Search results for: fault detection and classification
3960 Analysis, Evaluation and Optimization of Food Management: Minimization of Food Losses and Food Wastage along the Food Value Chain
Authors: G. Hafner
Abstract:
A method developed at the University of Stuttgart will be presented: ‘Analysis, Evaluation and Optimization of Food Management’. A major focus is represented by quantification of food losses and food waste as well as their classification and evaluation regarding a system optimization through waste prevention. For quantification and accounting of food, food losses and food waste along the food chain, a clear definition of core terms is required at the beginning. This includes their methodological classification and demarcation within sectors of the food value chain. The food chain is divided into agriculture, industry and crafts, trade and consumption (at home and out of home). For adjustment of core terms, the authors have cooperated with relevant stakeholders in Germany for achieving the goal of holistic and agreed definitions for the whole food chain. This includes modeling of sub systems within the food value chain, definition of terms, differentiation between food losses and food wastage as well as methodological approaches. ‘Food Losses’ and ‘Food Wastes’ are assigned to individual sectors of the food chain including a description of the respective methods. The method for analyzing, evaluation and optimization of food management systems consist of the following parts: Part I: Terms and Definitions. Part II: System Modeling. Part III: Procedure for Data Collection and Accounting Part. IV: Methodological Approaches for Classification and Evaluation of Results. Part V: Evaluation Parameters and Benchmarks. Part VI: Measures for Optimization. Part VII: Monitoring of Success The method will be demonstrated at the example of an invesigation of food losses and food wastage in the Federal State of Bavaria including an extrapolation of respective results to quantify food wastage in Germany.Keywords: food losses, food waste, resource management, waste management, system analysis, waste minimization, resource efficiency
Procedia PDF Downloads 4053959 Fluorescence in situ Hybridization (FISH) Detection of Bacteria and Archaea in Fecal Samples
Authors: Maria Nejjari, Michel Cloutier, Guylaine Talbot, Martin Lanthier
Abstract:
The fluorescence in situ hybridization (FISH) is a staining technique that allows the identification, detection and quantification of microorganisms without prior cultivation by means of epifluorescence and confocal laser scanning microscopy (CLSM). Oligonucleotide probes have been used to detect bacteria and archaea that colonize the cattle and swine digestive systems. These bacterial strains have been obtained from fecal samples issued from cattle manure and swine slurry. The collection of these samples has been done at 3 different pit’s levels A, B and C with same height. Two collection depth levels have been taken in consideration, one collection level just under the pit’s surface and the second one at the bottom of the pit. Cells were fixed and FISH was performed using oligonucleotides of 15 to 25 nucleotides of length associated with a fluorescent molecule Cy3 or Cy5. The double hybridization using Cy3 probe targeting bacteria (Cy3-EUB338-I) along with a Cy5 probe targeting Archaea (Gy5-ARCH915) gave a better signal. The CLSM images show that there are more bacteria than archaea in swine slurry. However, the choice of fluorescent probes is critical for getting the double hybridization and a unique signature for each microorganism. FISH technique is an easy way to detect pathogens like E. coli O157, Listeria, Salmonella that easily contaminate water streams, agricultural soils and, consequently, food products and endanger human health.Keywords: archaea, bacteria, detection, FISH, fluorescence
Procedia PDF Downloads 3883958 Open Reading Frame Marker-Based Capacitive DNA Sensor for Ultrasensitive Detection of Escherichia coli O157:H7 in Potable Water
Authors: Rehan Deshmukh, Sunil Bhand, Utpal Roy
Abstract:
We report the label-free electrochemical detection of Escherichia coli O157:H7 (ATCC 43895) in potable water using a DNA probe as a sensing molecule targeting the open reading frame marker. Indium tin oxide (ITO) surface was modified with organosilane and, glutaraldehyde was applied as a linker to fabricate the DNA sensor chip. Non-Faradic electrochemical impedance spectroscopy (EIS) behavior was investigated at each step of sensor fabrication using cyclic voltammetry, impedance, phase, relative permittivity, capacitance, and admittance. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed significant changes in surface topographies of DNA sensor chip fabrication. The decrease in the percentage of pinholes from 2.05 (Bare ITO) to 1.46 (after DNA hybridization) suggested the capacitive behavior of the DNA sensor chip. The results of non-Faradic EIS studies of DNA sensor chip showed a systematic declining trend of the capacitance as well as the relative permittivity upon DNA hybridization. DNA sensor chip exhibited linearity in 0.5 to 25 pg/10mL for E. coli O157:H7 (ATCC 43895). The limit of detection (LOD) at 95% confidence estimated by logistic regression was 0.1 pg DNA/10mL of E. coli O157:H7 (equivalent to 13.67 CFU/10mL) with a p-value of 0.0237. Moreover, the fabricated DNA sensor chip used for detection of E. coli O157:H7 showed no significant cross-reactivity with closely and distantly related bacteria such as Escherichia coli MTCC 3221, Escherichia coli O78:H11 MTCC 723 and Bacillus subtilis MTCC 736. Consequently, the results obtained in our study demonstrated the possible application of developed DNA sensor chips for E. coli O157:H7 ATCC 43895 in real water samples as well.Keywords: capacitance, DNA sensor, Escherichia coli O157:H7, open reading frame marker
