Search results for: salinity stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4072

Search results for: salinity stress

2392 Shear Strength Characterization of Coal Mine Spoil in Very-High Dumps with Large Scale Direct Shear Testing

Authors: Leonie Bradfield, Stephen Fityus, John Simmons

Abstract:

The shearing behavior of current and planned coal mine spoil dumps up to 400m in height is studied using large-sample-high-stress direct shear tests performed on a range of spoils common to the coalfields of Eastern Australia. The motivation for the study is to address industry concerns that some constructed spoil dump heights ( > 350m) are exceeding the scale ( ≤ 120m) for which reliable design information exists, and because modern geotechnical laboratories are not equipped to test representative spoil specimens at field-scale stresses. For more than two decades, shear strength estimation for spoil dumps has been based on either infrequent, very small-scale tests where oversize particles are scalped to comply with device specimen size capacity such that the influence of prototype-sized particles on shear strength is not captured; or on published guidelines that provide linear shear strength envelopes derived from small-scale test data and verified in practice by slope performance of dumps up to 120m in height. To date, these published guidelines appear to have been reliable. However, in the field of rockfill dam design there is a broad acceptance of a curvilinear shear strength envelope, and if this is applicable to coal mine spoils, then these industry-accepted guidelines may overestimate the strength and stability of dumps at higher stress levels. The pressing need to rationally define the shearing behavior of more representative spoil specimens at field-scale stresses led to the successful design, construction and operation of a large direct shear machine (LDSM) and its subsequent application to provide reliable design information for current and planned very-high dumps. The LDSM can test at a much larger scale, in terms of combined specimen size (720mm x 720mm x 600mm) and stress (σn up to 4.6MPa), than has ever previously been achieved using a direct shear machine for geotechnical testing of rockfill. The results of an extensive LDSM testing program on a wide range of coal-mine spoils are compared to a published framework that widely accepted by the Australian coal mining industry as the standard for shear strength characterization of mine spoil. A critical outcome is that the LDSM data highlights several non-compliant spoils, and stress-dependent shearing behavior, for which the correct application of the published framework will not provide reliable shear strength parameters for design. Shear strength envelopes developed from the LDSM data are also compared with dam engineering knowledge, where failure envelopes of rockfills are curved in a concave-down manner. The LDSM data indicates that shear strength envelopes for coal-mine spoils abundant with rock fragments are not in fact curved and that the shape of the failure envelope is ultimately determined by the strength of rock fragments. Curvilinear failure envelopes were found to be appropriate for soil-like spoils containing minor or no rock fragments, or hard-soil aggregates.

Keywords: coal mine, direct shear test, high dump, large scale, mine spoil, shear strength, spoil dump

Procedia PDF Downloads 148
2391 Assessment of Tidal Current Energy Potential at LAMU and Mombasa in Kenya

Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema

Abstract:

The tidal power potential available for electricity generation from Mombasa and Lamu sites in Kenya will be examined. Several African countries in the Western Indian Ocean endure insufficiencies in the power sector, including both generation and distribution. One important step towards increasing energy security and availability is to intensify the use of renewable energy sources. The access to cost-efficient hydropower is low in Mombasa and Lamu hence Ocean energy will play an important role. Global-Level resource assessments and oceanographic literature and data have been compiled in an analysis between technology-specific requirements for ocean energy technologies (salinity, tide, tidal current, wave, Ocean thermal energy conversion, wind and solar) and the physical resources in Lamu and Mombasa. The potential for tide and tidal current power is more restricted but may be of interest at some locations. The theoretical maximum power produced over a tidal cycle is determined by the product of the forcing tide and the undisturbed volumetric flow-rate. The extraction of the maximum power reduces the flow-rate, but a significant portion of the maximum power can be extracted with little change to the tidal dynamics. Two-dimensional finite-element, numerical simulations designed and developed agree with the theory. Temporal variations in resource intensity, as well as the differences between small-scale and large-scale applications, are considered.

Keywords: energy assessment, marine tidal power, renewable energy, tidal dynamics

Procedia PDF Downloads 545
2390 A Finite Element Study of Laminitis in Horses

Authors: Naeim Akbari Shahkhosravi, Reza Kakavand, Helen M. S. Davies, Amin Komeili

Abstract:

Equine locomotion and performance are significantly affected by hoof health. One of the most critical diseases of the hoof is laminitis, which can lead to horse lameness in a severe condition. This disease exhibits the mechanical properties degradation of the laminar junction tissue within the hoof. Therefore, it is essential to investigate the biomechanics of the hoof, focusing specifically on excessive and cumulatively accumulated stresses within the laminar junction tissue. For this aim, the current study generated a novel equine hoof Finite Element (FE) model under dynamic physiological loading conditions and employing a hyperelastic material model. Associated tissues of the equine hoof were segmented from computed tomography scans of an equine forelimb, including the navicular bone, third phalanx, sole, frog, laminar junction, digital cushion, and medial- dorsal- lateral wall areas. The inner tissues were connected based on the hoof anatomy, and the hoof was under a dynamic loading over cyclic strides at the trot. The strain distribution on the hoof wall of the model was compared with the published in vivo strain measurements to validate the model. Then the validated model was used to study the development of laminitis. The ultimate stress tolerated by the laminar junction before rupture was considered as a stress threshold. The tissue damage was simulated through iterative reduction of the tissue’s mechanical properties in the presence of excessive maximum principal stresses. The findings of this investigation revealed how damage initiates from the medial and lateral sides of the tissue and propagates through the hoof dorsal area.

Keywords: horse hoof, laminitis, finite element model, continuous damage

Procedia PDF Downloads 159
2389 Mathematical Modelling of Blood Flow with Magnetic Nanoparticles as Carrier for Targeted Drug Delivery in a Stenosed Artery

Authors: Sreeparna Majee, G. C. Shit

Abstract:

A study on targeted drug delivery is carried out in an unsteady flow of blood infused with magnetic NPs (nanoparticles) with an aim to understand the flow pattern and nanoparticle aggregation in a diseased arterial segment having stenosis. The magnetic NPs are supervised by the magnetic field which is significant for therapeutic treatment of arterial diseases, tumor and cancer cells and removing blood clots. Coupled thermal energy have also been analyzed by considering dissipation of energy because of the application of the magnetic field and the viscosity of blood. Simulation technique used to solve the mathematical model is vorticity-stream function formulations in the diseased artery. An elevation in SLP (Specific loss power) is noted in the aortic bloodstream when the agglomeration of nanoparticles is higher. This phenomenon has potential application in the treatment of hyperthermia. The study focuses on the lowering of WSS (Wall Shear Stress) with increasing particle concentration at the downstream of the stenosis which depicts the vigorous flow circulation zone. These low shear stress regions prolong the residing time of the nanoparticles carrying drugs which soaks up the LDL (Low Density Lipoprotein) deposition. Moreover, an increase in NP concentration enhances the Nusselt number which marks the increase of heat transfer from the arterial wall to the surrounding tissues to destroy tumor and cancer cells without affecting the healthy cells. The results have a significant influence in the study of medicine, to treat arterial diseases such as atherosclerosis without the need for surgery which can minimize the expenditures on cardiovascular treatments.

