Search results for: particle structuring at drop interfaces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2839

Search results for: particle structuring at drop interfaces

1159 Determination of Cohesive Zone Model’s Parameters Based On the Uniaxial Stress-Strain Curve

Authors: Y. J. Wang, C. Q. Ru

Abstract:

A key issue of cohesive zone models is how to determine the cohesive zone model (CZM) parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model: the maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is simulated by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.

Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral

Procedia PDF Downloads 514
1158 Removal of Gaseous Pollutant from the Flue Gas in a Submerged Self-Priming Venturi Scrubber

Authors: Manisha Bal, B. C. Meikap

Abstract:

Hydrogen chloride is the most common acid gas emitted by the industries. HCl gas is listed as Title III hazardous air pollutant. It causes severe threat to the human health as well as environment. So, removal of HCl from flue gases is very imperative. In the present study, submerged self-priming venturi scrubber is chosen to remove the HCl gas with water as a scrubbing liquid. Venturi scrubber is the most popular device for the removal of gaseous pollutants. Main mechanism behind the venturi scrubber is the polluted gas stream enters at converging section which accelerated to maximum velocity at throat section. A very interesting thing in case of submerged condition, venturi scrubber is submerged inside the liquid tank and liquid is entered at throat section because of suction created due to large pressure drop generated at the throat section. Maximized throat gas velocity atomizes the entered liquid into number of tiny droplets. Gaseous pollutant HCl is absorbed from gas to liquid droplets inside the venturi scrubber due to interaction between the gas and water. Experiments were conducted at different throat gas velocity, water level and inlet concentration of HCl to enhance the HCl removal efficiency. The effect of throat gas velocity, inlet concentration of HCl, and water level on removal efficiency of venturi scrubber has been evaluated. Present system yielded very high removal efficiency for the scrubbing of HCl gas which is more than 90%. It is also concluded that the removal efficiency of HCl increases with increasing throat gas velocity, inlet HCl concentration, and water level height.

Keywords: air pollution, HCl scrubbing, mass transfer, self-priming venturi scrubber

Procedia PDF Downloads 143
1157 Ellagic Acid Enhanced Apoptotic Radiosensitivity via G1 Cell Cycle Arrest and γ-H2AX Foci Formation in HeLa Cells in vitro

Authors: V. R. Ahire, A. Kumar, B. N. Pandey, K. P. Mishra, G. R. Kulkarni

Abstract:

Radiation therapy is an effective vital strategy used globally in the treatment of cervical cancer. However, radiation efficacy principally depends on the radiosensitivity of the tumor, and not all patient exhibit significant response to irradiation. A radiosensitive tumor is easier to cure than a radioresistant tumor which later advances to local recurrence and metastasis. Herbal polyphenols are gaining attention for exhibiting radiosensitization through various signaling. Current work focuses to study the radiosensitization effect of ellagic acid (EA), on HeLa cells. EA intermediated radiosensitization of HeLa cells was due to the induction γ-H2AX foci formation, G1 phase cell cycle arrest, and loss of reproductive potential, growth inhibition, drop in the mitochondrial membrane potential and protein expression studies that eventually induced apoptosis. Irradiation of HeLa in presence of EA (10 μM) to doses of 2 and 4 Gy γ-radiation produced marked tumor cytotoxicity. EA also demonstrated radio-protective effect on normal cell, NIH3T3 and aided recovery from the radiation damage. Our results advocate EA to be an effective adjuvant for improving cancer radiotherapy as it displays striking tumor cytotoxicity and reduced normal cell damage instigated by irradiation.

Keywords: apoptotic radiosensitivity, ellagic acid, mitochondrial potential, cell-cycle arrest

Procedia PDF Downloads 357
1156 The Manufacturing of Metallurgical Grade Silicon from Diatomaceous Silica by an Induction Furnace

Authors: Shahrazed Medeghri, Saad Hamzaoui, Mokhtar Zerdali

Abstract:

The metallurgical grade silicon (MG-Si) is obtained from the reduction of silica (SiO2) in an induction furnace or an electric arc furnace. Impurities inherent in reduction process also depend on the quality of the raw material used. Among the applications of the silicon, it is used as a substrate for the photovoltaic conversion of solar energy and this conversion is wider as the purity of the substrate is important. Research is being done where the purpose is looking for new methods of manufacturing and purification of silicon, as well as new materials that can be used as substrates for the photovoltaic conversion of light energy. In this research, the technique of production of silicon in an induction furnace, using a high vacuum for fusion. Diatomaceous Silica (SiO2) used is 99 mass% initial purities, the carbon used is 6N of purity and the particle size of 63μm as starting materials. The final achieved purity of the material was above 50% by mass. These results demonstrate that this method is a technically reliable, and allows obtaining a better return on the amount 50% of silicon.

Keywords: induction furnaces, amorphous silica, carbon microstructure, silicon

Procedia PDF Downloads 406
1155 Transparent and Solution Processable Low Contact Resistance SWCNT/AZONP Bilayer Electrodes for Sol-Gel Metal Oxide Thin Film Transistor

Authors: Su Jeong Lee, Tae Il Lee, Jung Han Kim, Chul-Hong Kim, Gee Sung Chae, Jae-Min Myoung

Abstract:

The contact resistance between source/drain electrodes and semiconductor layer is an important parameter affecting electron transporting performance in the thin film transistor (TFT). In this work, we introduced a transparent and the solution prossable single-walled carbon nanotube (SWCNT)/Al-doped ZnO nano particle (AZO NP) bilayer electrodes showing low contact resistance with indium-oxide (In2O3) sol gel thin film. By inserting low work function AZO NPs into the interface between the SWCNTs and the In2O3 which has a high energy barrier, we could obtain an electrical Ohmic contact between them. Finally, with the SWCNT-AZO NP bilayer electrodes, we successfully fabricated a TFT showing a field effect mobility of 5.38 cm2/V∙s at 250 °C.

