Search results for: network technology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11911

Search results for: network technology

10201 Social Technology and Youth Justice: An Exploration of Ethical and Practical Challenges

Authors: Ravinder Barn, Balbir Barn

Abstract:

This paper outlines ethical and practical challenges in the building of social technology for use with socially excluded and marginalised groups. The primary aim of this study was to design, deploy and evaluate social technology that may help to promote better engagement between case workers and young people to help prevent recidivism, and support young people’s transition towards social inclusion in society. A total of 107 practitioners/managers (n=64), and young people (n=43) contributed to the data collection via surveys, focus groups and 1-1 interviews. Through a process of co-design where end-users are involved as key contributors to social technological design, this paper seeks to make an important contribution to the area of participatory methodologies by arguing that whilst giving ‘voice’ to key stakeholders in the research process is crucial, there is a risk that competing voices may lead to tensions and unintended outcomes. The paper is contextualized within a Foucauldian perspective to examine significant concepts including power, authority and surveillance. Implications for youth justice policy and practice are considered. The authors conclude that marginalized youth and over-stretched practitioners are better served when such social technology is perceived and adopted as a tool of empowerment within a framework of child welfare and child rights.

Keywords: youth justice, social technology, marginalization, participatory research, power

Procedia PDF Downloads 450
10200 6D Posture Estimation of Road Vehicles from Color Images

Authors: Yoshimoto Kurihara, Tad Gonsalves

Abstract:

Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.

Keywords: 6D posture estimation, image recognition, deep learning, AlexNet

Procedia PDF Downloads 158
10199 Strategic Planning in South African Higher Education

Authors: Noxolo Mafu

Abstract:

This study presents an overview of strategic planning in South African higher education institutions by tracing its trends and mystique in order to identify its impact. Over the democratic decades, strategic planning has become integral to institutional survival. It has been used as a potent tool by several institutions to catch up and surpass counterparts. While planning has always been part of higher education, strategic planning should be considered different. Strategic planning is primarily about development and maintenance of a strategic fitting between an institution and its dynamic opportunities. This presupposes existence of sets of stages that institutions pursue of which, can be regarded for assessment of the impact of strategic planning in an institution. The network theory serves guides the study in demystifying apparent organisational networks in strategic planning processes.

Keywords: network theory, strategy, planning, strategic planning, assessment, impact

Procedia PDF Downloads 565
10198 Decarbonising Urban Building Heating: A Case Study on the Benefits and Challenges of Fifth-Generation District Heating Networks

Authors: Mazarine Roquet, Pierre Dewallef

Abstract:

The building sector, both residential and tertiary, accounts for a significant share of greenhouse gas emissions. In Belgium, partly due to poor insulation of the building stock, but certainly because of the massive use of fossil fuels for heating buildings, this share reaches almost 30%. To reduce carbon emissions from urban building heating, district heating networks emerge as a promising solution as they offer various assets such as improving the load factor, integrating combined heat and power systems, and enabling energy source diversification, including renewable sources and waste heat recovery. However, mainly for sake of simple operation, most existing district heating networks still operate at high or medium temperatures ranging between 120°C and 60°C (the socalled second and third-generations district heating networks). Although these district heating networks offer energy savings in comparison with individual boilers, such temperature levels generally require the use of fossil fuels (mainly natural gas) with combined heat and power. The fourth-generation district heating networks improve the transport and energy conversion efficiency by decreasing the operating temperature between 50°C and 30°C. Yet, to decarbonise the building heating one must increase the waste heat recovery and use mainly wind, solar or geothermal sources for the remaining heat supply. Fifth-generation networks operating between 35°C and 15°C offer the possibility to decrease even more the transport losses, to increase the share of waste heat recovery and to use electricity from renewable resources through the use of heat pumps to generate low temperature heat. The main objective of this contribution is to exhibit on a real-life test case the benefits of replacing an existing third-generation network by a fifth-generation one and to decarbonise the heat supply of the building stock. The second objective of the study is to highlight the difficulties resulting from the use of a fifth-generation, low-temperature, district heating network. To do so, a simulation model of the district heating network including its regulation is implemented in the modelling language Modelica. This model is applied to the test case of the heating network on the University of Liège's Sart Tilman campus, consisting of around sixty buildings. This model is validated with monitoring data and then adapted for low-temperature networks. A comparison of primary energy consumptions as well as CO2 emissions is done between the two cases to underline the benefits in term of energy independency and GHG emissions. To highlight the complexity of operating a lowtemperature network, the difficulty of adapting the mass flow rate to the heat demand is considered. This shows the difficult balance between the thermal comfort and the electrical consumption of the circulation pumps. Several control strategies are considered and compared to the global energy savings. The developed model can be used to assess the potential for energy and CO2 emissions savings retrofitting an existing network or when designing a new one.