Keywords: magnetic nanoparticles, blood flow, atherosclerosis, hyperthermia

Procedia PDF Downloads 117
2388 Effect of Irrigation Regime and Plant Density on Chickpea (Cicer arietinum L.) Yield in a Semi-Arid Environment

Authors: Atif Naim, Faisal E. Ahmed, Sershen

Abstract:

A field experiment was conducted for two consecutive winter seasons at the Demonstration Farm of the Faculty of Agriculture, University of Khartoum, Sudan, to study effects of different levels of irrigation regime and plant density on yield of introduced small seeded (desi type) chickpea cultivar (ILC 482). The experiment was laid out in a 3X3 factorial split-plot design with 4 replications. The treatments consisted of three irrigation regimes (designated as follows: I1 = optimum irrigation, I2 = moderate stress and I3 = severe stress; this corresponded with irrigation after drainage of 50%, 75% and 100% of available water based on 70%, 60% and 50% of field capacity, respectively) assigned as main plots and three plant densities (D₁=20, D₂= 40 and D₃= 60 plants/m²) assigned as subplots. The results indicated that the yield components (number of pods per plant, number of seeds per pod, 100 seed weight), seed yield per plant, harvest index and yield per unit area of chickpea were significantly (p < 0.05) affected by irrigation regime. Decreasing irrigation regime significantly (p < 0.05) decreased all measured parameters. Alternatively, increasing plant density significantly (p < 0.05) decreased the number of pods and seed yield per plant and increased seed yield per unit area. While number of seeds per pod and harvest index were not significantly (p > 0.05) affected by plant density. Interaction between irrigation regime and plant density was also significantly (p < 0.05) affected all measured parameters of yield, except for harvest index. It could be concluded that the best irrigation regime was full irrigation (after drainage of 50% available water at 70% field capacity) and the optimal plant density was 20 plants/m² under conditions of semi-arid regions.

Keywords: irrigation regime, Cicer arietinum, chickpea, plant density

Procedia PDF Downloads 201
2387 Synergistic Effects of Hydrogen Sulfide and Melatonin in Alleviating Vanadium Toxicity in Solanum lycopersicum L. Plants

Authors: Abazar Ghorbani, W. M. Wishwajith W. Kandegama, Seyed Mehdi Razavi, Moxian Chen

Abstract:

The roles of hydrogen sulfide (H₂S) and melatonin (MT) as gasotransmitters in plants are widely recognised. Nevertheless, the precise nature of their involvement in defensive reactions remains uncertain. This study investigates the impact of the ML-H2S interaction on tomato plants exposed to vanadium (V) toxicity, focusing on synthesising secondary metabolites and V metal sequestration. The treatments applied in this study included a control (T1), V stress (T2), MT+V (T3), MT+H2S+V (T4), MT+hypotaurine (HT)+V (T5), and MT+H2S+HT+V (T6). These treatments were administered: MT (150 µM) as a foliar spray pre-treatment (3X), HT treatment (0.1 mM, an H2S scavenger) as root immersion for 12 hours as pre-treatments, and H2S (NaHS, 0.2 mM) and V (40 mg/L) treatments added to the Hoagland solution for 2 weeks. Results demonstrate that ML and H2S+ML treatments alleviate V toxicity by promoting the transcription of key genes (ANS, F3H, CHS, DFR, PAL, and CHI) involved in phenolic and anthocyanin biosynthesis. Moreover, they decreased V uptake and accumulation and enhanced the transcription of genes involved in glutathione and phytochelatin synthesis (GSH1, PCS, and ABC1), leading to V sequestration in roots and protection against V-induced damage. Additionally, ML and H2S+ML treatments optimize chlorophyll metabolism, and increase internal H2S levels, thereby promoting tomato growth under V stress. The combined treatment of ML+H2S shows superior effects compared to ML alone, suggesting synergistic/interactive effects between these two substances. Furthermore, inhibition of the beneficial impact of ML+H2S and ML treatments by HT, an H2S scavenger, underscores the significant involvement of H₂S in the signaling pathway activated by ML during V toxicity. Overall, these findings suggest that ML requires the presence of endogenous H₂S to mitigate V-induced adverse effects on tomato seedlings.

Keywords: vanadium toxicity, secondary metabolites, vanadium sequestration, h2s-melatonin crosstalk

Procedia PDF Downloads 21
2386 Water Quality Assessment of Deep Wells in Western Misamis Oriental, Philippines

Authors: Girlie D. Leopoldo, Myrna S. Ceniza, Ronnie L. Besagas, Antonio Y. Asoy, Noel T. Dael, Romeo M. Del Rosario

Abstract:

The quality of groundwater from main deep well sources of seven (7) municipalities in Western Misamis Oriental, Philippines was examined. The study looks at the well waters’ physicochemical properties (temperture, pH, turbidity, conductivity, TDS, salinity, chlorides, TOC, and total hardness), the heavy metals and other metals (Pb, Cd, Al, As, Hg, Sb, Zn, Cu, Fe) and their microbiological (total coliform and E. coli) characteristics. The physicochemical properties of groundwater samples were found to be within the Philippine National Standards for Drinking Water (PNSDW)/US-EPA except for the TDS, chlorides, and hardness of some sources. Well waters from both Initao and Gitagum municipalities have TDS values of 643.2 mg/L and 578.4 mg/L, respectively, as compared to PNSDW/US-EPA standard limit of 500 mg/L. These same two municipalities Initao and Gitagum as well as the municipality of Libertad also have chloride levels beyond the 250 mg/L limit of PNSDW/US-EPA/EU with values at 360, 318 and 277 mg/L respectively. The Libertad sample also registered a total hardness of 407.5 mg/L CaCO3 as compared to the 300 mg/L PNSDW limit. These mentioned three (3) municipalities are noticed to have similar geologic structures. Although metal analyses revealed the presence of Zn, Cu and Fe in almost all well water sources, their concentrations are below allowable limit. All well waters from the seven municipalities failed in total coliform count. Escherichia coli were also found in well waters from four (4) municipalities including Laguindingan, Lugait, Gitagum, and Libertad. The presence of these pathogens in the well waters needs to be addressed to make the waters suitable for human consumption.