Keywords: single-walled carbon nanotube (SWCNT), Al-doped ZnO (AZO) nanoparticle, contact resistance, thin-film transistor (TFT)

Procedia PDF Downloads 533
1154 Evaluation of Postural Stability in Patients with Flat Feet: A Controlled Trial

Authors: Ghada Mohamed Rashad, Doaa Ayoub Elimy, Mohamed Hussein Elgendy, Ahmed Mohamed Fathi Elshiwi, Mahmoud Ghazy

Abstract:

Background: Flat feet cause changes in foot mobility, foot posture, and load distribution under the foot which influences dynamic balance, that is essential in activities of daily living and for optimal performance in sports activity. Purpose: To investigate the effect of flat feet on dynamic balance including overall stability index (OAI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI). Study Design: The design of the study was an experimental design. Subjects: Forty subjects from both sexes were selected from the Faculty of Physical Therapy, Cairo University, their mean age (23.55 ± 1.74 ) years, divided into two groups, group A (8 males and 12 females) with flat feet, and group B (9 males and 11 females) with normal feet. Methods: The Navicular Drop Test was used to determine if the feet were pronated and Biodex Balance System was used to assess dynamic balance at level 8 and level 4 for both groups. Results: There was no significant difference in dynamic balance including (OSI, APSI and MLSI) of the Biodex at stability level (8) (most stable) (p = 0.56). While there was a significant difference between both groups in all dependent variables at stability level (4) (less stable level) (p = 0.0001). Conclusion: It may be concluded that flat feet have an effect on dynamic balance and there is balance affection in subjects with flat feet.

Keywords: flat feet, dynamic balance, postural stability, types of flat feet, eversion strength

Procedia PDF Downloads 532
1153 Incorporating Ground Sand in Production of Self-Consolidating Concrete to Decrease High Paste Volume and Improve Passing Ability of Self-Consolidating Concrete

Authors: S. K. Ling, A. K. H. Kwan

Abstract:

The production of SCC (self-consolidating concrete) generally requires a fairy high paste volume, ranging from 35% to 40% of the total concrete volume. Such high paste volume would lead to low dimensional stability and high carbon footprint. Direct lowering the paste volume would deteriorate the performance of SCC, especially the passing ability. It is often observed that at narrow gap of congested reinforcements, the paste often flows in the front leaving the coarse aggregate particle behind to block the subsequent flow of concrete. Herein, it is suggested to increase the mortar volume through incorporating ground sand with a mean size of 0.3 mm while keeping the paste volume small. Trial concrete mixes with paste volumes of 30% and 34% and different ground sand contents have been tested to demonstrate how the paste volume can be lowered without sacrificing the passing ability. Overall, the results demonstrated that the addition of ground sand would enable the achievement of high passing ability at a relatively small paste volume.

Keywords: ground sand, mortar volume, paste volume, self-consolidating concrete

Procedia PDF Downloads 281
1152 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems

Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr

Abstract:

Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.

Keywords: gas lift instability, bubbles forming, bubbles collapsing, image processing

Procedia PDF Downloads 421
1151 Gear Wear Product Analysis as Applied for Tribological Maintenance Diagnostics

Authors: Surapol Raadnui

Abstract:

This paper describes an experimental investigation on a pair of gears in which wear and pitting were intentionally allowed to occur, namely, moisture corrosion pitting, acid-induced corrosion pitting, hard contaminant-related pitting and mechanical induced wear. A back-to-back spur gear test rig was used. The test samples of wear debris were collected and assessed through the utilization of an optical microscope in order to correlate and compare the debris morphology to pitting and wear degradation of the worn gears. In addition, weight loss from all test gear pairs was assessed with the utilization of the statistical design of the experiment. It can be deduced that wear debris characteristics exhibited a direct relationship with different pitting and wear modes. Thus, it should be possible to detect and diagnose gear pitting and wear utilization of worn surfaces, generated wear debris and quantitative measurement such as weight loss.

Keywords: tribology, spur gear wear, predictive maintenance, wear particle analysis

Procedia PDF Downloads 255
1150 Energy-efficient Buildings In Construction Industry Using Fly Ash-based Geopolymer Technology

Authors: Maryam Kiani

Abstract:

The aim of this study was to investigate the influence of nanoparticles additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of nanoparticles flexural strength, water absorption, and micro-structural properties of the cured samples. The results revealed that the inclusion of nanoparticles additive significantly enhanced the mechanical and electrical properties of the geopolymer binder. Micro-structural analysis using scanning electron microscopy (SEM) revealed a more compact and homogeneous structure in the geopolymer samples with nanoparticles. The dispersion of nanoparticles particles within the geopolymer matrix was observed, suggesting improved inter-particle bonding and increased density. Overall, this study demonstrates the positive impact of nanoparticles additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications for the development of construction and infrastructure for energy buildings.