Procedia PDF Downloads 1443957 Contourlet Transform and Local Binary Pattern Based Feature Extraction for Bleeding Detection in Endoscopic Images
Authors: Mekha Mathew, Varun P Gopi
Abstract:
Wireless Capsule Endoscopy (WCE) has become a great device in Gastrointestinal (GI) tract diagnosis, which can examine the entire GI tract, especially the small intestine without invasiveness and sedation. Bleeding in the digestive tract is a symptom of a disease rather than a disease itself. Hence the detection of bleeding is important in diagnosing many diseases. In this paper we proposes a novel method for distinguishing bleeding regions from normal regions based on Contourlet transform and Local Binary Pattern (LBP). Experiments show that this method provides a high accuracy rate of 96.38% in CIE XYZ colour space for k-Nearest Neighbour (k-NN) classifier.Keywords: Wireless Capsule Endoscopy, local binary pattern, k-NN classifier, contourlet transform
Procedia PDF Downloads 4853956 Distributed Framework for Pothole Detection and Monitoring Using Federated Learning
Authors: Ezil Sam Leni, Shalen S.
Abstract:
Transport service monitoring and upkeep are essential components of smart city initiatives. The main risks to the relevant departments and authorities are the ever-increasing vehicular traffic and the conditions of the roads. In India, the economy is greatly impacted by the road transport sector. In 2021, the Ministry of Road Transport and Highways Transport, Government of India, produced a report with statistical data on traffic accidents. The data included the number of fatalities, injuries, and other pertinent criteria. This study proposes a distributed infrastructure for the monitoring, detection, and reporting of potholes to the appropriate authorities. In a distributed environment, the nodes are the edge devices, and local edge servers, and global servers. The edge devices receive the initial model to be employed from the global server. The YOLOv8 model for pothole detection is used in the edge devices. The edge devices run the pothole detection model, gather the pothole images on their path, and send the updates to the nearby edge server. The local edge server selects the clients for its aggregation process, aggregates the model updates and sends the updates to the global server. The global server collects the updates from the local edge servers, performs aggregation and derives the updated model. The updated model has the information about the potholes received from the local edge servers and notifies the updates to the local edge servers and concerned authorities for monitoring and maintenance of road conditions. The entire process is implemented in FedCV distributed environment with the implementation using the client-server model and aggregation entities. After choosing the clients for its aggregation process, the local edge server gathers the model updates and transmits them to the global server. After gathering the updates from the regional edge servers, the global server aggregates them and creates the updated model. Performance indicators and the experimentation environment are assessed, discussed, and presented. Accelerometer data may be taken into consideration for improved performance in the future development of this study, in addition to the images captured from the transportation routes.Keywords: federated Learning, pothole detection, distributed framework, federated averaging
Procedia PDF Downloads 1043955 Issues in Translating Hadith Terminologies into English: A Critical Approach
Authors: Mohammed Riyas Pp
Abstract:
This study aimed at investigating major issues in translating the Arabic Hadith terminologies into English, focusing on choosing the most appropriate translation for each, reviewing major Hadith works in English. This study is confined to twenty terminologies with regard to classification of Hadith based on authority, strength, number of transmitters and connections in Isnad. Almost all available translations are collected and analyzed to find the most proper translation based on linguistic and translational values. To the researcher, many translations lack precise understanding of either Hadith terminologies or English language and varieties of methodologies have influence on varieties of translations. This study provides a classification of translational and conceptual issues. Translational issues are related to translatability of these terminologies and their equivalence. Conceptual issues provide a list of misunderstandings due to wrong translations of terminologies. This study ends with a suggestion for unification in translating terminologies based on convention of Muslim scholars having good understanding of Hadith terminologies and English language.Keywords: english language, hadith terminologies, equivalence in translation, problems in translation