Keywords: groundwater, deep well, physico-chemical, heavy metal, microbiological

Procedia PDF Downloads 555
2385 Biophysical Modeling of Anisotropic Brain Tumor Growth

Authors: Mutaz Dwairy

Abstract:

Solid tumors have high interstitial fluid pressure (IFP), high mechanical stress, and low oxygen levels. Solid stresses may induce apoptosis, stimulate the invasiveness and metastasis of cancer cells, and lower their proliferation rate, while oxygen concentration may affect the response of cancer cells to treatment. Although tumors grow in a nonhomogeneous environment, many existing theoretical models assume homogeneous growth and tissue has uniform mechanical properties. For example, the brain consists of three primary materials: white matter, gray matter, and cerebrospinal fluid (CSF). Therefore, tissue inhomogeneity should be considered in the analysis. This study established a physical model based on convection-diffusion equations and continuum mechanics principles. The model considers the geometrical inhomogeneity of the brain by including the three different matters in the analysis: white matter, gray matter, and CSF. The model also considers fluid-solid interaction and explicitly describes the effect of mechanical factors, e.g., solid stresses and IFP, chemical factors, e.g., oxygen concentration, and biological factors, e.g., cancer cell concentration, on growing tumors. In this article, we applied the model on a brain tumor positioned within the white matter, considering the brain inhomogeneity to estimate solid stresses, IFP, the cancer cell concentration, oxygen concentration, and the deformation of the tissues within the neoplasm and the surrounding. Tumor size was estimated at different time points. This model might be clinically crucial for cancer detection and treatment planning by measuring mechanical stresses, IFP, and oxygen levels in the tissue.

Keywords: biomechanical model, interstitial fluid pressure, solid stress, tumor microenvironment

Procedia PDF Downloads 20
2384 Potential Growth of Tomato Plants in Induced Saline Soil with Rhizobacteria (PGPR)

Authors: Arfan Ali, Idrees Ahmad Nasir

Abstract:

The critical evaluation of tolerance in tomato plants against the induced saline soil were assessed by transcript analysis of genes coding for products potentially involved in stress tolerance. A reverse transcriptase PCR experiment was performed with Hsp90-1, MT2, and GR1like protein genes using RNA isolated from different tissues of tomato plants. Four strains of Bacillus magisterium were inoculated with 100 Mm & 200 Mm concentrations of salt. Eleven treatments each ten replica pots were installed in green house experiment and the parameters taken into account were morphological (length, weight, number of leaves, leaf surface area), chemical (anthocyanin, chlorophyll-a, chlorophyll-b, carotenoids) and biological (gene expression). Results bare a response i.e. highest response of MT2 like gene was at 24 hpi and the highest levels of GR1 like protein transcript accumulation were detected at 36 hpi. The chemical and morphological parameters at diverse salt concentrations bequeath superlative response amongst strains which candidly flank on Zm7 and Zm4. Therefore, Bacillus magisterium Zm7 strains and somehow Zm4 strain can be used in saline condition to make plants tolerant. The overall performance of strains Zm7, Zm6, and Zm4 was found better for all studied traits under salt stress conditions. Significant correlations among traits root length, shoot length, number of leaves, leaf surface area, carotenoids, anthocyanin, chlorophyll-a and chlorophyll-b were found and suggested that the salt tolerance in tomato may be improved through the use of PGPR strains.

Keywords: Bacillus magisterium, gene expression glutathione reductase, metallothionein, PGPR, Rhizobacteria, saline

Procedia PDF Downloads 414
2383 In Vitro Antioxidant and Free Radical Scavenging Activity of Phyllanthus Emblica L. Extract

Authors: Benyapa Suksuwan

Abstract:

Introduction: Oxidative stress is identified as the root cause of the development and progression of several diseases as the disproportion of free radicals in the body leads to tissue or cell damage. Polyphenols are the most common antioxidant found in plants and are efficient in capturing oxidative free radicals. Aim of the Study: This study focused on the antioxidant activity of polyphenols extracted from Phyllanthus Emblica L. as oxidative stress plays a vital role in developing and progressing many diseases, including cardiovascular diseases and cancer. Materials and Methods: The plant was extracted using a mixture solvent (ethyl alcohol: water in ratio 8:2). The total phenolic content of P. Emblica extract was determined using the Folin-Cioucalteu method and calculated as gallic acid equivalents (GAE) and various antioxidant assays DPPH and ABTS radical scavenging capacity assays. Results and Discussion: The findings exhibited a strong correlation between antioxidant activity and the total phenol contents. In addition, the IC₅₀ of P. Emblica extract via DPPH and ABTS assays were 68.10 μg/mL ± 0.455, and 49.24 μg/mL ± 0.716, respectively. Furthermore, P. Emblica extract showed antioxidant activities in a concentration-dependent manner. Vitamin C was used as a positive control in the DPPH assay, while Trolox was used as a positive control in the ABTS assay. Conclusions: In conclusion, P. Emblica extract consisted of a high amount of total phenolic content, which possesses potent antioxidant activity. However, further antioxidant activity assays using human cell lines such as SOD, ROS, and RNS scavenging assays and in vitro antioxidant experiments should be performed in order.

Keywords: antioxidant, ABTS scavenging, DPPH scavenging assay, total phenol contents assay, Phyllanthus Emblica L

Procedia PDF Downloads 180
2382 Protective Effects of Genistein against Cyclophosphamide-Induced Hepatotoxicity in Rats: Involvement of Anti-Inflammatory and Anti-Oxidant Activities

Authors: Dina F. Mansour, Dalia O. Saleh, Rasha E. Mostafa

Abstract:

Cyclophosphamide (CP), the most commonly used chemotherapeutic agent, was reported to cause many side effects including urotoxicity, cardiotoxicity, gonadotoxicity, and hepatotoxicity; this limits its clinical practice. In the present study, the protective effect of genistein (GEN), the major phytoestrogen in soy products that possesses various pharmacological activities, has been investigated against CP-induced acute liver damage in rats. Forty adult Sprague-Dawley rats were allocated into five groups. The first group received the vehicles and act as normal control. In the other groups, rats were injected with a single dose of CP (200 mg/kg, i.p). The last three groups were pretreated with subcutaneous GEN at doses of 0.5, 1 and 2 mg/kg/day, respectively, for 15 consecutive days prior CP injection. Forty-eight hours following CP injection, rats of all groups were investigated for the serum levels of alanine transaminase and aspartate transaminase, as well as the liver contents of reduced glutathione, malondialdehyde, nitrite, interleukin-1β, and myeloperoxidase. Histopathological examination of liver tissues was also conducted. CP resulted in acute liver damage in rats as evidenced by alteration of liver function biomarkers, oxidative stress, and inflammatory markers; that was confirmed by the histopathological outcomes. Pretreatment of rats with GEN significantly protected against CP-induced deterioration of liver function and showed marked anti-oxidant and anti-inflammatory properties that were demonstrated by the biochemical and histopathological findings. In conclusion, the present findings demonstrated the protective effects of GEN against CP-induced liver damage and suggested role of its antioxidant and anti-inflammatory activities.

Keywords: cyclophosphamide, genistein, inflammation, interleukin-1β, liver, myeloperoxidase, oxidative stress

Procedia PDF Downloads 284
2381 EDTA Enhanced Plant Growth, Antioxidant Defense System, and Phytoextraction of Copper by Brassica napus L.