Keywords: fly-ash, geopolymer, energy buildings, nanotechnology

Procedia PDF Downloads 95
1149 Parameter Selection and Monitoring for Water-Powered Percussive Drilling in Green-Fields Mineral Exploration

Authors: S. J. Addinell, T. Richard, B. Evans

Abstract:

The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising downhole water powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barron cover. This system has shown superior rates of penetration in water-rich hard rock formations at depths exceeding 500 meters. Several key challenges exist regarding the deployment and use of these bottom hole assemblies for mineral exploration, and this paper discusses some of the key technical challenges. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process is presented and shows a strong power law relationship for particle size distributions. Several percussive drilling parameters such as RPM, applied fluid pressure and weight on bit have been shown to influence the particle size distributions of the cuttings generated. This has direct influence on other drilling parameters such as flow loop performance, cuttings dewatering, and solids control. Real-time, accurate knowledge of percussive system operating parameters will assist the driller in maximising the efficiency of the drilling process. The applied fluid flow, fluid pressure, and rock properties are known to influence the natural oscillating frequency of the percussive hammer, but this paper also shows that drill bit design, drill bit wear and the applied weight on bit can also influence the oscillation frequency. Due to the changing drilling conditions and therefore changing operating parameters, real-time understanding of the natural operating frequency is paramount to achieving system optimisation. Several techniques to understand the oscillating frequency have been investigated and presented. With a conventional top drive drilling rig, spectral analysis of applied fluid pressure, hydraulic feed force pressure, hold back pressure and drill string vibrations have shown the presence of the operating frequency of the bottom hole tooling. Unfortunately, however, with the implementation of a coiled tubing drilling rig, implementing a positive displacement downhole motor to provide drill bit rotation, these signals are not available for interrogation at the surface and therefore another method must be considered. The investigation and analysis of ground vibrations using geophone sensors, similar to seismic-while-drilling techniques have indicated the presence of the natural oscillating frequency of the percussive hammer. This method is shown to provide a robust technique for the determination of the downhole percussive oscillation frequency when used with a coiled tubing drill rig.

Keywords: cuttings characterization, drilling optimization, oscillation frequency, percussive drilling, spectral analysis

Procedia PDF Downloads 230
1148 Theoretical and Experimental Investigation of Binder-free Trimetallic Phosphate Nanosheets

Authors: Iftikhar Hussain, Muhammad Ahmad, Xi Chen, Li Yuxiang

Abstract:

Transition metal phosphides and phosphates are newly emerged electrode material candidates in energy storage devices. For the first time, we report uniformly distributed, interconnected, and well-aligned two-dimensional nanosheets made from trimetallic Zn-Co-Ga phosphate (ZCGP) electrode materials with preserved crystal phase. It is found that the ZCGP electrode material exhibits about 2.85 and 1.66 times higher specific capacity than mono- and bimetallic phosphate electrode materials at the same current density. The trimetallic ZCGP electrode exhibits superior conductivity, lower internal resistance (IR) drop, and high Coulombic efficiency compared to mono- and bimetallic phosphate. The charge storage mechanism is studied for mono- bi- and trimetallic electrode materials, which illustrate the diffusion-dominated battery-type behavior. By means of density functional theory (DFT) calculations, ZCGP shows superior metallic conductivity due to the modified exchange splitting originating from 3d-orbitals of Co atoms in the presence of Zn and Ga. Moreover, a hybrid supercapacitor (ZCGP//rGO) device is engineered, which delivered a high energy density (ED) of 40 W h kg⁻¹ and a high-power density (PD) of 7,745 W kg⁻¹, lighting 5 different colors of light emitting diodes (LEDs). These outstanding results confirm the promising battery-type electrode materials for energy storage applications.

Keywords: trimetallic phosphate, nanosheets, DFT calculations, hybrid supercapacitor, binder-free, synergistic effect

Procedia PDF Downloads 211
1147 Preparation of Biodegradable Methacrylic Nanoparticles by Semicontinuous Heterophase Polymerization for Drugs Loading: The Case of Acetylsalicylic Acid

Authors: J. Roberto Lopez, Hened Saade, Graciela Morales, Javier Enriquez, Raul G. Lopez

Abstract:

Implementation of systems based on nanostructures for drug delivery applications have taken relevance in recent studies focused on biomedical applications. Although there are several nanostructures as drugs carriers, the use of polymeric nanoparticles (PNP) has been widely studied for this purpose, however, the main issue for these nanostructures is the size control below 50 nm with a narrow distribution size, due to they must go through different physiological barriers and avoid to be filtered by kidneys (< 10 nm) or the spleen (> 100 nm). Thus, considering these and other factors, it can be mentioned that drug-loaded nanostructures with sizes varying between 10 and 50 nm are preferred in the development and study of PNP/drugs systems. In this sense, the Semicontinuous Heterophase Polymerization (SHP) offers the possibility to obtain PNP in the desired size range. Considering the above explained, methacrylic copolymer nanoparticles were obtained under SHP. The reactions were carried out in a jacketed glass reactor with the required quantities of water, ammonium persulfate as initiator, sodium dodecyl sulfate/sodium dioctyl sulfosuccinate as surfactants, methyl methacrylate and methacrylic acid as monomers with molar ratio of 2/1, respectively. The monomer solution was dosed dropwise during reaction at 70 °C with a mechanical stirring of 650 rpm. Nanoparticles of poly(methyl methacrylate-co-methacrylic acid) were loaded with acetylsalicylic acid (ASA, aspirin) by a chemical adsorption technique. The purified latex was put in contact with a solution of ASA in dichloromethane (DCM) at 0.1, 0.2, 0.4 or 0.6 wt-%, at 35°C during 12 hours. According to the boiling point of DCM, as well as DCM and water densities, the loading process is completed when the whole DCM is evaporated. The hydrodynamic diameter was measured after polymerization by quasi-elastic light scattering and transmission electron microscopy, before and after loading procedures with ASA. The quantitative and qualitative analyses of PNP loaded with ASA were measured by infrared spectroscopy, differential scattering calorimetry and thermogravimetric analysis. Also, the molar mass distributions of polymers were determined in a gel permeation chromatograph apparatus. The load capacity and efficiency were determined by gravimetric analysis. The hydrodynamic diameter results for methacrylic PNP without ASA showed a narrow distribution with an average particle size around 10 nm and a composition methyl methacrylate/methacrylic acid molar ratio equal to 2/1, same composition of Eudragit S100, which is a commercial compound widely used as excipient. Moreover, the latex was stabilized in a relative high solids content (around 11 %), a monomer conversion almost 95 % and a number molecular weight around 400 Kg/mol. The average particle size in the PNP/aspirin systems fluctuated between 18 and 24 nm depending on the initial percentage of aspirin in the loading process, being the drug content as high as 24 % with an efficiency loading of 36 %. These average sizes results have not been reported in the literature, thus, the methacrylic nanoparticles here reported are capable to be loaded with a considerable amount of ASA and be used as a drug carrier.

Keywords: aspirin, biocompatibility, biodegradable, Eudragit S100, methacrylic nanoparticles

Procedia PDF Downloads 142
1146 The Comparative Study of the Characteristics of Chinese and Foreign Excellent Woman’s Single Players’ Serve, Receive Tactic Author

Authors: Zhai Yuan, Wu Xueqing

Abstract:

This article statistics the technology which used by Chinese and foreign excellent players in the game, including types and serves areas,receive technology and effect and utilization ratio receiving and losing points. The sample is che videos which is world's top matches of excellent badminton athletes of che single, including Chinese players’ 43 games and foreign players’ 38 games. Conclusion: For the serving, Chinese and foreign single players are to give priority to forehand short-low serve and the long-high serve. And Chinese and foreign players in using forehand short-low serve and drive server exist significant differences; For the serves areas, Chinese and foreign players serve area is concentrated in area 1,5,6. Area 6 has the highest rate of all the district areas, following by the area 1and area 5. Among the 2ed serve area Sino-foreign player, there exist significant differences; In the receiver, when returning the frontcourt shutter, players is given priority to net lift and push. When returning the backcourt shutter, receiver's the best ball is smash, followed by clear and drop shot. Foreign players have higher utilization rate in smash than Chinese players in the backcourt; In the receiver result, Chinese players give priority to actively and equally situation than foreign players, but in negatively receiving is just opposite.

Keywords: badminton, woman’s singles, technique and tactics, comparative analysis

Procedia PDF Downloads 542
1145 Novel Ti/Al-Cr-Fe Metal Matrix Composites Prepared by Spark Plasma Sintering with Excellent Wear Properties

Authors: Ruitao Li, Zhili Dong, Nay Win Khun, Khiam Aik Khor

Abstract:

In this study, microstructure and sintering mechanism as well as wear resistance properties of Ti/Al-Cr-Fe metal matrix composites (MMCs) fabricated by spark plasma sintering (SPS) with Ti as matrix and Al-Cr-Fe as reinforcement were investigated. Phases and microstructure of the sintered samples were analyzed using X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). Wear resistance properties were tested by ball-on-disk method. An Al3Ti ring forms around each Al-Cr-Fe particle as the bonding layer between Ti and Al-Cr-Fe particles. The Al content in Al-Cr-Fe particles experiences a decrease from 70 at.% to 60 at.% in the sintering process. And these particles consist of quasicrystalline icosahedral AlCrFe and quasicrystal approximants γ-brass Al8(Cr,Fe)5 and Al9(Cr,Fe)4 in the sintered compact. The addition of Al-Cr-Fe particles into the Ti matrix can improve the microhardness by about 40% and the wear resistance is improved by more than 50% due to the increase in the microhardness and the change of wear mechanism.

Keywords: metal matrix composites, spark plasma sintering, phase transformation, wear

Procedia PDF Downloads 423
1144 Hybrid GA-PSO Based Pitch Controller Design for Aircraft Control System

Authors: Vaibhav Singh Rajput, Ravi Kumar Jatoth, Nagu Bhookya, Bhasker Boda

Abstract:

In this paper proportional, integral, derivative (PID) controller is used to control the pitch angle of the aircraft when the elevation angle is changed or modified. The pitch angle is dependent on elevation angle; a change in one corresponds to a change in the other. The PID controller helps in restricted change of pitch rate in response to the elevation angle. The PID controller is dependent on different parameters like Kp, Ki, Kd which change the pitch rate as they change. Various methodologies are used for changing those parameters for getting a perfect time response pitch angle, as desired or wished by a concerned person. While reckoning the values of those parameters, trial and guessing may prove to be futile in order to provide comfort to passengers. So, using some metaheuristic techniques can be useful in handling these errors. Hybrid GA-PSO is one such powerful algorithm which can improve transient and steady state response and can give us more reliable results for PID gain scheduling problem.

