Search results for: geographical information systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18869

Search results for: geographical information systems

17189 DNA Multiplier: A Design Architecture of a Multiplier Circuit Using DNA Molecules

Authors: Hafiz Md. Hasan Babu, Khandaker Mohammad Mohi Uddin, Nitish Biswas, Sarreha Tasmin Rikta, Nuzmul Hossain Nahid

Abstract:

Nanomedicine and bioengineering use biological systems that can perform computing operations. In a biocomputational circuit, different types of biomolecules and DNA (Deoxyribose Nucleic Acid) are used as active components. DNA computing has the capability of performing parallel processing and a large storage capacity that makes it diverse from other computing systems. In most processors, the multiplier is treated as a core hardware block, and multiplication is one of the time-consuming and lengthy tasks. In this paper, cost-effective DNA multipliers are designed using algorithms of molecular DNA operations with respect to conventional ones. The speed and storage capacity of a DNA multiplier are also much higher than a traditional silicon-based multiplier.

Keywords: biological systems, DNA multiplier, large storage, parallel processing

Procedia PDF Downloads 214
17188 Cultivating Social-Ecological Resilience, Harvesting Biocultural Resistance in Southern Andes

Authors: Constanza Monterrubio-Solis, Jose Tomas Ibarra

Abstract:

The fertile interdependence of social-ecological systems reveals itself in the interactions between native forests and seeds, home gardens, kitchens, foraging activities, local knowledge, and food practices, creating particular flavors and food meanings as part of cultural identities within territories. Resilience in local-food systems, from a relational perspective, can be understood as the balance between persistence and adaptability to change. Food growing, preparation, and consumption are constantly changing and adapting as expressions of agency of female and male indigenous peoples and peasants. This paper explores local food systems’ expressions of resilience in the la Araucanía region of Chile, namely: diversity, redundancy, buffer capacity, modularity, self-organization, governance, learning, equity, and decision-making. Applying ethnographic research methods (participant observation, focus groups, and semi-structured interviews), this work reflects on the experience developed through work with Mapuche women cultivating home gardens in the region since 2012; it looks to material and symbolic elements of resilience in the local indigenous food systems. Local food systems show indeed indicators of social-ecological resilience. The biocultural memory is expressed in affection to particular flavors and recipes, the cultural importance of seeds and reciprocity networks, as well as an accurate knowledge about the indicators of the seasons and weather, which have allowed local food systems to thrive with a strong cultural foundation. Furthermore, these elements turn into biocultural resistance in the face of the current institutional pressures for rural specialization, processes of cultural assimilation such as agroecosystems and diet homogenization, as well as structural threats towards the diversity and freedom of native seeds. Thus, the resilience-resistance dynamic shown by the social-ecological systems of the southern Andes is daily expressed in the local food systems and flavors and is key for diverse and culturally sound social-ecological health.

Keywords: biocultural heritage, indigenous food systems, social-ecological resilience, southern Andes

Procedia PDF Downloads 136
17187 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method

Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang

Abstract:

Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.

Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series

Procedia PDF Downloads 274
17186 Development of a Nurse Led Tranexamic Acid Administration Protocol for Trauma Patients in Rural South Africa

Authors: Christopher Wearmouth, Jacob Smith

Abstract:

Administration of tranexamic acid (TXA) reduces all-cause mortality in trauma patients when given within 3 hours of injury. Due to geographical distance and lack of emergency medical services patients often present late, following trauma, to our emergency department. Additionally, we found patients that may have benefited from TXA did not receive it, often due to lack of staff awareness, staff shortages out of hours and lack of equipment for delivering infusions. Our objective was to develop a protocol for nurse-led administration of TXA in the emergency department. We developed a protocol using physiological observations along with criteria from the South African Triage Scale to allow nursing staff to identify patients with, or at risk of, significant haemorrhage. We will monitor the use of the protocol to ensure appropriate compliance and for any adverse events reported.