Authors: Ume Habiba, Shafaqat Ali, Mujahid Farid, Muhammad Bilal Shakoor

Abstract:

Copper (Cu) is an essential micronutrient for normal plant growth and development, but in excess, it is also toxic to plants. The present study investigated the influence of ethylenediaminetetraacetic acid (EDTA) in enhancing Cu uptake and tolerance as well as the morphological and physiological responses of Brassica napus L. seedlings under Cu stress. Four-week-old seedlings were transferred to hydroponics containing Hoagland’s nutrient solution. After 2 weeks of transplanting, three levels (0, 50, and 100 μM) of Cu were applied with or without application of 2.5 mM EDTA and plants were further grown for 8 weeks in culture media. Results showed that Cu alone significantly decreased plant growth, biomass, photosynthetic pigments, and gas exchange characteristics. Cu stress also reduced the activities of antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) along with protein contents. Cu toxicity increased the concentration of reactive oxygen species (ROS) as indicated by the increased production of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in both leaves and roots. The application of EDTA significantly alleviated Cu-induced toxic effects in B. napus, showing remarkable improvement in all these parameters. EDTA amendment increased the activity of antioxidant enzymes by decreasing the concentrations of MDA and H2O2 both in leaves and roots of B. napus. Although, EDTA amendment with Cu significantly increased Cu uptake in roots, stems, and leaves in decreasing order of concentration but increased the growth, photosynthetic parameters, and antioxidant enzymes. These results showed that the application of EDTA can be a useful strategy for phytoextraction of Cu by B. napus from contaminated soils.

Keywords: antioxidants, biomass, copper, EDTA, phytoextraction, tolerance

Procedia PDF Downloads 388
2380 Evaluation of Agricultural Drought Impact in the Crop Productivity of East Gojjam Zone

Authors: Walelgn Dilnesa Cherie, Fasikaw Atanaw Zimale, Bekalu W. Asres

Abstract:

The most catastrophic condition for agricultural production is a drought event, which is also one of the most hydro-metrological-related hazards. According to the combined susceptibility of plants to meteorological and hydrological conditions, agricultural drought is defined as the magnitude, severity, and duration of a drought that affects crop production. The accurate and timely assessment of agricultural drought can lead to the development of risk management strategies, appropriate proactive mechanisms for the protection of farmers, and the improvement of food security. The evaluation of agricultural drought in the East Gojjam zone was the primary subject of this study. To identify the agricultural drought, soil moisture anomalies, soil moisture deficit indices, and Normalized Difference Vegetation Indices (NDVI) are used. The measured welting point, field capacity, and soil moisture were utilized to validate the soil water deficit indices computed from the satellite data. The soil moisture and soil water deficit indices in 2013 in all woredas were minimum; this makes vegetation stress also in all woredas. The soil moisture content decreased in 2013/2014/2019, and 2021 in Dejen, 2014, and 2019 in Awobel Woreda. The max/ min values of NDVI in 2013 are minimum; it dominantly shows vegetation stress and an observed agricultural drought that happened in all woredas. The validation process of satellite and in-situ soil moisture and soil water deficit indices shows a good agreement with a value of R²=0.87 and 0.56, respectively. The study area becomes drought detected region, so government officials, policymakers, and environmentalists pay attention to the protection of drought effects.

Keywords: NDVI, agricultural drought, SWDI, soil moisture

Procedia PDF Downloads 57
2379 Bayesian Inference of Physicochemical Quality Elements of Tropical Lagoon Nokoué (Benin)

Authors: Hounyèmè Romuald, Maxime Logez, Mama Daouda, Argillier Christine

Abstract:

In view of the very strong degradation of aquatic ecosystems, it is urgent to set up monitoring systems that are best able to report on the effects of the stresses they undergo. This is particularly true in developing countries, where specific and relevant quality standards and funding for monitoring programs are lacking. The objective of this study was to make a relevant and objective choice of physicochemical parameters informative of the main stressors occurring on African lakes and to identify their alteration thresholds. Based on statistical analyses of the relationship between several driving forces and the physicochemical parameters of the Nokoué lagoon, relevant Physico-chemical parameters were selected for its monitoring. An innovative method based on Bayesian statistical modeling was used. Eleven Physico-chemical parameters were selected for their response to at least one stressor and their threshold quality standards were also established: Total Phosphorus (<4.5mg/L), Orthophosphates (<0.2mg/L), Nitrates (<0.5 mg/L), TKN (<1.85 mg/L), Dry Organic Matter (<5 mg/L), Dissolved Oxygen (>4 mg/L), BOD (<11.6 mg/L), Salinity (7.6 .), Water Temperature (<28.7 °C), pH (>6.2), and Transparency (>0.9 m). According to the System for the Evaluation of Coastal Water Quality, these thresholds correspond to” good to medium” suitability classes, except for total phosphorus. One of the original features of this study is the use of the bounds of the credibility interval of the fixed-effect coefficients as local weathering standards for the characterization of the Physico-chemical status of this anthropized African ecosystem.

Keywords: driving forces, alteration thresholds, acadjas, monitoring, modeling, human activities

Procedia PDF Downloads 70
2378 Flexural Behavior of Geocell Reinforced Subgrade with Demolition Waste as Infill Material

Authors: Mahima D, Sini T

Abstract:

The use of geocell in subgrade has been previously studied by various researchers in the past. It was observed that the infill material used could affect the performance of the geocell reinforced subgrade. So, the use of waste materials as infill in geocell reinforced subgrade may prove to be more effective, economical, and environment-friendly. The performance of demolition waste as an infill was studied using flexure testing, and we compared the results with that of the other infill materials; soil and sand. Flexural behaviour is very important to the geosynthetic application in pavements as it acts as a the geocell reinforcement acts as flexible layer embedded in pavements and leads to an improvement in stress distribution and reduction in stress on the soil subgrade. The flexural behaviour was determined using four-point bending tests and results were expressed in terms of modulus improvement factor (MIF) and load-deflection behaviour. The geocell reinforced subgrade with different infill materials was tested for flexural behaviour in a polywood-polywood three-layered beam model. The deflections of the three-layered model beam were measured for the corresponding load increments. Elastic modulus of the soil-geocell composite was calculated using closed-form solutions. Geocells were prepared from geonets with three different aspect ratios 0.45, 0.67, and 1. The demolition waste infilled geocell mattress with aspect ratio 0.67 showed improved flexural behavior with MIF of 2.67 followed by soil and sand. Owing to its improved flexural resistance as seen from the MIF and load-deflection behivour, crushed demolition waste can be effectively used as infill material for geocell reinforced subgrade, thereby reducing the difficulties in the management of demolition waste and improving the load distribution of weaker subgrade.