Procedia PDF Downloads 1883954 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects
Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes
Abstract:
Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction
Procedia PDF Downloads 1493953 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification
Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang
Abstract:
One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.Keywords: malware detection, network security, targeted attack, computational intelligence
Procedia PDF Downloads 2643952 New Features for Copy-Move Image Forgery Detection
Authors: Michael Zimba
Abstract:
A novel set of features for copy-move image forgery, CMIF, detection method is proposed. The proposed set presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilised to extract robust features. The extracted features are shown to be invariant to additive noise, JPEG compression, and affine transformation. The proposed features can also be used in general object matching.Keywords: virtual electrostatic field, features, affine transformation, copy-move image forgery
Procedia PDF Downloads 5433951 Diversity in Finance Literature Revealed through the Lens of Machine Learning: A Topic Modeling Approach on Academic Papers
Authors: Oumaima Lahmar
Abstract:
This paper aims to define a structured topography for finance researchers seeking to navigate the body of knowledge in their extrapolation of finance phenomena. To make sense of the body of knowledge in finance, a probabilistic topic modeling approach is applied on 6000 abstracts of academic articles published in three top journals in finance between 1976 and 2020. This approach combines both machine learning techniques and natural language processing to statistically identify the conjunctions between research articles and their shared topics described each by relevant keywords. The topic modeling analysis reveals 35 coherent topics that can well depict finance literature and provide a comprehensive structure for the ongoing research themes. Comparing the extracted topics to the Journal of Economic Literature (JEL) classification system, a significant similarity was highlighted between the characterizing keywords. On the other hand, we identify other topics that do not match the JEL classification despite being relevant in the finance literature.Keywords: finance literature, textual analysis, topic modeling, perplexity
Procedia PDF Downloads 1703950 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection
Authors: Yulan Wu
Abstract:
With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 973949 Luminescent Functionalized Graphene Oxide Based Sensitive Detection of Deadly Explosive TNP
Authors: Diptiman Dinda, Shyamal Kumar Saha
Abstract:
In the 21st century, sensitive and selective detection of trace amounts of explosives has become a serious problem. Generally, nitro compound and its derivatives are being used worldwide to prepare different explosives. Recently, TNP (2, 4, 6 trinitrophenol) is the most commonly used constituent to prepare powerful explosives all over the world. It is even powerful than TNT or RDX. As explosives are electron deficient in nature, it is very difficult to detect one separately from a mixture. Again, due to its tremendous water solubility, detection of TNP in presence of other explosives from water is very challenging. Simple instrumentation, cost-effective, fast and high sensitivity make fluorescence based optical sensing a grand success compared to other techniques. Graphene oxide (GO), with large no of epoxy grps, incorporate localized nonradiative electron-hole centres on its surface to give very weak fluorescence. In this work, GO is functionalized with 2, 6-diamino pyridine to remove those epoxy grps. through SN2 reaction. This makes GO into a bright blue luminescent fluorophore (DAP/rGO) which shows an intense PL spectrum at ∼384 nm when excited at 309 nm wavelength. We have also characterized the material by FTIR, XPS, UV, XRD and Raman measurements. Using this as fluorophore, a large fluorescence quenching (96%) is observed after addition of only 200 µL of 1 mM TNP in water solution. Other nitro explosives give very moderate PL quenching compared to TNP. Such high selectivity is related to the operation of FRET mechanism from fluorophore to TNP during this PL quenching experiment. TCSPC measurement also reveals that the lifetime of DAP/rGO drastically decreases from 3.7 to 1.9 ns after addition of TNP. Our material is also quite sensitive to 125 ppb level of TNP. Finally, we believe that this graphene based luminescent material will emerge a new class of sensing materials to detect trace amounts of explosives from aqueous solution.Keywords: graphene, functionalization, fluorescence quenching, FRET, nitroexplosive detection
Procedia PDF Downloads 4403948 A Framework for Auditing Multilevel Models Using Explainability Methods
Authors: Debarati Bhaumik, Diptish Dey
Abstract:
Multilevel models, increasingly deployed in industries such as insurance, food production, and entertainment within functions such as marketing and supply chain management, need to be transparent and ethical. Applications usually result in binary classification within groups or hierarchies based on a set of input features. Using open-source datasets, we demonstrate that popular explainability methods, such as SHAP and LIME, consistently underperform inaccuracy when interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the nature of the feature contribution (negative versus positive contribution to the outcome). Besides accuracy, the computational intractability of SHAP for binomial classification is a cause of concern. For transparent and ethical applications of these hierarchical statistical models, sound audit frameworks need to be developed. In this paper, we propose an audit framework for technical assessment of multilevel regression models focusing on three aspects: (i) model assumptions & statistical properties, (ii) model transparency using different explainability methods, and (iii) discrimination assessment. To this end, we undertake a quantitative approach and compare intrinsic model methods with SHAP and LIME. The framework comprises a shortlist of KPIs, such as PoCE (Percentage of Correct Explanations) and MDG (Mean Discriminatory Gap) per feature, for each of these three aspects. A traffic light risk assessment method is furthermore coupled to these KPIs. The audit framework will assist regulatory bodies in performing conformity assessments of AI systems using multilevel binomial classification models at businesses. It will also benefit businesses deploying multilevel models to be future-proof and aligned with the European Commission’s proposed Regulation on Artificial Intelligence.Keywords: audit, multilevel model, model transparency, model explainability, discrimination, ethics
Procedia PDF Downloads 953947 A Comprehensive Review on Health Hazards and Challenges for Microbial Remediation of Persistent Organic Pollutants
Authors: Nisha Gaur, K.Narasimhulu, Pydi Setty Yelamarthy
Abstract:
Persistent organic pollutants (POPs) have become a great concern due to their toxicity, transformation and bioaccumulation property. Therefore, this review highlights the types, sources, classification health hazards and mobility of organochlorine pesticides, industrial chemicals and their by-products. Moreover, with the signing of Aarhus and Stockholm convention on POPs there is an increased demand to identify and characterise such chemicals from industries and environment which are toxic in nature or to existing biota. Due to long life, persistent nature they enter into body through food and transfer to all tropic levels of ecological unit. In addition, POPs are lipophilic in nature and accumulate in lipid-containing tissues and organs which further indicates the adverse symptoms after the threshold limit. Though, several potential enzymes are reported from various categories of microorganism and their interaction with POPs may break down the complex compounds either through biodegradation, biostimulation or bioaugmentation process, however technological advancement and human activities have also indicated to explore the possibilities for the role of genetically modified organisms and metagenomics and metabolomics. Though many studies have been done to develop low cost, effective and reliable method for detection, determination and removal of ultra-trace concentration of persistent organic pollutants (POPs) but due to insufficient knowledge and non-feasibility of technique, the safe management of POPs is still a global challenge.Keywords: persistent organic pollutants, bioaccumulation, biostimulation, microbial remediation
Procedia PDF Downloads 3003946 Large Neural Networks Learning From Scratch With Very Few Data and Without Explicit Regularization
Authors: Christoph Linse, Thomas Martinetz
Abstract:
Recent findings have shown that Neural Networks generalize also in over-parametrized regimes with zero training error. This is surprising, since it is completely against traditional machine learning wisdom. In our empirical study we fortify these findings in the domain of fine-grained image classification. We show that very large Convolutional Neural Networks with millions of weights do learn with only a handful of training samples and without image augmentation, explicit regularization or pretraining. We train the architectures ResNet018, ResNet101 and VGG19 on subsets of the difficult benchmark datasets Caltech101, CUB_200_2011, FGVCAircraft, Flowers102 and StanfordCars with 100 classes and more, perform a comprehensive comparative study and draw implications for the practical application of CNNs. Finally, we show that VGG19 with 140 million weights learns to distinguish airplanes and motorbikes with up to 95% accuracy using only 20 training samples per class.Keywords: convolutional neural networks, fine-grained image classification, generalization, image recognition, over-parameterized, small data sets
Procedia PDF Downloads 883945 Effect of Concentration Level and Moisture Content on the Detection and Quantification of Nickel in Clay Agricultural Soil in Lebanon
Authors: Layan Moussa, Darine Salam, Samir Mustapha
Abstract:
Heavy metal contamination in agricultural soils in Lebanon poses serious environmental and health problems. Intensive efforts are employed to improve existing quantification methods of heavy metals in contaminated environments since conventional detection techniques have shown to be time-consuming, tedious, and costly. The implication of hyperspectral remote sensing in this field is possible and promising. However, factors impacting the efficiency of hyperspectral imaging in detecting and quantifying heavy metals in agricultural soils were not thoroughly studied. This study proposes to assess the use of hyperspectral imaging for the detection of Ni in agricultural clay soil collected from the Bekaa Valley, a major agricultural area in Lebanon, under different contamination levels and soil moisture content. Soil samples were contaminated with Ni, with concentrations ranging from 150 mg/kg to 4000 mg/kg. On the other hand, soil with background contamination was subjected to increased moisture levels varying from 5 to 75%. Hyperspectral imaging was used to detect and quantify Ni contamination in the soil at different contamination levels and moisture content. IBM SPSS statistical software was used to develop models that predict the concentration of Ni and moisture content in agricultural soil. The models were constructed using linear regression algorithms. The spectral curves obtained reflected an inverse correlation between both Ni concentration and moisture content with respect to reflectance. On the other hand, the models developed resulted in high values of predicted R2 of 0.763 for Ni concentration and 0.854 for moisture content. Those predictions stated that Ni presence was well expressed near 2200 nm and that of moisture was at 1900 nm. The results from this study would allow us to define the potential of using the hyperspectral imaging (HSI) technique as a reliable and cost-effective alternative for heavy metal pollution detection in contaminated soils and soil moisture prediction.Keywords: heavy metals, hyperspectral imaging, moisture content, soil contamination
Procedia PDF Downloads 1013944 Artificial Intelligence and Machine Vision-Based Defect Detection Methodology for Solid Rocket Motor Propellant Grains
Authors: Sandip Suman
Abstract:
Mechanical defects (cracks, voids, irregularities) in rocket motor propellant are not new and it is induced due to various reasons, which could be an improper manufacturing process, lot-to-lot variation in chemicals or just the natural aging of the products. These defects are normally identified during the examination of radiographic films by quality inspectors. However, a lot of times, these defects are under or over-classified by human inspectors, which leads to unpredictable performance during lot acceptance tests and significant economic loss. The human eye can only visualize larger cracks and defects in the radiographs, and it is almost impossible to visualize every small defect through the human eye. A different artificial intelligence-based machine vision methodology has been proposed in this work to identify and classify the structural defects in the radiographic films of rocket motors with solid propellant. The proposed methodology can extract the features of defects, characterize them, and make intelligent decisions for acceptance or rejection as per the customer requirements. This will automatize the defect detection process during manufacturing with human-like intelligence. It will also significantly reduce production downtime and help to restore processes in the least possible time. The proposed methodology is highly scalable and can easily be transferred to various products and processes.Keywords: artificial intelligence, machine vision, defect detection, rocket motor propellant grains
Procedia PDF Downloads 983943 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets
Authors: Najmeh Abedzadeh, Matthew Jacobs
Abstract:
An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.Keywords: IDS, imbalanced datasets, sampling algorithms, big data
Procedia PDF Downloads 3283942 Intelligent Crowd Management Systems in Trains
Authors: Sai S. Hari, Shriram Ramanujam, Unnati Trivedi
Abstract:
The advent of mass transit systems like rail, metro, maglev, and various other rail based transport has pacified the requirement of public transport for the masses to a great extent. However, the abatement of the demand does not necessarily mean it is managed efficiently, eloquently or in an encapsulating manner. The primary problem identified that the one this paper seeks to solve is the dipsomaniac like manner in which the compartments are occupied. This problem is solved by using a comparison of an empty train and an occupied one. The pixel data of an occupied train is compared to the pixel data of an empty train. This is done using canny edge detection technique. After the comparison it intimates the passengers at the consecutive stops which compartments are not occupied or have low occupancy. Thus, redirecting them and preventing overcrowding.Keywords: canny edge detection, comparison, encapsulation, redirection
Procedia PDF Downloads 3343941 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining
Procedia PDF Downloads 1213940 Designing a Cyclic Redundancy Checker-8 for 32 Bit Input Using VHDL
Authors: Ankit Shai
Abstract:
CRC or Cyclic Redundancy Check is one of the most common, and one of the most powerful error-detecting codes implemented on modern computers. Most of the modern communication protocols use some error detection algorithms in digital networks and storage devices to detect accidental changes to raw data between transmission and reception. Cyclic Redundancy Check, or CRC, is the most popular one among these error detection codes. CRC properties are defined by the generator polynomial length and coefficients. The aim of this project is to implement an efficient FPGA based CRC-8 that accepts a 32 bit input, taking into consideration optimal chip area and high performance, using VHDL. The proposed architecture is implemented on Xilinx ISE Simulator. It is designed while keeping in mind the hardware design, complexity and cost factor.Keywords: cyclic redundancy checker, CRC-8, 32-bit input, FPGA, VHDL, ModelSim, Xilinx