Keywords: building simulation, fifth-generation district heating network, low-temperature district heating network, urban building heating

Procedia PDF Downloads 87
10197 Vehicle to Vehicle Communication: Collision Avoidance Scenarios

Authors: Ahmed Emad, Ahmed Salah, Abdelrahman Magdy, Omar Rashid, Mohammed Adel

Abstract:

This research paper discusses vehicle-to-vehicle technology as an important application of linear algebra. This communication technology represents an efficient and promising application to help to ensure the safety of the drivers by warning them when a crash possibility is close. The major link that combines our topic with linear algebra is the Laplacian matrix. Some main definitions used in the V2V were illustrated, such as VANET and its characteristics. The V2V technology could be applied in different applications with different traffic scenarios and various ways to warn car drivers. These scenarios were simulated programs such as MATLAB and Python to test how the V2V system would respond to the different scenarios and warn the car drivers exposed to the threat of collisions.

Keywords: V2V communication, vehicle to vehicle scenarios, VANET, FCW, EEBL, IMA, Laplacian matrix

Procedia PDF Downloads 172
10196 A Social Decision Support Mechanism for Group Purchasing

Authors: Lien-Fa Lin, Yung-Ming Li, Fu-Shun Hsieh

Abstract:

With the advancement of information technology and development of group commerce, people have obviously changed in their lifestyle. However, group commerce faces some challenging problems. The products or services provided by vendors do not satisfactorily reflect customers’ opinions, so that the sale and revenue of group commerce gradually become lower. On the other hand, the process for a formed customer group to reach group-purchasing consensus is time-consuming and the final decision is not the best choice for each group members. In this paper, we design a social decision support mechanism, by using group discussion message to recommend suitable options for group members and we consider social influence and personal preference to generate option ranking list. The proposed mechanism can enhance the group purchasing decision making efficiently and effectively and venders can provide group products or services according to the group option ranking list.

Keywords: social network, group decision, text mining, group commerce

Procedia PDF Downloads 487
10195 The Effects of Street Network Layout on Walking to School

Authors: Ayse Ozbil, Gorsev Argin, Demet Yesiltepe

Abstract:

Data for this cross-sectional study were drawn from questionnaires conducted in 10 elementary schools (1000 students, ages 12-14) located in Istanbul, Turkey. School environments (1600 meter buffers around the school) were evaluated through GIS-based land-use data (parcel level land use density) and street-level topography. Street networks within the same buffers were evaluated by using angular segment analysis (Integration and Choice) implemented in Depthmap as well as two segment-based connectivity measures, namely Metric and Directional Reach implemented in GIS. Segment Angular Integration measures how accessible each space from all the others within the radius using the least angle measure of distance. Segment Angular Choice which measures how many times a space is selected on journeys between all pairs of origins and destinations. Metric Reach captures the density of streets and street connections accessible from each individual road segment. Directional Reach measures the extent to which the entire street network is accessible with few direction changes. In addition, socio-economic characteristics (annual income, car ownership, education-level) of parents, obtained from parental questionnaires, were also included in the analysis. It is shown that surrounding street network configuration is strongly associated with both walk-mode shares and average walking distances to/from schools when controlling for parental socio-demographic attributes as well as land-use compositions and topographic features in school environments. More specifically, findings suggest that the scale at which urban form has an impact on pedestrian travel is considerably larger than a few blocks around the school.

Keywords: Istanbul, street network layout, urban form, walking to/from school

Procedia PDF Downloads 409
10194 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard

Abstract:

Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the points specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.

Keywords: artificial neural networks, milling process, rotational speed, temperature

Procedia PDF Downloads 408
10193 The Techno-Pedagogical Pivot: Designing and Implementing a Digital Writing Tool

Authors: Justin D. Olmanson, Katrina S. Kennett, Bill Cope

Abstract:

In the field of education technology, innovation is often tightly coupled to recent technological inventions and emerging technologies. Despite this, some scholars have argued that using established technologies in new pedagogical or curricular ways recasts them and places them once more under the umbrella of emerging education technologies. In this study, we trace how an innovative education technology design emerged, not from a technological breakthrough, but rather via a techno-pedagogical pivot. We describe the design and impact of a digital writing tool created to scaffold student self-evaluation of academic texts. We theorize about and trace how innovation can also emerge from a pivot, namely how leveraging existing practices in new ways can create pedagogically and experientially innovative learning opportunities. After describing the design of Info Writer, we unpack the results of a study based on an implementation the tool, and then theorize and reflect on the way the design process and study findings suggest that pivoting an existing practice can lead to innovative education technology designs.