Keywords: demolition waste, flexural behavior, geocell, modulus improvement factor

Procedia PDF Downloads 116
2377 An Elasto-Viscoplastic Constitutive Model for Unsaturated Soils: Numerical Implementation and Validation

Authors: Maria Lazari, Lorenzo Sanavia

Abstract:

Mechanics of unsaturated soils has been an active field of research in the last decades. Efficient constitutive models that take into account the partial saturation of soil are necessary to solve a number of engineering problems e.g. instability of slopes and cuts due to heavy rainfalls. A large number of constitutive models can now be found in the literature that considers fundamental issues associated with the unsaturated soil behaviour, like the volume change and shear strength behaviour with suction or saturation changes. Partially saturated soils may either expand or collapse upon wetting depending on the stress level, and it is also possible that a soil might experience a reversal in the volumetric behaviour during wetting. Shear strength of soils also changes dramatically with changes in the degree of saturation, and a related engineering problem is slope failures caused by rainfall. There are several states of the art reviews over the last years for studying the topic, usually providing a thorough discussion of the stress state, the advantages, and disadvantages of specific constitutive models as well as the latest developments in the area of unsaturated soil modelling. However, only a few studies focused on the coupling between partial saturation states and time effects on the behaviour of geomaterials. Rate dependency is experimentally observed in the mechanical response of granular materials, and a viscoplastic constitutive model is capable of reproducing creep and relaxation processes. Therefore, in this work an elasto-viscoplastic constitutive model for unsaturated soils is proposed and validated on the basis of experimental data. The model constitutes an extension of an existing elastoplastic strain-hardening constitutive model capable of capturing the behaviour of variably saturated soils, based on energy conjugated stress variables in the framework of superposed continua. The purpose was to develop a model able to deal with possible mechanical instabilities within a consistent energy framework. The model shares the same conceptual structure of the elastoplastic laws proposed to deal with bonded geomaterials subject to weathering or diagenesis and is capable of modelling several kinds of instabilities induced by the loss of hydraulic bonding contributions. The novelty of the proposed formulation is enhanced with the incorporation of density dependent stiffness and hardening coefficients in order to allow the modeling of the pycnotropy behaviour of granular materials with a single set of material constants. The model has been implemented in the commercial FE platform PLAXIS, widely used in Europe for advanced geotechnical design. The algorithmic strategies adopted for the stress-point algorithm had to be revised to take into account the different approach adopted by PLAXIS developers in the solution of the discrete non-linear equilibrium equations. An extensive comparison between models with a series of experimental data reported by different authors is presented to validate the model and illustrate the capability of the newly developed model. After the validation, the effectiveness of the viscoplastic model is displayed by numerical simulations of a partially saturated slope failure of the laboratory scale and the effect of viscosity and degree of saturation on slope’s stability is discussed.

Keywords: PLAXIS software, slope, unsaturated soils, Viscoplasticity

Procedia PDF Downloads 204
2376 Numerical investigation of Hydrodynamic and Parietal Heat Transfer to Bingham Fluid Agitated in a Vessel by Helical Ribbon Impeller

Authors: Mounir Baccar, Amel Gammoudi, Abdelhak Ayadi

Abstract:

The efficient mixing of highly viscous fluids is required for many industries such as food, polymers or paints production. The homogeneity is a challenging operation for this fluids type since they operate at low Reynolds number to reduce the required power of the used impellers. Particularly, close-clearance impellers, mainly helical ribbons, are chosen for highly viscous fluids agitated in laminar regime which is currently heated through vessel wall. Indeed, they are characterized by high shear strains closer to the vessel wall, which causes a disturbing thermal boundary layer and ensures the homogenization of the bulk volume by axial and radial vortices. The hydrodynamic and thermal behaviors of Newtonian fluids in vessels agitated by helical ribbon impellers, has been mostly studied by many researchers. However, rarely researchers investigated numerically the agitation of yield stress fluid by means of helical ribbon impellers. This paper aims to study the effect of the Double Helical Ribbon (DHR) stirrers on both the hydrodynamic and the thermal behaviors of yield stress fluids treated in a cylindrical vessel by means of numerical simulation approach. For this purpose, continuity, momentum, and thermal equations were solved by means of 3D finite volume technique. The effect of Oldroyd (Od) and Reynolds (Re) numbers on the power (Po) and Nusselt (Nu) numbers for the mentioned stirrer type have been studied. Also, the velocity and thermal fields, the dissipation function and the apparent viscosity have been presented in different (r-z) and (r-θ) planes.

Keywords: Bingham fluid, Hydrodynamic and thermal behavior, helical ribbon, mixing, numerical modelling

Procedia PDF Downloads 280
2375 Modelling Interactions between Saturated and Unsaturated Zones by Hydrus 1D, Plain of Kairouan, Central Tunisia

Authors: Mariem Saadi, Sabri Kanzari, Adel Zghibi

Abstract:

In semi-arid areas like the Kairouan region, the constant irrigation with saline water and the overuse of groundwater resources, soils and aquifers salinization has become an increasing concern. In this study, a methodology has been developed to evaluate the groundwater contamination risk based on the unsaturated zone hydraulic properties. Two soil profiles with different ranges of salinity, one located in the north of the plain and another one in the south of plain (each 30 m deep) and both characterized by direct recharge of the aquifer were chosen. Simulations were conducted with Hydrus-1D code using measured precipitation data for the period 1998-2003 and calculated evapotranspiration for both chosen profiles. Four combinations of initial conditions of water content and salt concentration were used for the simulation process in order to find the best match between simulated and measured values. The success of the calibration of Hydrus-1D allowed the investigation of some scenarios in order to assess the contamination risk under different natural conditions. The aquifer risk contamination is related to the natural conditions where it increased while facing climate change and temperature increase and decreased in the presence of a clay layer in the unsaturated zone. Hydrus-1D was a useful tool to predict the groundwater level and quality in the case of a direct recharge and in the absence of any information related to the soil layers except for the texture.

Keywords: Hydrus-1D, Kairouan, salinization, semi-arid region, solute transport, unsaturated zone

Procedia PDF Downloads 158
2374 The Study of Seed Coating Effects on Germination Speed of Astragalus Adscendens under Different Moisture Conditions and Planting Depth in the Boroujerd Region

Authors: Hamidreza Mehrabi, Mandana Rezayee

Abstract:

The coated seed process is from amplifier ways that stick various materials on the outer surface of the seeds that minimize the negative environmental effects and increase the ability of Plant establishment. This study was done to assess the effects of coated seed on the germination speed of Astragalus adscendens in different conditions of drought stress and planting depth as it was conducted with a completely randomized factorial design with four replications. treatments of covering material was used in Four non coating levels (NC), mineral-based coating (CC), organic - based coating (OC) hydro gel-based coating (HC) ; treatment of moisture percent used in three levels of dried soil content, treatments of planting depth in two surfaces of planting and three times of the seed diameter was 9%, 14% and 21 % respectively. During the test, it was evaluated the germination speed attribute. The main results showed that moisture treatments and planting depth at a surface of 1% (P <0/01) was significant and has no significant effect of treatment materials. Also, In examining of the interaction between type of covering material and soil moisture were not observed significant differences for germination speed between covering treatments and controls covering, but there was a significant difference between treatments in 9% and 21%. Although in examining the triple interaction, increasing moisture and planting depth enhanced the speed of germination process, but it was not significant statistically, while it has made important differences in terms of description; because it had not growth in the moisture level of 9% and shallow cultivation (high stress). However, treatment of covered materials growth has developed significantly, so it can be useful in enhancing plant performance.