Procedia PDF Downloads 2923939 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 1023938 Enhancing the Interpretation of Group-Level Diagnostic Results from Cognitive Diagnostic Assessment: Application of Quantile Regression and Cluster Analysis
Authors: Wenbo Du, Xiaomei Ma
Abstract:
With the empowerment of Cognitive Diagnostic Assessment (CDA), various domains of language testing and assessment have been investigated to dig out more diagnostic information. What is noticeable is that most of the extant empirical CDA-based research puts much emphasis on individual-level diagnostic purpose with very few concerned about learners’ group-level performance. Even though the personalized diagnostic feedback is the unique feature that differentiates CDA from other assessment tools, group-level diagnostic information cannot be overlooked in that it might be more practical in classroom setting. Additionally, the group-level diagnostic information obtained via current CDA always results in a “flat pattern”, that is, the mastery/non-mastery of all tested skills accounts for the two highest proportion. In that case, the outcome does not bring too much benefits than the original total score. To address these issues, the present study attempts to apply cluster analysis for group classification and quantile regression analysis to pinpoint learners’ performance at different proficiency levels (beginner, intermediate and advanced) thus to enhance the interpretation of the CDA results extracted from a group of EFL learners’ reading performance on a diagnostic reading test designed by PELDiaG research team from a key university in China. The results show that EM method in cluster analysis yield more appropriate classification results than that of CDA, and quantile regression analysis does picture more insightful characteristics of learners with different reading proficiencies. The findings are helpful and practical for instructors to refine EFL reading curriculum and instructional plan tailored based on the group classification results and quantile regression analysis. Meanwhile, these innovative statistical methods could also make up the deficiencies of CDA and push forward the development of language testing and assessment in the future.Keywords: cognitive diagnostic assessment, diagnostic feedback, EFL reading, quantile regression
Procedia PDF Downloads 1463937 Advanced Driver Assistance System: Veibra
Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins
Abstract:
Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system
Procedia PDF Downloads 1553936 Qualitative Detection of HCV and GBV-C Co-infection in Cirrhotic Patients Using a SYBR Green Multiplex Real Time RT-PCR Technique
Authors: Shahzamani Kiana, Esmaeil Lashgarian Hamed, Merat Shahin
Abstract:
HCV and GBV-C belong to the Flaviviridae family of viruses and GBV-C is the closest virus to HCV genetically. Accumulative research is in progress all over the world to clarify clinical aspects of GBV-C. Possibility of interaction between HCV and GBV-C and also its consequence with other liver diseases are the most important clinical aspects which encourage researchers to develop a technique for simultaneous detection of these viruses. In this study a SYBR Green multiplex real time RT-PCR technique as a new economical and sensitive method was optimized for simultaneous detection of HCV/GBV-C in HCV positive plasma samples. After designing and selection of two pairs of specific primers for HCV and GBV-C, SYBR Green Real time RT-PCR technique optimization was performed separately for each virus. Establishment of multiplex PCR was the next step. Finally our technique was performed on positive and negative plasma samples. 89 cirrhotic HCV positive plasma samples (29 of genotype 3 a and 27 of genotype 1a) were collected from patients before receiving treatment. 14% of genotype 3a and 17.1% of genotype 1a showed HCV/GBV-C co-infection. As a result, 13.48% of 89 samples had HCV/GBV-C co-infection that was compatible with other results from all over the world. Data showed no apparent influence of HGV co-infection on the either clinical or virological aspect of HCV infection. Furthermore, with application of multiplex Real time RT-PCR technique, more time and cost could be saved in clinical-research settings.Keywords: HCV, GBV-C, cirrhotic patients, multiplex real time RT- PCR
Procedia PDF Downloads 2953935 Temperature Contour Detection of Salt Ice Using Color Thermal Image Segmentation Method
Authors: Azam Fazelpour, Saeed Reza Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