Keywords: design, education, revision, technology, writing

Procedia PDF Downloads 465
10192 The Role of Mobile Applications on Consumerism Case Study: Snappfood Application

Authors: Vajihe Fasihi

Abstract:

With the advancement of technology and the expansion of the Internet, a significant change in lifestyle and consumption can be seen in societies. The increasing number of mobile applications (such as SnappFood) has expanded the scope of using apps for wider access to services to citizens and meets the needs of a large number of citizens in the shortest time and with reasonable quality. First, this article seeks to understand the concept and function of the Internet distribution network on the Iranian society, which was investigated in a smaller sample (students of the Faculty of Social Sciences of the Tehran university ) and uses the semi-structured interview method, and then explores the concept of consumerism. The main issue of this research is the effect of mobile apps, especially SnappFood, on increasing consumption and the difference between real needs and false needs among consumers. The findings of this research show that the use of the mentioned program has been effective in increasing the false needs of the sample community and has led to the phenomenon of consumerism.

Keywords: consumerism economics, false needs, mobile applications, reel needs

Procedia PDF Downloads 59
10191 Analyzing the Place of Technology in Communication: Case Study of Kenya during COVID-19

Authors: Josephine K. Mule, Levi Obonyo

Abstract:

Technology has changed human life over time. The COVID-19 pandemic has altered the work set-up, the school system, the shopping experience, church attendance, and even the way athletes train in Kenya. Although the use of technology to communicate and maintain interactions has been on the rise in the last 30 years, the uptake during the COVID-19 pandemic has been unprecedented. Traditionally, ‘paid’ work has been considered to take place outside the “home house” but COVID-19 has resulted in what is now being referred to as “the world’s largest work-from-home experiment” with up to 43 percent of employees working at least some of the time remotely. This study was conducted on 90 respondents from across remote work set-ups, school systems, merchants and customers of online shopping, church leaders and congregants and athletes, and their coaches. Data were collected by questionnaires and interviews that were conducted online. The data is based on the first three months since the first case of coronavirus was reported in Kenya. This study found that the use of technology is in the center of working remotely with work interactions being propelled on various online platforms including, Zoom, Microsoft Teams, and Google Meet, among others. The school system has also integrated the use of technology, including students defending their thesis/dissertations online and university graduations being conducted virtually. Kenya is known for its long-distance runners, due to the directives to reduce interactions; coaches have taken to providing their athletes with guidance on training on social media using applications such as WhatsApp. More local stores are now offering the shopping online option to their customers. Churches have also felt the brunt of the situation, especially because of the restrictions on crowds resulting in online services becoming more popular in 2020 than ever before. Artists, innovatively have started online musical concerts. The findings indicate that one of the outcomes in the Kenyan society that is evident as a result of the COVID-19 period is a population that is using technology more to communicate and get work done. Vices that have thrived in this season where the use of technology has increased, include the spreading of rumors on social media and cyberbullying. The place of technology seems to have been cemented by demand during this period.

Keywords: communication, coronavirus, COVID-19, Kenya, technology

Procedia PDF Downloads 142
10190 Monitoring Trends of Science and Technology Policies in South Korea

Authors: Jeonghwan Jeon

Abstract:

As the science and technology(S&T) has been rapidly advanced, the national government attempts to reflect changes in the S&T for promoting public R&D activities and economic development. Amongst others, due to the rapid advances and changes of S&T, it becomes important to monitor the trends of S&T policies for formulating the new policy and investigating promising S&T fields. Thus, this paper aims to trace the national S&T policies during this decade for monitoring the change of major S&T fields in the case of South Korea. As one of the organization for S&T policy in South Korea, the National Science and Technology Council (NSTC) has been established to coordinate inter-ministerial policies and programs and to determine all of the national and public S&T policy of South Korea. In this regard, the items on national S&T policy determined by the NSTC are useful for understanding the needs for major S&T fields and adapting to the rapid change of S&T. To this end, we first gathered the data on 512 items on the S&T agenda from 1999 to 2013. Based on these items, the trend of S&T policies is monitored and the major S&T fields are derived. Differences of policy purposes between S&T fields are identified to provide guideline for policy making such as budget allocation or investment promotion as well.