Keywords: pitch rate, elevation angle, PID controller, genetic algorithm, particle swarm optimization, phugoid

Procedia PDF Downloads 330
1143 VeriFy: A Solution to Implement Autonomy Safely and According to the Rules

Authors: Michael Naderhirn, Marco Pavone

Abstract:

Problem statement, motivation, and aim of work: So far, the development of control algorithms was done by control engineers in a way that the controller would fit a specification by testing. When it comes to the certification of an autonomous car in highly complex scenarios, the challenge is much higher since such a controller must mathematically guarantee to implement the rules of the road while on the other side guarantee aspects like safety and real time executability. What if it becomes reality to solve this demanding problem by combining Formal Verification and System Theory? The aim of this work is to present a workflow to solve the above mentioned problem. Summary of the presented results / main outcomes: We show the usage of an English like language to transform the rules of the road into system specification for an autonomous car. The language based specifications are used to define system functions and interfaces. Based on that a formal model is developed which formally correctly models the specifications. On the other side, a mathematical model describing the systems dynamics is used to calculate the systems reachability set which is further used to determine the system input boundaries. Then a motion planning algorithm is applied inside the system boundaries to find an optimized trajectory in combination with the formal specification model while satisfying the specifications. The result is a control strategy which can be applied in real time independent of the scenario with a mathematical guarantee to satisfy a predefined specification. We demonstrate the applicability of the method in simulation driving scenarios and a potential certification. Originality, significance, and benefit: To the authors’ best knowledge, it is the first time that it is possible to show an automated workflow which combines a specification in an English like language and a mathematical model in a mathematical formal verified way to synthesizes a controller for potential real time applications like autonomous driving.

Keywords: formal system verification, reachability, real time controller, hybrid system

Procedia PDF Downloads 243
1142 Technology Futures in Global Militaries: A Forecasting Method Using Abstraction Hierarchies

Authors: Mark Andrew

Abstract:

Geopolitical tensions are at a thirty-year high, and the pace of technological innovation is driving asymmetry in force capabilities between nation states and between non-state actors. Technology futures are a vital component of defence capability growth, and investments in technology futures need to be informed by accurate and reliable forecasts of the options for ‘systems of systems’ innovation, development, and deployment. This paper describes a method for forecasting technology futures developed through an analysis of four key systems’ development stages, namely: technology domain categorisation, scanning results examining novel systems’ signals and signs, potential system-of systems’ implications in warfare theatres, and political ramifications in terms of funding and development priorities. The method has been applied to several technology domains, including physical systems (e.g., nano weapons, loitering munitions, inflight charging, and hypersonic missiles), biological systems (e.g., molecular virus weaponry, genetic engineering, brain-computer interfaces, and trans-human augmentation), and information systems (e.g., sensor technologies supporting situation awareness, cyber-driven social attacks, and goal-specification challenges to proliferation and alliance testing). Although the current application of the method has been team-centred using paper-based rapid prototyping and iteration, the application of autonomous language models (such as GPT-3) is anticipated as a next-stage operating platform. The importance of forecasting accuracy and reliability is considered a vital element in guiding technology development to afford stronger contingencies as ideological changes are forecast to expand threats to ecology and earth systems, possibly eclipsing the traditional vulnerabilities of nation states. The early results from the method will be subjected to ground truthing using longitudinal investigation.

Keywords: forecasting, technology futures, uncertainty, complexity

Procedia PDF Downloads 116
1141 Stipagrostis ciliata (Desf.) De Winter: A Promising Pastoral Species for Ecological Restoration in North African Arid Bioclimate

Authors: Lobna Mnif Fakhfakh, Mohamed Chaieb

Abstract:

Most ecological studies in North Africa reveal a process of continuous degradation of pastoral ecosystems as a result of overgrazing. This degradation appears across the depletion of perennial grass species. Indeed, the majority of steppic ecosystems are characterized by a low density of perennial grasses. This phenomenon reveals a drop in food value of rangelands, which is now estimated at less than 100 UF.ha -1. -1 Year in all North African steppes. However, for ecological restoration initiatives, some species such the genus of Stipagrostis and Stipa can be considered a good candidates species for effective pastoral improvement under arid bioclimate. The present work concerns Stipagrostis ciliata (Desf.) De Winter, perennial grasses, abundant in ecosystems characterized by the high content of gypsum (CaSO4)2H2O in the southern Tunisia. This tufted species with C4 biochemical photosynthesis type is able to grow and develop under high temperature and low annual rainfall, where the minimum water potential (ψmd), can reach -4 MPa during the summer season with a phenological growth maintained throughout the season unfavorable. At this point in the early autumn rains, S. ciliata begins its growth, especially with a heading which occurs 2-3 weeks after the first autumn rains. From the foregoing, it can be concluded that Stipagrostis ciliata is an excellent promising pastoral species for the ecological restoration, and enhancement of ecosystems biological productivity in arid bioclimate of North Africa.

