combining this with the robust encoder-decoder architecture to further refine pose estimation accuracy. This capability is essential for precise joint localization across the diverse range of athletic poses encountered in different sports. Furthermore, by quantifying movement efficiency, power output, and range of motion, the system provides data-driven insights that can be used to optimize training programs. Pose estimation data analysis can also be used to develop personalized training plans that target specific weaknesses identified in an athlete’s movement patterns. To overcome the limitations posed by outdoor environments, the project employs strategies such as multi-camera configurations or depth sensing techniques. These approaches can enhance pose estimation accuracy in challenging lighting and occlusion scenarios, where pose estimation accuracy in challenging lighting and occlusion scenarios. A dataset is collected From the labs of Martin Luther King at San Jose State University. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing different poses, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced pose detection model and lays the groundwork for future innovations in assistive enhancement technologies.Keywords: computer vision, deep learning, human pose estimation, U-NET, CNN
Procedia PDF Downloads 56221 Cassava Plant Architecture: Insights from Genome-Wide Association Studies
Authors: Abiodun Olayinka, Daniel Dzidzienyo, Pangirayi Tongoona, Samuel Offei, Edwige Gaby Nkouaya Mbanjo, Chiedozie Egesi, Ismail Yusuf Rabbi
Abstract:
Cassava (Manihot esculenta Crantz) is a major source of starch for various industrial applications. However, the traditional cultivation and harvesting methods of cassava are labour-intensive and inefficient, limiting the supply of fresh cassava roots for industrial starch production. To achieve improved productivity and quality of fresh cassava roots through mechanized cultivation, cassava cultivars with compact plant architecture and moderate plant height are needed. Plant architecture-related traits, such as plant height, harvest index, stem diameter, branching angle, and lodging tolerance, are critical for crop productivity and suitability for mechanized cultivation. However, the genetics of cassava plant architecture remain poorly understood. This study aimed to identify the genetic bases of the relationships between plant architecture traits and productivity-related traits, particularly starch content. A panel of 453 clones developed at the International Institute of Tropical Agriculture, Nigeria, was genotyped and phenotyped for 18 plant architecture and productivity-related traits at four locations in Nigeria. A genome-wide association study (GWAS) was conducted using the phenotypic data from a panel of 453 clones and 61,238 high-quality Diversity Arrays Technology sequencing (DArTseq) derived Single Nucleotide Polymorphism (SNP) markers that are evenly distributed across the cassava genome. Five significant associations between ten SNPs and three plant architecture component traits were identified through GWAS. We found five SNPs on chromosomes 6 and 16 that were significantly associated with shoot weight, harvest index, and total yield through genome-wide association mapping. We also discovered an essential candidate gene that is co-located with peak SNPs linked to these traits in M. esculenta. A review of the cassava reference genome v7.1 revealed that the SNP on chromosome 6 is in proximity to Manes.06G101600.1, a gene that regulates endodermal differentiation and root development in plants. The findings of this study provide insights into the genetic basis of plant architecture and yield in cassava. Cassava breeders could leverage this knowledge to optimize plant architecture and yield in cassava through marker-assisted selection and targeted manipulation of the candidate gene.Keywords: Manihot esculenta Crantz, plant architecture, DArtseq, SNP markers, genome-wide association study
Procedia PDF Downloads 70220 Virtual Metering and Prediction of Heating, Ventilation, and Air Conditioning Systems Energy Consumption by Using Artificial Intelligence
Authors: Pooria Norouzi, Nicholas Tsang, Adam van der Goes, Joseph Yu, Douglas Zheng, Sirine Maleej
Abstract:
In this study, virtual meters will be designed and used for energy balance measurements of an air handling unit (AHU). The method aims to replace traditional physical sensors in heating, ventilation, and air conditioning (HVAC) systems with simulated virtual meters. Due to the inability to manage and monitor these systems, many HVAC systems have a high level of inefficiency and energy wastage. Virtual meters are implemented and applied in an actual HVAC system, and the result confirms the practicality of mathematical sensors for alternative energy measurement. While most residential buildings and offices are commonly not equipped with advanced sensors, adding, exploiting, and monitoring sensors and measurement devices in the existing systems can cost thousands of dollars. The first purpose of this study is to provide an energy consumption rate based on available sensors and without any physical energy meters. It proves the performance of virtual meters in HVAC systems as reliable measurement devices. To demonstrate this