Keywords: emergency department, emergency nursing, rural healthcare, tranexamic acid, trauma, triage

Procedia PDF Downloads 230
17185 Characterization of Solar Panel Efficiency Using Sun Tracking Device and Cooling System

Authors: J. B. G. Ibarra, J. M. A. Gagui, E. J. T. Jonson, J. A. V. Lim

Abstract:

This paper focused on studying the performance of the solar panels that were equipped with water-spray cooling system, solar tracking system, and combination of both systems. The efficiencies were compared with the solar panels without any efficiency improvement technique. The efficiency of each setup was computed on an hourly basis every day for a month. The study compared the efficiencies and combined systems that significantly improved at a specific time of the day. The data showed that the solar tracking system had the highest efficiency during 6:00 AM to 7:45 AM. Then after 7:45 AM, the combination of both solar tracking and water-spray cooling system was the most efficient to use up to 12:00 NN. Meanwhile, from 12:00 NN to 12:45 PM, the water-spray cooling system had the significant contribution on efficiency. From 12:45 PM up to 4:30 PM, the combination of both systems was the most efficient, and lastly, from 4:30 PM to 6:00 PM, the solar tracking system was the best to use. The study intended to use solar tracking or water-spray cooling system or combined systems alternately to improve the solar panel efficiency on a specific time of the day.

Keywords: solar panel efficiency, solar panel efficiency technique, solar tracking system, water-spray cooling system

Procedia PDF Downloads 163
17184 Quantum Fisher Information of Bound Entangled W-Like States

Authors: Fatih Ozaydin

Abstract:

Quantum Fisher information (QFI) is a multipartite entanglement witness and recently it has been studied extensively with separability and entanglement in the focus. On the other hand, bound entanglement is a special phenomena observed in mixed entangled states. In this work, we study the QFI of W states under a four-dimensional entanglement binding channel. Starting with initally pure W states of several qubits, we find how the QFI decreases as two qubits of the W state is subject to entanglement binding. We also show that as the size of the W state increases, the effect of entanglement binding is decreased.

Keywords: Quantum Fisher information, W states, bound entanglement, entanglement binding

Procedia PDF Downloads 482
17183 Residual Dipolar Couplings in NMR Spectroscopy Using Lanthanide Tags

Authors: Elias Akoury

Abstract:

Nuclear Magnetic Resonance (NMR) spectroscopy is an indispensable technique used in structure determination of small and macromolecules to study their physical properties, elucidation of characteristic interactions, dynamics and thermodynamic processes. Quantum mechanics defines the theoretical description of NMR spectroscopy and treatment of the dynamics of nuclear spin systems. The phenomenon of residual dipolar coupling (RDCs) has become a routine tool for accurate structure determination by providing global orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. This offers accessibility of distance-independent angular information and insights to local relaxation. The measurement of RDCs requires an anisotropic orientation medium for the molecules to partially align along the magnetic field. This can be achieved by introduction of liquid crystals or attaching a paramagnetic center. Although anisotropic paramagnetic tags continue to mark achievements in the biomolecular NMR of large proteins, its application in small organic molecules remains unspread. Here, we propose a strategy for the synthesis of a lanthanide tag and the measurement of RDCs in organic molecules using paramagnetic lanthanide complexes.

Keywords: lanthanide tags, NMR spectroscopy, residual dipolar coupling, quantum mechanics of spin dynamics

Procedia PDF Downloads 188
17182 Application of Supervised Deep Learning-based Machine Learning to Manage Smart Homes

Authors: Ahmed Al-Adaileh

Abstract:

Renewable energy sources, domestic storage systems, controllable loads and machine learning technologies will be key components of future smart homes management systems. An energy management scheme that uses a Deep Learning (DL) approach to support the smart home management systems, which consist of a standalone photovoltaic system, storage unit, heating ventilation air-conditioning system and a set of conventional and smart appliances, is presented. The objective of the proposed scheme is to apply DL-based machine learning to predict various running parameters within a smart home's environment to achieve maximum comfort levels for occupants, reduced electricity bills, and less dependency on the public grid. The problem is using Reinforcement learning, where decisions are taken based on applying the Continuous-time Markov Decision Process. The main contribution of this research is the proposed framework that applies DL to enhance the system's supervised dataset to offer unlimited chances to effectively support smart home systems. A case study involving a set of conventional and smart appliances with dedicated processing units in an inhabited building can demonstrate the validity of the proposed framework. A visualization graph can show "before" and "after" results.