Keywords: seed coating, soil moisture, sowing depth, germination percentage

Procedia PDF Downloads 247
2373 Stressors Faced by Border Security Officers: The Singapore Experience

Authors: Jansen Ang, Andrew Neo, Dawn Chia

Abstract:

Border Security is unlike mainstream policing in that officers are essentially in static deployment, working round the clock every day and every hour of the year looking for illegitimate entry of persons and goods. In Singapore, Border Security officers perform multiple functions to ensure the nation’s safety and security. They are responsible for safeguarding the borders of Singapore to prevent threats from entering the country. Being the first line of defence in ensuring the nation’s border security officers are entrusted with the responsibility of screening travellers inbound and outbound of Singapore daily. They examined 99 million arrivals and departures at the various checkpoints in 2014, which is a considerable volume compared to most immigration agencies. The officers’ work scopes also include cargo clearance, protective and security functions of checkpoints. The officers work in very demanding environment which can range from the smog at the land checkpoints to the harshness of the ports at the sea checkpoints. In addition, all immigration checkpoints are located at the boundaries, posing commuting challenges for officers. At the land checkpoints, festive seasons and school breaks are peak periods as given the surge of inbound and outbound travellers at the various checkpoints. Such work provides unique challenges in comparison to other law enforcement duties. This paper assesses the current stressors faced by officers of a border security agency through the conduct of ground observations as well as a perceived stress survey as well as recommendations in combating stressors faced by border security officers. The findings from the field observations and surveys indicate organisational and operational stressors that are unique to border security and recommends interventions in managing these stressors. Understanding these stressors would better inform border security agencies on the interventions needed to enhance the resilience of border security officers.

Keywords: border security, Singapore, stress, operations

Procedia PDF Downloads 304
2372 Molecular Dynamic Simulation of Cold Spray Process

Authors: Aneesh Joshi, Sagil James

Abstract:

Cold Spray (CS) process is deposition of solid particles over a substrate above a certain critical impact velocity. Unlike thermal spray processes, CS process does not melt the particles thus retaining their original physical and chemical properties. These characteristics make CS process ideal for various engineering applications involving metals, polymers, ceramics and composites. The bonding mechanism involved in CS process is extremely complex considering the dynamic nature of the process. Though CS process offers great promise for several engineering applications, the realization of its full potential is limited by the lack of understanding of the complex mechanisms involved in this process and the effect of critical process parameters on the deposition efficiency. The goal of this research is to understand the complex nanoscale mechanisms involved in CS process. The study uses Molecular Dynamics (MD) simulation technique to understand the material deposition phenomenon during the CS process. Impact of a single crystalline copper nanoparticle on copper substrate is modelled under varying process conditions. The quantitative results of the impacts at different velocities, impact angle and size of the particles are evaluated using flattening ratio, von Mises stress distribution and local shear strain. The study finds that the flattening ratio and hence the quality of deposition was highest for an impact velocity of 700 m/s, particle size of 20 Å and an impact angle of 90°. The stress and strain analysis revealed regions of shear instabilities in the periphery of impact and also revealed plastic deformation of the particles after the impact. The results of this study can be used to augment our existing knowledge in the field of CS processes.

Keywords: cold spray process, molecular dynamics simulation, nanoparticles, particle impact

Procedia PDF Downloads 345
2371 Supervisory Emotional Display Affects Employee’s Well-Being

Authors: Huan Zhang, Darius K. S Chan

Abstract:

Despite a large number of studies linking emotional labor and its detrimental impact for laborer, research on how emotional labor would influence the receiver is still in its infancy. Especially under the call for “people management”, supervisors inside the organization are more inclined to display happy mood to support their employees, thus endorsing emotional labor. The present study focuses on the employees in the service industry as emotional labor recipients and investigates how they respond to their supervisors’ emotional display, given their sensitivity to emotional cues. Targeted at a sample of 250 survey data from a wide range of customer service professions, this ongoing study examines how perceived supervisory emotional labor would moderate the relationship between employees surface acting and their well-being. Our major hypotheses are that employees’ surface acting predicts well-being level, and that perceived supervisory emotional labor to moderate the surface acting—outcome links. Preliminary findings have provided some support to the hypothesized model. Specifically, supervisors who are perceived to be high in surface acting are also regarded as fake and pseudo, hence the enhancing the detrimental effect of employees’ surface acting is attenuated, resulting in lower job satisfaction, higher physical stress and burnout; whereas perceived high supervisor’s deep acting, as associated with genuine and authenticity, buffers the negative impact and leads to higher job satisfaction, lower physical stress and burnout. This study first confirms the negative impacts of the surface acting on well-being for service industry employees as laborer and then extends the emotional labor studies by considering them as recipients of supervisory emotional labor. The findings provide insights for leaders by pointing out the importance of authentic emotional expression in workplace.

Keywords: perceived supervisory emotional labor, surface acting, well-being

Procedia PDF Downloads 379
2370 Cerebrum Maturity Damage Induced by Fluoride in Suckling Mice

Authors: Hanen Bouaziz, Françoise Croute, Najiba Zeghal

Abstract:

In order to investigate the toxic effects of fluoride on cerebrum maturity of suckling mice, we treated adult female mice of Swiss Albinos strain by 500 ppm NaF in their drinking water from the 15th day of pregnancy until the day 14 after delivery. All mice were sacrificed on day 14 after parturition. During treatment, levels of thiobarbituric acid reactive substances, the marker of lipid peroxidation extend, increased, while the activities of the antioxidant enzymes such as glutathione peroxidase, superoxide dismutase and catalase and the level of glutathione decreased significantly in cerebellum compared with those of the control group. These results suggested that fluoride enhanced oxidative stress, thereby disturbing the antioxidant defense of nursing pups. In addition, acetylcholinesterase activity in cerebellum was inhibited after treatment with fluoride. In cerebellum of mice, migration of neurons from the external granular layer to the internal granular layer occurred postnatally. Key guidance signals to these migrating neurons were provided by laminin, an extracellular matrix protein fixed to the surface of astrocytes. In the present study, we examined the expression and distribution of laminin in cerebellum of 14-day-old mice. Immunoreactive laminin was disappeared by postnatal day 14 in cerebellum parenchyma of control pups and was restricted to vasculature despite the continued presence of granular cells in the external granular layer. In contrast, in cerebellum of NaF treated pups, laminin was deposited in organised punctuate clusters in the molecular layer. These data indicated that the disruption of laminin distribution might play a major role in the profound derangement of neuronal migration observed in cerebellum of NaF treated pups.