Keywords: science and technology policy, trends, S&T field, monitoring

Procedia PDF Downloads 325
10189 Enhancing Scalability in Ethereum Network Analysis: Methods and Techniques

Authors: Stefan K. Behfar

Abstract:

The rapid growth of the Ethereum network has brought forth the urgent need for scalable analysis methods to handle the increasing volume of blockchain data. In this research, we propose efficient methodologies for making Ethereum network analysis scalable. Our approach leverages a combination of graph-based data representation, probabilistic sampling, and parallel processing techniques to achieve unprecedented scalability while preserving critical network insights. Data Representation: We develop a graph-based data representation that captures the underlying structure of the Ethereum network. Each block transaction is represented as a node in the graph, while the edges signify temporal relationships. This representation ensures efficient querying and traversal of the blockchain data. Probabilistic Sampling: To cope with the vastness of the Ethereum blockchain, we introduce a probabilistic sampling technique. This method strategically selects a representative subset of transactions and blocks, allowing for concise yet statistically significant analysis. The sampling approach maintains the integrity of the network properties while significantly reducing the computational burden. Graph Convolutional Networks (GCNs): We incorporate GCNs to process the graph-based data representation efficiently. The GCN architecture enables the extraction of complex spatial and temporal patterns from the sampled data. This combination of graph representation and GCNs facilitates parallel processing and scalable analysis. Distributed Computing: To further enhance scalability, we adopt distributed computing frameworks such as Apache Hadoop and Apache Spark. By distributing computation across multiple nodes, we achieve a significant reduction in processing time and enhanced memory utilization. Our methodology harnesses the power of parallelism, making it well-suited for large-scale Ethereum network analysis. Evaluation and Results: We extensively evaluate our methodology on real-world Ethereum datasets covering diverse time periods and transaction volumes. The results demonstrate its superior scalability, outperforming traditional analysis methods. Our approach successfully handles the ever-growing Ethereum data, empowering researchers and developers with actionable insights from the blockchain. Case Studies: We apply our methodology to real-world Ethereum use cases, including detecting transaction patterns, analyzing smart contract interactions, and predicting network congestion. The results showcase the accuracy and efficiency of our approach, emphasizing its practical applicability in real-world scenarios. Security and Robustness: To ensure the reliability of our methodology, we conduct thorough security and robustness evaluations. Our approach demonstrates high resilience against adversarial attacks and perturbations, reaffirming its suitability for security-critical blockchain applications. Conclusion: By integrating graph-based data representation, GCNs, probabilistic sampling, and distributed computing, we achieve network scalability without compromising analytical precision. This approach addresses the pressing challenges posed by the expanding Ethereum network, opening new avenues for research and enabling real-time insights into decentralized ecosystems. Our work contributes to the development of scalable blockchain analytics, laying the foundation for sustainable growth and advancement in the domain of blockchain research and application.

Keywords: Ethereum, scalable network, GCN, probabilistic sampling, distributed computing

Procedia PDF Downloads 78
10188 Dynamic Economic Load Dispatch Using Quadratic Programming: Application to Algerian Electrical Network

Authors: A. Graa, I. Ziane, F. Benhamida, S. Souag

Abstract:

This paper presents a comparative analysis study of an efficient and reliable quadratic programming (QP) to solve economic load dispatch (ELD) problem with considering transmission losses in a power system. The proposed QP method takes care of different unit and system constraints to find optimal solution. To validate the effectiveness of the proposed QP solution, simulations have been performed using Algerian test system. Results obtained with the QP method have been compared with other existing relevant approaches available in literatures. Experimental results show a proficiency of the QP method over other existing techniques in terms of robustness and its optimal search.

Keywords: economic dispatch, quadratic programming, Algerian network, dynamic load

Procedia PDF Downloads 566
10187 Evaluation of the Internal Quality for Pineapple Based on the Spectroscopy Approach and Neural Network

Authors: Nonlapun Meenil, Pisitpong Intarapong, Thitima Wongsheree, Pranchalee Samanpiboon

Abstract:

In Thailand, once pineapples are harvested, they must be classified into two classes based on their sweetness: sweet and unsweet. This paper has studied and developed the assessment of internal quality of pineapples using a low-cost compact spectroscopy sensor according to the Spectroscopy approach and Neural Network (NN). During the experiments, Batavia pineapples were utilized, generating 100 samples. The extracted pineapple juice of each sample was used to determine the Soluble Solid Content (SSC) labeling into sweet and unsweet classes. In terms of experimental equipment, the sensor cover was specifically designed to install the sensor and light source to read the reflectance at a five mm depth from pineapple flesh. By using a spectroscopy sensor, data on visible and near-infrared reflectance (Vis-NIR) were collected. The NN was used to classify the pineapple classes. Before the classification step, the preprocessing methods, which are Class balancing, Data shuffling, and Standardization were applied. The 510 nm and 900 nm reflectance values of the middle parts of pineapples were used as features of the NN. With the Sequential model and Relu activation function, 100% accuracy of the training set and 76.67% accuracy of the test set were achieved. According to the abovementioned information, using a low-cost compact spectroscopy sensor has achieved favorable results in classifying the sweetness of the two classes of pineapples.

Keywords: neural network, pineapple, soluble solid content, spectroscopy

Procedia PDF Downloads 81
10186 Development, Testing, and Application of a Low-Cost Technology Sulphur Dioxide Monitor as a Tool for use in a Volcanic Emissions Monitoring Network

Authors: Viveka Jackson, Erouscilla Joseph, Denise Beckles, Thomas Christopher

Abstract:

Sulphur Dioxide (SO2) has been defined as a non-flammable, non-explosive, colourless gas, having a pungent, irritating odour, and is one of the main gases emitted from volcanoes. Sulphur dioxide has been recorded in concentrations hazardous to humans (0.25 – 0.5 ppm (~650 – 1300 μg/m3), downwind of many volcanoes and hence warrants constant air-quality monitoring around these sites. It has been linked to an increase in chronic respiratory disease attributed to long-term exposures and alteration in lung and other physiological functions attributed to short-term exposures. Sulphur Springs in Saint Lucia is a highly active geothermal area, located within the Soufrière Volcanic Centre, and is a park widely visited by tourists and locals. It is also a current source of continuous volcanic emissions via its many fumaroles and bubbling pools, warranting concern by residents and visitors to the park regarding the effects of exposure to these gases. In this study, we introduce a novel SO2 measurement system for the monitoring and quantification of ambient levels of airborne volcanic SO2 using low-cost technology. This work involves the extensive production of low-cost SO2 monitors/samplers, as well as field examination in tandem with standard commercial samplers (SO2 diffusion tubes). It also incorporates community involvement in the volcanic monitoring process as non-professional users of the instrument. We intend to present the preliminary monitoring results obtained from the low-cost samplers, to identify the areas in the Park exposed to high concentrations of ambient SO2, and to assess the feasibility of the instrument for non-professional use and application in volcanic settings

Keywords: ambient SO2, community-based monitoring, risk-reduction, sulphur springs, low-cost

Procedia PDF Downloads 469
10185 Conventional Four Steps Travel Demand Modeling for Kabul New City

Authors: Ahmad Mansoor Stanikzai, Yoshitaka Kajita

Abstract:

This research is a very essential towards transportation planning of Kabul New City. In this research, the travel demand of Kabul metropolitan area (Existing and Kabul New City) are evaluated for three different target years (2015, current, 2025, mid-term, 2040, long-term). The outcome of this study indicates that, though currently the vehicle volume is less the capacity of existing road networks, Kabul city is suffering from daily traffic congestions. This is mainly due to lack of transportation management, the absence of proper policies, improper public transportation system and violation of traffic rules and regulations by inhabitants. On the other hand, the observed result indicates that the current vehicle to capacity ratio (VCR) which is the most used index to judge traffic status in the city is around 0.79. This indicates the inappropriate traffic condition of the city. Moreover, by the growth of population in mid-term (2025) and long-term (2040) and in the case of no development in the road network and transportation system, the VCR value will dramatically increase to 1.40 (2025) and 2.5 (2040). This can be a critical situation for an urban area from an urban transportation perspective. Thus, by introducing high-capacity public transportation system and the development of road network in Kabul New City and integrating these links with the existing city road network, significant improvements were observed in the value of VCR.

Keywords: Afghanistan, Kabul new city, planning, policy, urban transportation

Procedia PDF Downloads 333
10184 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX Through Fusion of Vision and 3+1D Millimeter Wave Radar

Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma

Abstract:

Unmanned Surface Vehicles (USVs) are valuable due to their ability to perform dangerous and time-consuming tasks on the water. Object detection tasks are significant in these applications. However, inherent challenges, such as the complex distribution of obstacles, reflections from shore structures, water surface fog, etc., hinder the performance of object detection of USVs. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. MMW radar is complementary to vision sensors, providing robust environmental information. The radar 3D point cloud is transferred to 2D radar pseudo image to unify radar and vision information format by utilizing the point transformer. We propose a multi-source object detection network (RV-YOLOX )based on radar-vision fusion for inland waterways environment. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.