concept, mathematical models are created for AHU-07, located in building NE01 of the British Columbia Institute of Technology (BCIT) Burnaby campus. The models will be created and integrated with the system’s historical data and physical spot measurements. The actual measurements will be investigated to prove the models' accuracy. Based on preliminary analysis, the resulting mathematical models are successful in plotting energy consumption patterns, and it is concluded confidently that the results of the virtual meter will be close to the results that physical meters could achieve. In the second part of this study, the use of virtual meters is further assisted by artificial intelligence (AI) in the HVAC systems of building to improve energy management and efficiency. By the data mining approach, virtual meters’ data is recorded as historical data, and HVAC system energy consumption prediction is also implemented in order to harness great energy savings and manage the demand and supply chain effectively. Energy prediction can lead to energy-saving strategies and considerations that can open a window in predictive control in order to reach lower energy consumption. To solve these challenges, the energy prediction could optimize the HVAC system and automates energy consumption to capture savings. This study also investigates AI solutions possibility for autonomous HVAC efficiency that will allow quick and efficient response to energy consumption and cost spikes in the energy market.Keywords: virtual meters, HVAC, artificial intelligence, energy consumption prediction
Procedia PDF Downloads 105219 Designing a Combined Outpatient and Day Treatment Eating Disorder Program for Adolescents and Transitional Aged Youth: A Naturalistic Case Study
Authors: Deanne McArthur, Melinda Wall, Claire Hanlon, Dana Agnolin, Krista Davis, Melanie Dennis, Elizabeth Glidden, Anne Marie Smith, Claudette Thomson
Abstract:
Background and significance: Patients with eating disorders have traditionally been an underserviced population within the publicly-funded Canadian healthcare system. This situation was worsened by the COVID-19 pandemic and accompanying public health measures, such as “lockdowns” which led to increased isolation, changes in routine, and other disruptions. Illness severity and prevalence rose significantly with corresponding increases in patient suffering and poor outcomes. In Ontario, Canada, the provincial government responded by increasing funding for the treatment of eating disorders, including the launch of a new day program at an intermediate, regional health centre that already housed an outpatient treatment service. The funding was received in March 2022. The care team sought to optimize this opportunity by designing a program that would fit well within the resource-constrained context in Ontario. Methods: This case study will detail how the team consulted the literature and sought patient and family input to design a program that optimizes patient outcomes and supports for patients and families while they await treatment. Early steps include a review of the literature, expert consultation and patient and family focus groups. Interprofessional consensus was sought at each step with the team adopting a shared leadership and patient-centered approach. Methods will include interviews, observations and document reviews to detail a rich description of the process undertaken to design the program, including evaluation measures adopted. Interim findings pertaining to the early stages of the program-building process will be detailed as well as early lessons and ongoing evolution of the program and design process. Program implementation and outcome evaluation will continue throughout 2022 and early 2023 with further publication and presentation of study results expected in the summer of 2023. The aim of this study is to contribute to the body of knowledge pertaining to the design and implementation of eating disorder treatment services that combine outpatient and day treatment services in a resource-constrained context.Keywords: eating disorders, day program, interprofessional, outpatient, adolescents, transitional aged youth
Procedia PDF Downloads 108218 From Servicescape to Servicespace: Qualitative Research in a Post-Cartesian Retail Context
Authors: Chris Houliez
Abstract:
This study addresses the complex dynamics of the modern retail environment, focusing on how the ubiquitous nature of mobile communication technologies has reshaped the shopper experience and tested the limits of the conventional "servicescape" concept commonly used to describe retail experiences. The objective is to redefine the conceptualization of retail space by introducing an approach to space that aligns with a retail context where physical and digital interactions are increasingly intertwined. To offer a more shopper-centric understanding of the retail experience, this study draws from phenomenology, particularly Henri Lefebvre’s work on the production of space. The presented protocol differs from traditional methodologies by not making assumptions about what constitutes a retail space. Instead, it adopts a perspective based on Lefebvre’s seminal work, which posits that space is not a three-dimensional container commonly referred to as “servicescape” but is actively