Keywords: acetylcholinesterase activity, cerebellum, laminin, oxidative stress, suckling mice

Procedia PDF Downloads 374
2369 Degradation of Heating, Ventilation, and Air Conditioning Components across Locations

Authors: Timothy E. Frank, Josh R. Aldred, Sophie B. Boulware, Michelle K. Cabonce, Justin H. White

Abstract:

Materials degrade at different rates in different environments depending on factors such as temperature, aridity, salinity, and solar radiation. Therefore, predicting asset longevity depends, in part, on the environmental conditions to which the asset is exposed. Heating, ventilation, and air conditioning (HVAC) systems are critical to building operations yet are responsible for a significant proportion of their energy consumption. HVAC energy use increases substantially with slight operational inefficiencies. Understanding the environmental influences on HVAC degradation in detail will inform maintenance schedules and capital investment, reduce energy use, and increase lifecycle management efficiency. HVAC inspection records spanning 14 years from 21 locations across the United States were compiled and associated with the climate conditions to which they were exposed. Three environmental features were explored in this study: average high temperature, average low temperature, and annual precipitation, as well as four non-environmental features. Initial insights showed no correlations between individual features and the rate of HVAC component degradation. Using neighborhood component analysis, however, the most critical features related to degradation were identified. Two models were considered, and results varied between them. However, longitude and latitude emerged as potentially the best predictors of average HVAC component degradation. Further research is needed to evaluate additional environmental features, increase the resolution of the environmental data, and develop more robust models to achieve more conclusive results.

Keywords: climate, degradation, HVAC, neighborhood component analysis

Procedia PDF Downloads 404
2368 Polyhydroxybutyrate Production in Bacteria Isolated from Estuaries along the Eastern Coast of India

Authors: Shubhashree Mahalik, Dhanesh Kumar, Jatin Kumar Pradhan

Abstract:

Odisha is one of the coastal states situated on the eastern part of India with 480 km long coastline. The coastal Odisha is referred to as "Gift of Six Rivers". Balasore, a major coastal district of Odisha is bounded by Bay of Bengal in the East having 26 km long seashore. It is lined with several estuaries rich in biodiversity.Several studies have been carried out on the macro flora and fauna of this area but very few documented information are available regarding microbial biodiversity. In the present study, an attempt has been made to isolate and identify bacteria found along the estuaries of Balasore.Many marine microorganisms are sources of natural products which makes them potential industrial organisms. So the ability of the isolated bacteria to secrete one such industrially significant product, PHB (Polyhydroxybutyrate) has been elucidated. Several rounds of sampling, pure culture, morphological, biochemical and phylogenetic screening led to the identification of two PHB producing strains. Isolate 5 was identified to be Brevibacillus sp. and has maximum similarity to Brevibacillus parabrevis (KX83268). The isolate was named as Brevibacillus sp.KEI-5. Isolate 8 was identified asLysinibacillus sp. having closest similarity withLysinibacillus boroni-tolerance (KP314269) and named as Lysinibacillus sp. KEI-8.Media, temperature, carbon, nitrogen and salinity requirement were optimized for both isolates. Submerged fermentation of both isolates in Terrific Broth media supplemented with optimized carbon and nitrogen source at 37°C led to significant accumulation of PHB as detected by colorimetric method.

Keywords: Bacillus, estuary, marine, Odisha, polyhydroxy butyrate

Procedia PDF Downloads 331
2367 Associations and Interactions of Delivery Mode and Antibiotic Exposure with Infant Cortisol Level: A Correlational Study

Authors: Samarpreet Singh, Gerald Giesbrecht

Abstract:

Both c-section and antibiotic exposure are linked to gut microbiota imbalance in infants. Such disturbance is associated with the Hypothalamic-Pituitary-Adrenal (HPA) axis function. However, the literature only has contradicting evidence for the association between c-sections and the HPA axis. Therefore, this study aims to test if the mode of delivery and antibiotics exposure is associated with the HPA axis. Also, whether exposure to both interacts with the HPA-axis. It was hypothesized that associations and interactions would be observed. Secondary data analysis was used for this co-relational study. Data for the mode of delivery and antibiotics exposure variables were documented from hospital records or self-questionnaires. In addition, cortisol levels (Area under the curve with respect to increasing (AUCi) and Area under the curve with respect to ground (AUCg)) were based on saliva collected from three months old during the infant’s visit to the lab and after drawing blood. One-way and between-subject ANOVA analyses were run on data. No significant association between delivery mode and infant cortisol level was found, AUCi and AUCg, p > .05. Only the infant’s AUCg was found to be significantly higher if there were antibiotics exposure at delivery (p = .001) or their mothers were exposed during pregnancy (p < .05). Infants born by c-section and exposed to antibiotics at three months had higher AUCi than those born vaginally, p < .02. These results imply that antibiotic exposure before three months is associated with an infant’s stress response. The association might increase if antibiotic exposure occurs three months after a c-section birth. However, more robust and causal evidence in future studies is needed, given a variable group’s statistically weak sample size. Nevertheless, the results of this study still highlight the unintended consequences of antibiotic exposure during delivery and pregnancy.

Keywords: HPA-axis, antibiotics, c-section, gut-microbiota, development, stress

Procedia PDF Downloads 48
2366 Simulated Mechanical Analysis on Hydroxyapatite Coated Porous Polylactic Acid Scaffold for Bone Grafting

Authors: Ala Abobakr Abdulhafidh Al-Dubai

Abstract:

Bone loss has risen due to fractures, surgeries, and traumatic injuries. Scientists and engineers have worked over the years to find solutions to heal and accelerate bone regeneration. The bone grafting technique has been utilized, which projects significant improvement in the bone regeneration area. An extensive study is essential on the relation between the mechanical properties of bone scaffolds and the pore size of the scaffolds, as well as the relation between the mechanical properties of bone scaffolds with the development of bioactive coating on the scaffolds. In reducing the cost and time, a mechanical simulation analysis is beneficial to simulate both relations. Therefore, this study highlights the simulated mechanical analyses on three-dimensional (3D) polylactic acid (PLA) scaffolds at two different pore sizes (P: 400 and 600 μm) and two different internals distances of (D: 600 and 900 μm), with and without the presence of hydroxyapatite (HA) coating. The 3D scaffold models were designed using SOLIDWORKS software. The respective material properties were assigned with the fixation of boundary conditions on the meshed 3D models. Two different loads were applied on the PLA scaffolds, including side loads of 200 N and vertical loads of 2 kN. While only vertical loads of 2 kN were applied on the HA coated PLA scaffolds. The PLA scaffold P600D900, which has the largest pore size and maximum internal distance, generated the minimum stress under the applied vertical load. However, that same scaffold became weaker under the applied side load due to the high construction gap between the pores. The development of HA coating on top of the PLA scaffolds induced greater stress generation compared to the non-coated scaffolds which is tailorable for bone implantation. This study concludes that the pore size and the construction of HA coating on bone scaffolds affect the mechanical strength of the bone scaffolds.