Keywords: Stipagrostis ciliata, pastoral species, ecological restoration, arid bioclimate

Procedia PDF Downloads 417
1140 Effect of Longitudinal Fins on Air-Flow Characteristics for Wing-Shaped Tubes in Cross Flow

Authors: Sayed Ahmed El Sayed, Osama M. Mesalhy, Mohamed A. Abdelatief

Abstract:

A numerical study has been conducted to clarify fluid flow characteristics, pressure distributions, and skin friction coefficient over a wing-shaped tubes bundle in staggered arrangement with the placement of longitudinal fins (LF) at downstream position of the tube. The air-side Rea were at 1.8 x 103 to 9.7 x 103. The tubes bundle were employed with various fin height [hf] and fin thickness (δ) from (2 mm ≤ hf ≤ 12 mm) and (1.5 mm ≤ δ ≤ 3.5 mm) respectively at the considered Rea range. The flow pattern around the staggered wing-shaped tubes bundle was predicted using the commercial CFD FLUENT 6.3.26 software package. The distribution of average skin friction coefficient around wing-shaped tubes bundle is studied. Correlation of pressure drop coefficient Pdc and skin friction coefficient (Cf) in terms of Rea, design parameters for the studied cases were presented. Results indicated that the values of Pdc for hf = 6 mm are lower than these of NOF and hf = 2 mm by about 11 % and 13 % respectively for considered Rea range. Cf decreases as Rea increases. LFTH with hf = 6 mm offers lower form drag than that with hf = 12 mm and that of NOF. The lowest values of the pumping power are achieved for arrangements of hf = 6 mm for the considered Rea range. δ has negligible effect on skin friction coefficient, while has a slightly variation in ∆Pa. The wing-shaped tubes bundle heat exchanger with hf = 6 mm has the lowest values of ∆Pa, Pdc, Cf, and pumping power and hence the best performance comparing with the other bundles. Comparisons between the experimental and numerical results of the present study and those obtained by similar previous studies showed good agreements.

Keywords: longitudinal fins, skin friction, flow characteristics, FLUENT, wing-shaped tubes

Procedia PDF Downloads 540
1139 Simulations of High-Intensity, Thermionic Electron Guns for Electron Beam Thermal Processing Including Effects of Space Charge Compensation

Authors: O. Hinrichs, H. Franz, G. Reiter

Abstract:

Electron guns have a key function in a series of thermal processes, like EB (electron beam) melting, evaporation or welding. These techniques need a high-intensity continuous electron beam that defocuses itself due to high space charge forces. A proper beam transport throughout the magnetic focusing system can be ensured by a space charge compensation via residual gas ions. The different pressure stages in the EB gun cause various degrees of compensation. A numerical model was installed to simulate realistic charge distributions within the beam by using CST-Particle Studio code. We will present current status of beam dynamic simulations. This contribution will focus on the creation of space charge ions and their influence on beam and gun components. Furthermore, the beam transport in the gun will be shown for different beam parameters. The electron source allows to produce beams with currents of 3 A to 15 A and energies of 40 keV to 45 keV.

Keywords: beam dynamic simulation, space charge compensation, thermionic electron source, EB melting, EB thermal processing

Procedia PDF Downloads 340
1138 The Effect of Chelate to RE Ratio on Upconversion Emissions Property of NaYF4: Yb3+ and Tm3+ Nanocrystals

Authors: M. Kaviani Darani, S. Bastani, M. Ghahari, P. Kardar

Abstract:

In this paper the NaYF4: Yb3+, Tm3+ nanocrystals were synthesized by hydrothermal method. Different chelating ligand type (citric acid, butanoic acid, and AOT) was selected to investigate the effect of their concentration on upconversion efficiency. Crystal structure and morphology have been well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Photo luminescence were recorded on a spectrophotometer equipped with 980 nm laser diode az excitation source and an integerating sphere. The products with various morphologies range from sphere to cubic, hexagonal,prism and nanorods were prepared at different ratios. The particle size was found to be dependent on the nucleation rate, which, in turn, was affected by type and concentration of ligands. The optimum amount of chelate to RE ratio was obtained 0.75, 1.5, and 1 for Citric Acid, Butanoic Acid and AOT, respectively. Emissions in the UV (1D2-3H6), blue-violet(1D2-3F4), blue (1G4-3H6), red (1G4-3F4), and NIR (1G4-3H5) were observed and were the direct result of subsequent transfers of energy from the Yb3+ ion to the Tm3+ ion.

Keywords: upconversion nanoparticles, NaYF4, lanthanide, hydrothermal

Procedia PDF Downloads 263
1137 Lattice Boltzmann Simulation of Fluid Flow and Heat Transfer Through Porous Media by Means of Pore-Scale Approach: Effect of Obstacles Size and Arrangement on Tortuosity and Heat Transfer for a Porosity Degree

Authors: Annunziata D’Orazio, Arash Karimipour, Iman Moradi

Abstract:

The size and arrangement of the obstacles in the porous media has an influential effect on the fluid flow and heat transfer, even in the same porosity. Regarding to this, in the present study, several different amounts of obstacles, in both regular and stagger arrangements, in the analogous porosity have been simulated through a channel. In order to compare the effect of stagger and regular arrangements, as well as different quantity of obstacles in the same porosity, on fluid flow and heat transfer. In the present study, the Single Relaxation Time Lattice Boltzmann Method, with Bhatnagar-Gross-Ktook (BGK) approximation and D2Q9 model, is implemented for the numerical simulation. Also, the temperature field is modeled through a Double Distribution Function (DDF) approach. Results are presented in terms of velocity and temperature fields, streamlines, percentage of pressure drop and Nusselt number of the obstacles walls. Also, the correlation between tortuosity and Nusselt number of the obstacles walls, for both regular and staggered arrangements, has been proposed. On the other hand, the results illustrated that by increasing the amount of obstacles, as well as changing their arrangement from regular to staggered, in the same porosity, the rate of tortuosity and Nusselt number of the obstacles walls increased.