Keywords: inland waterways, YOLO, sensor fusion, self-attention

Procedia PDF Downloads 129
10183 Dual-Actuated Vibration Isolation Technology for a Rotary System’s Position Control on a Vibrating Frame: Disturbance Rejection and Active Damping

Authors: Kamand Bagherian, Nariman Niknejad

Abstract:

A vibration isolation technology for precise position control of a rotary system powered by two permanent magnet DC (PMDC) motors is proposed, where this system is mounted on an oscillatory frame. To achieve vibration isolation for this system, active damping and disturbance rejection (ADDR) technology is presented which introduces a cooperation of a main and an auxiliary PMDC, controlled by discrete-time sliding mode control (DTSMC) based schemes. The controller of the main actuator tracks a desired position and the auxiliary actuator simultaneously isolates the induced vibration, as its controller follows a torque trend. To determine this torque trend, a combination of two algorithms is introduced by the ADDR technology. The first torque-trend producing algorithm rejects the disturbance by counteracting the perturbation, estimated using a model-based observer. The second torque trend applies active variable damping to minimize the oscillation of the output shaft. In this practice, the presented technology is implemented on a rotary system with a pendulum attached, mounted on a linear actuator simulating an oscillation-transmitting structure. In addition, the obtained results illustrate the functionality of the proposed technology.

Keywords: active damping, discrete-time nonlinear controller, disturbance tracking algorithm, oscillation transmitting support, position control, stability robustness, vibration isolation

Procedia PDF Downloads 107
10182 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.

Keywords: classification, computer vision, convolutional neural networks, drone control

Procedia PDF Downloads 214
10181 Monitoring and Evaluation of the Distributed Agricultural Machinery of the Department of Agriculture Using a Web-Based Information System with a Short Messaging Service Technology

Authors: Jimmy L. Caldoza, Erlito M. Albina

Abstract:

Information Systems are increasingly being used to monitor and assess government projects as well as improve transparency and combat corruption. With reference to existing information systems relevant to monitoring and evaluation systems adopted by various government agencies from other countries, this research paper aims to help the Philippine government, particularly the Department of Agriculture, in assessing the impact of their programs and projects on their target beneficiaries through the development of the web-based Monitoring and Evaluation Information System with the application of a short messaging system (sms) technology.

Keywords: monitoring and evaluation system, web-based information system, short messaging system technology, database structure and management

Procedia PDF Downloads 150
10180 Students’ Perceptions of Using Wiki Technology to Enhance Language Learning

Authors: Hani Mustafa, Cristina Gonzalez Ruiz, Estelle Bech

Abstract:

The growing influence of digital technologies has made learning and interaction more accessible, resulting in effective collaboration if properly managed. Technology enabled learning has become an important conduit for learning, including collaborative learning. The use of wiki technology, for example, has opened a new learning platform that enables the integration of social, linguistic, and cognitive processes of language learning. It encourages students to collaborate in the construction, analysis, and understanding of knowledge. But to what extent is the use of wikis effective in promoting collaborative learning among students. In addition, how do students perceive this technology in enhancing their language learning? In this study, students were be given a wiki project to complete collaboratively with their group members. Students had to write collaboratively to produce and present a seven-day travel plan in which they had to describe places to visit and things to do to explore the best historical and cultural aspects of the country. The study involves students learning French, Malay, and Spanish as a foreign language. In completing this wiki project, students will move from passive learning of language to real engagement with classmates, requiring them to collaborate and negotiate effectively with one another. The objective of the study is to ascertain to what extent does wiki technology helped in promoting collaborative learning and improving language skills from students’ perception. It is found that while there was improvement in students language skills, the overall experience was less positive due to unfamiliarity with a new learning tool.