The study uses a novel image analysis based on thermal imaging to detect temperature contours created on salt ice surface during transient phenomena. Thermal cameras detect objects by using their emissivities and IR radiance. The ice surface temperature is not uniform during transient processes. The temperature starts to increase from the boundary of ice towards the center of that. Thermal cameras are able to report temperature changes on the ice surface at every individual moment. Various contours, which show different temperature areas, appear on the ice surface picture captured by a thermal camera. Identifying the exact boundary of these contours is valuable to facilitate ice surface temperature analysis. Image processing techniques are used to extract each contour area precisely. In this study, several pictures are recorded while the temperature is increasing throughout the ice surface. Some pictures are selected to be processed by a specific time interval. An image segmentation method is applied to images to determine the contour areas. Color thermal images are used to exploit the main information. Red, green and blue elements of color images are investigated to find the best contour boundaries. The algorithms of image enhancement and noise removal are applied to images to obtain a high contrast and clear image. A novel edge detection algorithm based on differences in the color of the pixels is established to determine contour boundaries. In this method, the edges of the contours are obtained according to properties of red, blue and green image elements. The color image elements are assessed considering their information. Useful elements proceed to process and useless elements are removed from the process to reduce the consuming time. Neighbor pixels with close intensities are assigned in one contour and differences in intensities determine boundaries. The results are then verified by conducting experimental tests. An experimental setup is performed using ice samples and a thermal camera. To observe the created ice contour by the thermal camera, the samples, which are initially at -20° C, are contacted with a warmer surface. Pictures are captured for 20 seconds. The method is applied to five images ,which are captured at the time intervals of 5 seconds. The study shows the green image element carries no useful information; therefore, the boundary detection method is applied on red and blue image elements. In this case study, the results indicate that proposed algorithm shows the boundaries more effective than other edges detection methods such as Sobel and Canny. Comparison between the contour detection in this method and temperature analysis, which states real boundaries, shows a good agreement. This color image edge detection method is applicable to other similar cases according to their image properties.Keywords: color image processing, edge detection, ice contour boundary, salt ice, thermal image
Procedia PDF Downloads 3143934 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models
Authors: Chad Goldsworthy, B. Rajeswari Matam
Abstract:
The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.Keywords: convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation
Procedia PDF Downloads 1913933 Spatial Data Mining by Decision Trees
Authors: Sihem Oujdi, Hafida Belbachir
Abstract:
Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.Keywords: C4.5 algorithm, decision trees, S-CART, spatial data mining
Procedia PDF Downloads 6123932 Unsupervised Neural Architecture for Saliency Detection
Authors: Natalia Efremova, Sergey Tarasenko
Abstract:
We propose a novel neural network architecture for visual saliency detections, which utilizes neuro physiologically plausible mechanisms for extraction of salient regions. The model has been significantly inspired by recent findings from neuro physiology and aimed to simulate the bottom-up processes of human selective attention. Two types of features were analyzed: color and direction of maximum variance. The mechanism we employ for processing those features is PCA, implemented by means of normalized Hebbian learning and the waves of spikes. To evaluate performance of our model we have conducted psychological experiment. Comparison of simulation results with those of experiment indicates good performance of our model.Keywords: neural network models, visual saliency detection, normalized Hebbian learning, Oja's rule, psychological experiment
Procedia PDF Downloads 3483931 Clustered Regularly Interspaced Short Palindromic Repeat/cas9-Based Lateral Flow and Fluorescence Diagnostics for Rapid Pathogen Detection
Authors: Mark Osborn
Abstract:
Clustered, regularly interspaced short palindromic repeat (CRISPR/Cas) proteins can be designed to bind specified DNA and RNA sequences and hold great promise for the accurate detection of nucleic acids for diagnostics. Commercially available reagents were integrated into a CRISPR/Cas9-based lateral flow assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences with single-base specificity. This approach requires minimal equipment and represents a simplified platform for field-based deployment. A rapid, multiplex fluorescence CRISPR/Cas9 nuclease cleavage assay capable of detecting and differentiating SARS-CoV-2, influenza A and B, and respiratory syncytial virus in a single reaction was also developed. These findings provide proof of principle for CRISPR/Cas9 point-of-care diagnosis that can detect specific SARS-CoV-2 strain(s). Further, Cas9 cleavage allows for a scalable fluorescent platform for identifying respiratory viral pathogens with overlapping symptomology. Collectively, this approach is a facile platform for diagnostics with broad application to user-defined sequence interrogation and detection.Keywords: CRISPR/Cas9, lateral flow assay, SARS-Co-V2, single-nucleotide resolution
Procedia PDF Downloads 184