Keywords: lattice boltzmann method, heat transfer, porous media, pore-scale, porosity, tortuosity

Procedia PDF Downloads 87
1136 Smartphone Addiction and Reaction Time in Geriatric Population

Authors: Anjali N. Shete, G. D. Mahajan, Nanda Somwanshi

Abstract:

Context: Smartphones are the new generation of mobile phones; they have emerged over the last few years. Technology has developed so much that it has become part of our life and mobile phones are one of them. These smartphones are equipped with the capabilities to display photos, play games, watch videos and navigation, etc. The advances have a huge impact on many walks of life. The adoption of new technology has been challenging for the elderly. But, the elder population is also moving towards digitally connected lives. As age advances, there is a decline in the motor and cognitive functions of the brain, and hence the reaction time is affected. The study was undertaken to assess the usefulness of smartphones in improving cognitive functions. Aims and Objectives: The aim of the study was to observe the effects of smartphone addiction on reaction time in elderly population Material and Methods: This is an experimental study. 100 elderly subjects were enrolled in this study randomly from urban areas. They all were using smartphones for several hours a day. They were divided into two groups according to the scores of the mobile phone addiction scale (MPAS). Simple reaction time was estimated by the Ruler drop method. The reaction time was then calculated for each subject in both groups. The data were analyzed using mean, standard deviation, and Pearson correlation test. Results: The mean reaction time in Group A is 0.27+ 0.040 and in Group B is 0.20 + 0.032. The values show a statistically significant change in reaction time. Conclusion: Group A with a high MPAS score has a low reaction time compared to Group B with a low MPAS score. Hence, it can be concluded that the use of smartphones in the elderly is useful, delaying the neurological decline, and smarten the brain.

Keywords: smartphones, MPAS, reaction time, elderly population

Procedia PDF Downloads 179
1135 Fracture Crack Monitoring Using Digital Image Correlation Technique

Authors: B. G. Patel, A. K. Desai, S. G. Shah

Abstract:

The main of objective of this paper is to develop new measurement technique without touching the object. DIC is advance measurement technique use to measure displacement of particle with very high accuracy. This powerful innovative technique which is used to correlate two image segments to determine the similarity between them. For this study, nine geometrically similar beam specimens of different sizes with (steel fibers and glass fibers) and without fibers were tested under three-point bending in a closed loop servo-controlled machine with crack mouth opening displacement control with a rate of opening of 0.0005 mm/sec. Digital images were captured before loading (unreformed state) and at different instances of loading and were analyzed using correlation techniques to compute the surface displacements, crack opening and sliding displacements, load-point displacement, crack length and crack tip location. It was seen that the CMOD and vertical load-point displacement computed using DIC analysis matches well with those measured experimentally.

Keywords: Digital Image Correlation, fibres, self compacting concrete, size effect

Procedia PDF Downloads 391
1134 Mapping of Solar Radiation Anomalies Based on Climate Change

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Francisco Pereira, Elton Rossini

Abstract:

The use of alternative energy sources to meet energy demand reduces environmental damage. To diversify an energy matrix and to minimize global warming, a solar energy is gaining space, being an important source of renewable energy, and its potential depends on the climatic conditions of the region. Brazil presents a great solar potential for a generation of electric energy, so the knowledge of solar radiation and its characteristics are fundamental for the study of energy use. Due to the above reasons, this article aims to verify the climatic variability corresponding to the variations in solar radiation anomalies, in the face of climate change scenarios. The data used in this research are part of the Intercomparison of Interconnected Models, Phase 5 (CMIP5), which contributed to the preparation of the fifth IPCC-AR5 report. The solar radiation data were extracted from The Australian Community Climate and Earth System Simulator (ACCESS) model using the RCP 4.5 and RCP 8.5 scenarios that represent an intermediate structure and a pessimistic framework, the latter being the most worrisome in all cases. In order to allow the use of solar radiation as a source of energy in a given location and/or region, it is important, first, to determine its availability, thus justifying the importance of the study. The results pointed out, for the 75-year period (2026-2100), based on a pessimistic scenario, indicate a drop in solar radiation of the approximately 12% in the eastern region of Rio Grande do Sul. Factors that influence the pessimistic prospects of this scenario should be better observed by the responsible authorities, since they can affect the possibility to produce electricity from solar radiation.

Keywords: climate change, energy, IPCC, solar radiation

Procedia PDF Downloads 195
1133 Honey Bee (Apis Mellifera) Drone Flight Behavior Revealed by Radio Frequency Identification: Short Trips That May Help Drones Survey Weather Conditions

Authors: Vivian Wu

Abstract:

During the mating season, honeybee drones make mating fights to congregation areas where they face fierce competition to mate with a queen. Drones have developed distinct anatomical and functional features in order to optimize their chances of success. Flight activities of western honeybee (Apis mellifera) drones and foragers were monitored using radio frequency identification (RFID) to test if drones have also developed distinct flight behaviors. Drone flight durations showed a bimodal distribution dividing the flights into short flights and long flights while forager flight durations showed a left-skewed unimodal distribution. Interestingly, the short trips occurred prior to the long trips on a daily basis. The first trips of the day the drones made were primarily short trips, and the distribution significantly shifted to long trips as the drones made more trips. In contrast, forager trips showed no such shift of distribution. In addition, drones made short trips but no long mating trips on days associated with a significant drop in temperature and increase of clouds compared to the previous day. These findings suggest that drones may have developed a unique flight behavior making short trips first to survey the weather conditions before flying out to the congregation area to pursue a successful mating.