Keywords: collaborative learning, foreign language, wiki, teaching

Procedia PDF Downloads 138
10179 English and Information and Communication Technology: Zones of Exclusion in Education in Low-Income Countries

Authors: Ram A. Giri, Amna Bedri, Abdou Niane

Abstract:

Exclusion in education on the basis of language in multilingual contexts operates at multiple levels. Learners of diverse ethnolinguistic backgrounds are often expected to learn through English and are pushed further down the learning ladder if they also have to access education through Information and Communication Technology (ICT). The paper explores marginalized children’s lived experiences in accessing technology and English in four low-income countries in Africa and Asia. Based on the findings of the first phase of a multinational qualitative research study, we report on the factors or barriers that affect children’s access, opportunities and motivation for learning through technology and English. ICT and English - the language of ICT and education - can enhance learning and can even be essential. However, these two important keys to education can also function as barriers to accessing quality education, and therefore as zones of exclusion. This paper looks into how marginalized children (aged 13-15) engage in learning through ICT and English and to what extent the restrictive access and opportunities contribute to the widening of the already existing gap in education. By applying the conceptual frameworks of “access and accessibility of learning” and “zones of exclusion,” the paper elucidates how the barriers prevent children’s effective engagement with learning and addresses such questions as to how marginalized children access technology and English for learning; whether the children value English, and what their motivation and opportunity to learn it are. In addition, the paper will point out policy and pedagogic implications.

Keywords: exclusion, inclusion, inclusive education, marginalization

Procedia PDF Downloads 232
10178 The Integration of ICT in EFL Classroom and Its Impact on Teacher Development

Authors: Tayaa Karima, Bouaziz Amina

Abstract:

Today's world is knowledge-based; everything we do is somehow connected with technology which it has a remarkable influence on socio-cultural and economic developments, including educational settings. This type of technology is supported in many teaching/learning setting where the medium of instruction is through computer technology, and particularly involving digital technologies. There has been much debate over the use of computers and the internet in foreign language teaching for more than two decades. Various studies highlights that the integration of Information Communications Technology (ICT) in foreign language teaching will have positive effects on both the teachers and students to help them be aware of the modernized world and meet the current demands of the globalised world. Information and communication technology has been gradually integrated in foreign learning environment as a platform for providing learners with learning opportunities. Thus, the impact of ICT on language teaching and learning has been acknowledged globally, this is because of the fundamental role that it plays in the enhancement of teaching and learning quality, modify the pedagogical practice, and motivate learners. Due to ICT related developments, many Maghreb countries regard ICT as a tool for changes and innovations in education. Therefore, the ministry of education attempted to set up computer laboratories and provide internet connection in the schools. Investment in ICT for educational innovations and improvement purposes has been continuing the need of teacher who will employ it in the classroom as vital role of the curriculum. ICT does not have an educational value in itself, but it becomes precious when teachers use it in learning and teaching process. This paper examines the impacts of ICT on teacher development rather than on teaching quality and highlights some challenges facing using ICT in the language learning/teaching.

Keywords: information communications technology (ICT), integration, foreign language teaching, teacher development, learning opportunity

Procedia PDF Downloads 389
10177 Parents-Children Communication in College

Authors: Yin-Chen Liu, Chih-Chun Wu, Mei-He Shih

Abstract:

In this technology society, using ICT(Information and communications technology) to contact each other is very common. Interpersonal ICT communication maintains social support. Therefore, the study investigated the ICT communication between undergraduates and their parents, and gender differences were also detected. The sample size was 1,209 undergraduates, including 624(51.6%) males, 584(48.3%) females, and 1 gender unidentified. In the sample, 91.8% of the sample used phones to contact their fathers and 93.8% of them use phones to contact their mothers. 78.5% and 87.6% of the sample utilized LINE to contact their fathers and mothers respectively. As for Facebook, only 13.4% and 16.5% of the sample would use to contact their fathers and mothers respectively. Aforementioned results implied that the undergraduates nowadays use phone and LINE to contact their parents more common than Facebook. According to results from Pearson correlations, the more undergraduates refused to add their fathers as their Facebook friends, the more they refused to add their mothers as Facebook friends. The possible reasons for it could be that to distinguish different social network such as family and friends. Another possible reason could be avoiding parents’ controlling. It could be why the kids prefer to use phone and LINE to Facebook when contacting their parents. Result from Pearson correlations showed that the more undergraduates actively contact their fathers, the more they actively contact their mothers. On the other hand, the more their fathers actively contact them, the more their mothers actively contact them. Based on the results, this study encourages both parents and undergraduates to contact each other, for any contact between any two family members is associated with contact between other two family members. Obviously, the contact between family members is bidirectional. Future research might want to investigate if this bidirectional contact is associated with the family relation. For gender differences, results from the independent t-tests showed that compared to sons, daughters actively contacted their parents more. Maybe it is because parents keep saying that it is dangerous out there for their daughters, so they build up the habit for their daughters to contact them more. Results from paired sample t-tests showed that the undergraduates agreed that talking to mother on the phone had more satisfaction, felt more intimacy and supported than fathers.