produced through shoppers’ spatial practices. This approach allows for an in-depth exploration of the retail experience by capturing the everyday spatial practices of shoppers without preconceived notions of what constitutes a retail space. The designed protocol was tested with eight participants during 209 hours of day-long field trips, immersing the researcher into the shopper's lived experience by combining multiple data collection methods, including participant observation, videography, photography, and both pre-fieldwork and post-fieldwork interviews. By giving equal importance to both locations and connections, this study unpacked various spatial practices that contribute to the production of retail space. These findings highlight the relative inadequacy of some traditional retail space conceptualizations, which often fail to capture the fluid nature of contemporary shopping experiences. The study's emphasis on the customization process, through which shoppers optimize their retail experience by producing a “fully lived retail space,” offers a more comprehensive understanding of consumer shopping behavior in the digital age. In conclusion, this research presents a significant shift in the conceptualization of retail space. By employing a phenomenological approach rooted in Lefebvre’s theory, the study provides a more efficient framework to understand the retail experience in the age of mobile communication technologies. Although this research is limited by its small sample size and the demographic profile of participants, it offers valuable insights into the spatial practices of modern shoppers and their implications for retail researchers and retailers alike.Keywords: shopper behavior, mobile telecommunication technologies, qualitative research, servicescape, servicespace
Procedia PDF Downloads 23217 Development of Academic Software for Medial Axis Determination of Porous Media from High-Resolution X-Ray Microtomography Data
Authors: S. Jurado, E. Pazmino
Abstract:
Determination of the medial axis of a porous media sample is a non-trivial problem of interest for several disciplines, e.g., hydrology, fluid dynamics, contaminant transport, filtration, oil extraction, etc. However, the computational tools available for researchers are limited and restricted. The primary aim of this work was to develop a series of algorithms to extract porosity, medial axis structure, and pore-throat size distributions from porous media domains. A complementary objective was to provide the algorithms as free computational software available to the academic community comprising researchers and students interested in 3D data processing. The burn algorithm was tested on porous media data obtained from High-Resolution X-Ray Microtomography (HRXMT) and idealized computer-generated domains. The real data and idealized domains were discretized in voxels domains of 550³ elements and binarized to denote solid and void regions to determine porosity. Subsequently, the algorithm identifies the layer of void voxels next to the solid boundaries. An iterative process removes or 'burns' void voxels in sequence of layer by layer until all the void space is characterized. Multiples strategies were tested to optimize the execution time and use of computer memory, i.e., segmentation of the overall domain in subdomains, vectorization of operations, and extraction of single burn layer data during the iterative process. The medial axis determination was conducted identifying regions where burnt layers collide. The final medial axis structure was refined to avoid concave-grain effects and utilized to determine the pore throat size distribution. A graphic user interface software was developed to encompass all these algorithms, including the generation of idealized porous media domains. The software allows input of HRXMT data to calculate porosity, medial axis, and pore-throat size distribution and provide output in tabular and graphical formats. Preliminary tests of the software developed during this study achieved medial axis, pore-throat size distribution and porosity determination of 100³, 320³ and 550³ voxel porous media domains in 2, 22, and 45 minutes, respectively in a personal computer (Intel i7 processor, 16Gb RAM). These results indicate that the software is a practical and accessible tool in postprocessing HRXMT data for the academic community.Keywords: medial axis, pore-throat distribution, porosity, porous media
Procedia PDF Downloads 116216 Implementation of Learning Disability Annual Review Clinics to Ensure Good Patient Care, Safety, and Equality in Covid-19: A Two Pass Audit in General Practice
Authors: Liam Martin, Martha Watson
Abstract:
Patients with learning disabilities (LD) are at increased risk of physical and mental illness due to health inequality. To address this, NICE recommends that people from the age of 14 with a learning disability should have an annual LD health check. This consultation should include a holistic review of the patient’s physical, mental and social health needs with a view of creating an action plan to support the patient’s care. The expected standard set by the Quality and Outcomes Framework (QOF) is that each general practice should review at least 75% of their LD patients annually. During COVID-19, there have been barriers to primary care, including health anxiety, the shift to online general practice and the increase in GP workloads. A surgery in North London wanted to assess whether they were falling short of the expected standard for LD patient annual reviews in order to optimize care post Covid-19. A baseline audit was completed to assess how many LD patients were receiving their annual reviews over the period of 29th September 2020 to 29th September 2021. This information was accessed using EMIS Web Health Care System (EMIS). Patients included were aged 14 and over as per QOF standards. Doctors were not notified of this audit taking place. Following the results of this audit, the creation of learning disability clinics was recommended. These clinics were recommended to be on the ground floor and should be a dedicated time for LD reviews. A re-audit was performed via the same process 6 months later in March 2022. At the time of the baseline audit, there were 71 patients aged 14 and over that were on the LD register. 54% of these LD patients were found to have documentation of an annual LD review within the last 12 months. None of the LD patients between the ages of 14-18 years old had received their annual review. The results were discussed with the practice, and dedicated clinics were set up to review their LD patients. A second pass of the audit was completed 6 months later. This showed an improvement, with 84% of the LD patients registered at the surgery now having a documented annual review within the last 12 months. 78% of the patients between the ages of 14-18 years old had now been reviewed. The baseline audit revealed that the practice was not meeting the expected standard for LD patient’s annual health checks as outlined by QOF, with the most neglected patients being between the ages of 14-18. Identification and awareness of this vulnerable cohort is important to ensure measures can be put into place to support their physical, mental and social wellbeing. Other practices could consider an audit of their annual LD health checks to make sure they are practicing within QOF standards, and if there is a shortfall, they could consider implementing similar actions as used here; dedicated clinics for LD patient reviews.Keywords: COVID-19, learning disability, learning disability health review, quality and outcomes framework
Procedia PDF Downloads 85215 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement
Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes
Abstract:
Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology
Procedia PDF Downloads 80214 Application of the Material Point Method as a New Fast Simulation Technique for Textile Composites Forming and Material Handling
Authors: Amir Nazemi, Milad Ramezankhani, Marian Kӧrber, Abbas S. Milani
Abstract:
The excellent strength to weight ratio of woven fabric composites, along with their high formability, is one of the primary design parameters defining their increased use in modern manufacturing processes, including those in aerospace and automotive. However, for emerging automated preform processes under the smart manufacturing paradigm, complex geometries of finished components continue to bring several challenges to the designers to cope with manufacturing defects on site. Wrinklinge. g. is a common defectoccurring during the forming process and handling of semi-finished textile composites. One of the main reasons for this defect is the weak bending stiffness of fibers in unconsolidated state, causing excessive relative motion between them. Further challenges are represented by the automated handling of large-area fiber blanks with specialized gripper systems. For fabric composites forming simulations, the finite element (FE)method is a longstanding tool usedfor prediction and mitigation of manufacturing defects. Such simulations are predominately meant, not only to predict the onset, growth, and shape of wrinkles but also to determine the best processing condition that can yield optimized positioning of the fibers upon forming (or robot handling in the automated processes case). However, the need for use of small-time steps via explicit FE codes, facing numerical instabilities, as well as large computational time, are among notable drawbacks of the current FEtools, hindering their extensive use as fast and yet efficient digital twins in industry. This paper presents a novel woven fabric simulation technique through the application of the material point method (MPM), which enables the use of much larger time steps, facing less numerical instabilities, hence the ability to run significantly faster and efficient simulationsfor fabric materials handling and forming processes. Therefore, this method has the ability to enhance the development of automated fiber handling and preform processes by calculating the physical interactions with the MPM fiber models and rigid tool components. This enables the designers to virtually develop, test, and optimize their processes based on either algorithmicor Machine Learning applications. As a preliminary case study, forming of a hemispherical plain weave is shown, and the results are compared to theFE simulations, as well as experiments.Keywords: material point method, woven fabric composites, forming, material handling
Procedia PDF Downloads 181