Keywords: apis mellifera, drone, flight behavior, weather, RFID

Procedia PDF Downloads 82
1132 Facilitating Knowledge Transfer for New Product Development in Portfolio Entrepreneurship: A Case Study of a Sodium-Ion Battery Start-up in China

Authors: Guohong Wang, Hao Huang, Rui Xing, Liyan Tang, Yu Wang

Abstract:

Start-ups are consistently under pressure to overcome liabilities of newness and smallness. They must focus on assembling resource and engaging constant renewal and repeated entrepreneurial activities to survive and grow. As an important form of resource, knowledge is constantly vital to start-ups, which will help start-ups with developing new product in hence forming competitive advantage. However, significant knowledge is usually needed to be identified and exploited from external entities, which makes it difficult to achieve knowledge transfer; with limited resources, it can be quite challenging for start-ups balancing the exploration and exploitation of knowledge. The research on knowledge transfer has become a relatively well-developed domain by indicating that knowledge transfer can be achieved through plenty of patterns, yet it is still under-explored that what processes and organizational practices help start-ups facilitating knowledge transfer for new product in the context portfolio entrepreneurship. Resource orchestration theory emphasizes the initiative and active management of company or the manager to explain the fulfillment of resource utility, which will help understand the process of managing knowledge as a certain kind of resource in start-ups. Drawing on the resource orchestration theory, this research aims to explore how knowledge transfer can be facilitated through resource orchestration. A qualitative single-case study of a sodium-ion battery new venture was conducted. The case company is sampled deliberately from representative industrial agglomeration areas in Liaoning Province, China. It is found that distinctive resource orchestration sub-processes are leveraged to facilitate knowledge transfer: (i) resource structuring makes knowledge available across the portfolio; (ii) resource bundling makes combines internal and external knowledge to form new knowledge; and (iii) resource harmonizing balances specific knowledge configurations across the portfolio. Meanwhile, by purposefully reallocating knowledge configurations to new product development in a certain new venture (exploration) and gradually adjusting knowledge configurations to being applied to existing products across the portfolio (exploitation), resource orchestration processes as a whole make exploration and exploitation of knowledge balanced. This study contributes to the knowledge management literature through proposing a resource orchestration view and depicting how knowledge transfer can be facilitated through different resource orchestration processes and mechanisms. In addition, by revealing the balancing process of exploration and exploitation of knowledge, and laying stress on the significance of the idea of making exploration and exploitation of knowledge balanced in the context of portfolio entrepreneurship, this study also adds specific efforts to entrepreneurship and strategy management literature.

Keywords: exploration and exploitation, knowledge transfer, new product development, portfolio entrepreneur, resource orchestration

Procedia PDF Downloads 128
1131 Synthesis of Rare Earth Doped Nano-Phosphors through the Use of Isobutyl Nitrite and Urea Fuels: Study of Microstructure and Luminescence Properties

Authors: Seyed Mahdi Rafiaei

Abstract:

In this investigation, red emitting Eu³⁺ doped YVO₄ nano-phosphors have been synthesized via the facile combustion method using isobutyl nitrite and urea fuels, individually. Field-emission scanning electron microscope (FE-SEM) images, high resolution transmission electron microscope (TEM) images and X-ray diffraction (XRD) spectra reveal that the mentioned fuels can be used successfully to synthesis YVO₄: Eu³⁺ nano-particles. Interestingly, the fuels have a large effect on the size and morphology of nano-phosphors as well as luminescence properties. Noteworthy the use of isobutyl nitrite provides an average particle size of 65 nm, while the employment of urea, results in the formation of larger particles and also provides higher photoluminescence emission intensity. The improved luminescence performance is attributed to the condition of chemical reaction via the combustion synthesis and the size of synthesized phosphors.

Keywords: phosphors, combustion, fuels, luminescence, nanostructure

Procedia PDF Downloads 141
1130 Evaluating Emission Reduction Due to a Proposed Light Rail Service: A Micro-Level Analysis

Authors: Saeid Eshghi, Neeraj Saxena, Abdulmajeed Alsultan

Abstract:

Carbon dioxide (CO2) alongside other gas emissions in the atmosphere cause a greenhouse effect, resulting in an increase of the average temperature of the planet. Transportation vehicles are among the main contributors of CO2 emission. Stationary vehicles with initiated motors produce more emissions than mobile ones. Intersections with traffic lights that force the vehicles to become stationary for a period of time produce more CO2 pollution than other parts of the road. This paper focuses on analyzing the CO2 produced by the traffic flow at Anzac Parade Road - Barker Street intersection in Sydney, Australia, before and after the implementation of Light rail transport (LRT). The data are gathered during the construction phase of the LRT by collecting the number of vehicles on each path of the intersection for 15 minutes during the evening rush hour of 1 week (6-7 pm, July 04-31, 2018) and then multiplied by 4 to calculate the flow of vehicles in 1 hour. For analyzing the data, the microscopic simulation software “VISSIM” has been used. Through the analysis, the traffic flow was processed in three stages: before and after implementation of light rail train, and one during the construction phase. Finally, the traffic results were input into another software called “EnViVer”, to calculate the amount of CO2 during 1 h. The results showed that after the implementation of the light rail, CO2 will drop by a minimum of 13%. This finding provides an evidence that light rail is a sustainable mode of transport.

Keywords: carbon dioxide, emission modeling, light rail, microscopic model, traffic flow

Procedia PDF Downloads 145