Keywords: hydroxyapatite coating, bone scaffold, mechanical simulation, three-dimensional (3D), polylactic acid (PLA).

Procedia PDF Downloads 33
2365 Observations on the Eastern Red Sea Elasmobranchs: Data on Their Distribution and Ecology

Authors: Frappi Sofia, Nicolas Pilcher, Sander DenHaring, Royale Hardenstine, Luis Silva, Collin Williams, Mattie Rodrigue, Vincent Pieriborne, Mohammed Qurban, Carlos M. Duarte

Abstract:

Nowadays, elasmobranch populations are disappearing at a dangerous rate, mainly due to overexploitation, extensive fisheries, as well as climate change. The decline of these species can trigger a cascade effect, which may eventually lead to detrimental impacts on local ecosystems. The Elasmobranch in the Red Sea is facing one of the highest risks of extinction, mainly due to unregulated fisheries activities. Thus, it is of paramount importance to assess their current distribution and unveil their environmental preferences in order to improve conservation measures. Important data have been collected throughout the whole red Sea during the Red Sea Decade Expedition (RSDE) to achieve this goal. Elasmobranch sightings were gathered through the use of submarines, remotely operated underwater vehicles (ROV), scuba diving operations, and helicopter surveys. Over a period of 5 months, we collected 891 sightings, 52 with submarines, 138 with the ROV, 67 with the scuba diving teams, and 634 from helicopters. In total, we observed 657 and 234 individuals from the superorder Batoidea and Selachimorpha, respectively. The most common shark encountered was Iago omanensis, a deep-water shark of the order Carcharhiniformes. To each sighting, data on temperature, salinity density, and dissolved oxygen were integrated to reveal favorable conditions for each species. Additionally, an extensive literature review on elasmobranch research in the Eastern Red Sea has been carried out in order to obtain more data on local populations and to be able to highlight patterns of their distribution.

Keywords: distribution, elasmobranchs, habitat, rays, red sea, sharks

Procedia PDF Downloads 58
2364 Benefits of Environmental Aids to Chronobiology Management and Its Impact on Depressive Mood in an Operational Setting

Authors: M. Trousselard, D. Steiler, C. Drogou, P. van-Beers, G. Lamour, S. N. Crosnier, O. Bouilland, P. Dubost, M. Chennaoui, D. Léger

Abstract:

According to published data, undersea navigation for long periods (nuclear-powered ballistic missile submarine, SSBN) constitutes an extreme environment in which crews are subjected to multiple stresses, including the absence of natural light, illuminance below 1,000 lux, and watch schedules that do not respect natural chronobiological rhythms, for a period of 60-80 days. These stresses seem clearly detrimental to the submariners’ sleep, with consequences for their affective (seasonal affective disorder-like) and cognitive functioning. In the long term, there are abundant publications regarding the consequences of sleep disruption for the occurrence of organic cardiovascular, metabolic, immunological or malignant diseases. It seems essential to propose countermeasures for the duration of the patrol in order to reduce the negative physiological effects on the sleep and mood of submariners. Light therapy, the preferred treatment for dysfunctions of the internal biological clock and the resulting seasonal depression, cannot be used without data to assist knowledge of submariners’ chronobiology (melatonin secretion curve) during patrols, given the unusual characteristics of their working environment. These data are not available in the literature. The aim of this project was to assess, in the course of two studies, the benefits of two environmental techniques for managing chronobiological stress: techniques for optimizing potential (TOP; study 1)3, an existing programme to help in the psychophysiological regulation of stress and sleep in the armed forces, and dawn and dusk simulators (DDS, study 2). For each experiment, psychological, physiological (sleep) or biological (melatonin secretion) data were collected on D20 and D50 of patrol. In the first experiment, we studied sleep and depressive distress in 19 submariners in an operational setting on board an SSBM during a first patrol, and assessed the impact of TOP on the quality of sleep and depressive distress in these same submariners over the course of a second patrol. The submariners were trained in TOP between the two patrols for a 2-month period, at a rate of 1 h of training per week, and assigned daily informal exercises. Results show moderate disruptions in sleep pattern and duration associated with the intensity of depressive distress. The use of TOP during the following patrol improved sleep and depressive mood only in submariners who regularly practiced the techniques. In light of these limited benefits, we assessed, in a second experiment, the benefits of DDS on chronobiology (daily secretion of melatonin) and depressive distress. Ninety submariners were randomly allocated to two groups, group 1 using DDS daily, and group 2 constituting the control group. Although the placebo effect was not controlled, results showed a beneficial effect on chronobiology and depressive mood for submariners with a morning chronotype. Conclusions: These findings demonstrate the difficulty of practicing the tools of psychophysiological management in real life. They raise the question of the subjects’ autonomy with respect to using aids that involve regular practice. It seems important to study autonomy in future studies, as a cognitive resource resulting from the interaction between internal positive resources and “coping” resources, to gain a better understanding of compliance problems.

Keywords: chronobiology, light therapy, seasonal affective disorder, sleep, stress, stress management, submarine

Procedia PDF Downloads 432
2363 Effects of Roughness on Forward Facing Step in an Open Channel

Authors: S. M. Rifat, André L. Marchildon, Mark F. Tachie

Abstract:

Experiments were performed to investigate the effects of roughness on the reattachment and redevelopment regions over a 12 mm forward facing step (FFS) in an open channel flow. The experiments were performed over an upstream smooth wall and a smooth FFS, an upstream wall coated with sandpaper 36 grit and a smooth FFS and an upstream rough wall produced from sandpaper 36 grit and a FFS coated with sandpaper 36 grit. To investigate only the wall roughness effects, Reynolds number, Froude number, aspect ratio and blockage ratio were kept constant. Upstream profiles showed reduced streamwise mean velocities close to the rough wall compared to the smooth wall, but the turbulence level was increased by upstream wall roughness. The reattachment length for the smooth-smooth wall experiment was 1.78h; however, when it is replaced with rough-smooth wall the reattachment length decreased to 1.53h. It was observed that the upstream roughness increased the physical size of contours of maximum turbulence level; however, the downstream roughness decreased both the size and magnitude of contours in the vicinity of the leading edge of the step. Quadrant analysis was performed to investigate the dominant Reynolds shear stress contribution in the recirculation region. The Reynolds shear stress and turbulent kinetic energy profiles after the reattachment showed slower recovery compared to the streamwise mean velocity, however all the profiles fairly collapse on their corresponding upstream profiles at x/h = 60. It was concluded that to obtain a complete collapse several more streamwise distances would be required.

Keywords: forward facing step, open channel, separated and reattached turbulent flows, wall roughness

Procedia PDF Downloads 370