Keywords: family ICT communication, parent-child ICT communication, FACEBOOK and LINE, gender differences

Procedia PDF Downloads 206
10176 Addressing Security and Privacy Issues in a Smart Environment by Using Block-Chain as a Preemptive Technique

Authors: Shahbaz Pervez, Aljawharah Almuhana, Zahida Parveen, Samina Naz, Hira Tariq, Seyed Hosseini, Muhammad Awais Azam

Abstract:

With the latest development in the field of cutting-edge technologies, there is a rapid increase in the use of technology-oriented gadgets. In a recent scenario of the tech era, there is increasing demand to fulfill our day-to-day routine tasks with the help of technological gadgets. We are living in an era of technology where trends have been changing, and a race to introduce a new technology gadget has already begun. Smart cities are getting more popular with every passing day; city councils and governments are under enormous pressure to provide the latest services for their citizens and equip them with all the latest facilities. Thus, ultimately, they are going more into smart cities infrastructure building, providing services to their inhabitants with a single click from their smart devices. This trend is very exciting, but on the other hand, if some incident of security breach happens due to any weaker link, the results would be catastrophic. This paper addresses potential security and privacy breaches with a possible solution by using Blockchain technology in IoT enabled environment.

Keywords: blockchain, cybersecurity, DDOS, intrusion detection, IoT, RFID, smart devices security, smart services

Procedia PDF Downloads 122
10175 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model

Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao

Abstract:

Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.

Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization

Procedia PDF Downloads 130
10174 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture

Authors: Thrivikraman Aswathi, S. Advaith

Abstract:

As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.

Keywords: GAN, transformer, classification, multivariate time series

Procedia PDF Downloads 133
10173 Using Dynamic Bayesian Networks to Characterize and Predict Job Placement

Authors: Xupin Zhang, Maria Caterina Bramati, Enrest Fokoue

Abstract:

Understanding the career placement of graduates from the university is crucial for both the qualities of education and ultimate satisfaction of students. In this research, we adapt the capabilities of dynamic Bayesian networks to characterize and predict students’ job placement using data from various universities. We also provide elements of the estimation of the indicator (score) of the strength of the network. The research focuses on overall findings as well as specific student groups including international and STEM students and their insight on the career path and what changes need to be made. The derived Bayesian network has the potential to be used as a tool for simulating the career path for students and ultimately helps universities in both academic advising and career counseling.

Keywords: dynamic bayesian networks, indicator estimation, job placement, social networks

Procedia PDF Downloads 381
10172 Task Based Functional Connectivity within Reward Network in Food Image Viewing Paradigm Using Functional MRI

Authors: Preetham Shankapal, Jill King, Kori Murray, Corby Martin, Paula Giselman, Jason Hicks, Owen Carmicheal

Abstract:

Activation of reward and satiety networks in the brain while processing palatable food cues, as well as functional connectivity during rest has been studied using functional Magnetic Resonance Imaging of the brain in various obesity phenotypes. However, functional connectivity within the reward and satiety network during food cue processing is understudied. 14 obese individuals underwent two fMRI scans during viewing of Macronutrient Picture System images. Each scan included two blocks of images of High Sugar/High Fat (HSHF), High Carbohydrate/High Fat (HCHF), Low Sugar/Low Fat (LSLF) and also non-food images. Seed voxels within seven food reward relevant ROIs: Insula, putamen and cingulate, precentral, parahippocampal, medial frontal and superior temporal gyri were isolated based on a prior meta-analysis. Beta series correlation for task-related functional connectivity between these seed voxels and the rest of the brain was computed. Voxel-level differences in functional connectivity were calculated between: first and the second scan; individuals who saw novel (N=7) vs. Repeated (N=7) images in the second scan; and between the HC/HF, HSHF blocks vs LSLF and non-food blocks. Computations and analysis showed that during food image viewing, reward network ROIs showed significant functional connectivity with each other and with other regions responsible for attentional and motor control, including inferior parietal lobe and precentral gyrus. These functional connectivity values were heightened among individuals who viewed novel HS/HF images in the second scan. In the second scan session, functional connectivity was reduced within the reward network but increased within attention, memory and recognition regions, suggesting habituation to reward properties and increased recollection of previously viewed images. In conclusion it can be inferred that Functional Connectivity within reward network and between reward and other brain regions, varies by important experimental conditions during food photography viewing, including habituation to shown foods.

Keywords: fMRI, functional connectivity, task-based, beta series correlation

Procedia PDF Downloads 274