Keywords: smart homes systems, machine learning, deep learning, Markov Decision Process

Procedia PDF Downloads 202
17181 Hybrid Knowledge Approach for Determining Health Care Provider Specialty from Patient Diagnoses

Authors: Erin Lynne Plettenberg, Jeremy Vickery

Abstract:

In an access-control situation, the role of a user determines whether a data request is appropriate. This paper combines vetted web mining and logic modeling to build a lightweight system for determining the role of a health care provider based only on their prior authorized requests. The model identifies provider roles with 100% recall from very little data. This shows the value of vetted web mining in AI systems, and suggests the impact of the ICD classification on medical practice.

Keywords: electronic medical records, information extraction, logic modeling, ontology, vetted web mining

Procedia PDF Downloads 172
17180 An Intelligent Thermal-Aware Task Scheduler in Multiprocessor System on a Chip

Authors: Sina Saadati

Abstract:

Multiprocessors Systems-On-Chips (MPSOCs) are used widely on modern computers to execute sophisticated software and applications. These systems include different processors for distinct aims. Most of the proposed task schedulers attempt to improve energy consumption. In some schedulers, the processor's temperature is considered to increase the system's reliability and performance. In this research, we have proposed a new method for thermal-aware task scheduling which is based on an artificial neural network (ANN). This method enables us to consider a variety of factors in the scheduling process. Some factors like ambient temperature, season (which is important for some embedded systems), speed of the processor, computing type of tasks and have a complex relationship with the final temperature of the system. This Issue can be solved using a machine learning algorithm. Another point is that our solution makes the system intelligent So that It can be adaptive. We have also shown that the computational complexity of the proposed method is cheap. As a consequence, It is also suitable for battery-powered systems.

Keywords: task scheduling, MOSOC, artificial neural network, machine learning, architecture of computers, artificial intelligence

Procedia PDF Downloads 103
17179 The Effectiveness of Banks’ Web Sites: A Study of Turkish Banking Sector

Authors: Raif Parlakkaya, Huseyin Cetin, Duygu Irdiren

Abstract:

By the development of World Wide Web, the usage rate of Internet has rapidly grown globally; and provided a basis for the emergence of electronic business. As well as other sectors, the banking sector has adopted the use of internet with the developments in information and communication technologies. Due to the public disclosure and transparency principle of Corporate Governance, the importance of information disclosure of banks on their web sites has increased significantly. For the purpose of this study, a Bank Disclosure Attribute Index (BDAI) in Turkey has been constructed through classifying the information disclosure on banks’ web sites into general, financial, investors and corporate governance attributes. All 47 banks in Turkish Banking System have been evaluated according to the index with the aim of providing a comparison between banks. By Chi Square Test, Pearson Correlation, T-Test, and ANOVA statistical tools, it has been concluded that the majority of banks in Turkey have shared information on their web sites adequately with respect to their total index score. Although there is a positive correlation between various types of information on banks’ web sites, there is no uniformity among them. Also, no significant difference between various types of information disclosure and bank types has been observed. Compared with the total index score averages of the five largest banks in Turkey, there are some banks that need to improve the content of their web sites.

Keywords: internet banking, websites evaluation, customer adoption, Turkey

Procedia PDF Downloads 398
17178 Optimal Site Selection for Temporary Housing regarding Disaster Management Case Study: Tehran Municipality (No.6)

Authors: Ghazaleh Monazami Tehrani, Zhamak Monazami Tehrani, Raziyeh Hadavand

Abstract:

Optimal site selection for temporary housing is one of the most important issues in crisis management. In this research, district six of Tehran city with high frequency and geographical distribution of earthquakes has been selected as a case study for positioning temporary housing after a probable earthquake. For achieving this goal this study tries to identify and evaluate distribution of location according to some standards such as compatible and incompatible urban land uses with utility of GIS and AHP. The results of this study show the most susceptible parts of this region in the center. According to the maps, north eastern part of Kordestan, Shaheed Gomnam intersection possesses the highest pixels value in terms of areal extent, therefore these places are recommended as an optimum site location for construction of emergency evacuation base.

Keywords: optimal site selection, temporary housing , crisis management, AHP, GIS

Procedia PDF Downloads 257
17177 Experimental Support for the District Metered Areas/Pressure Management Areas Application

Authors: K. Ilicic, D. Smoljan

Abstract:

The purpose of the paper is to present and verify a methodology of decreasing water losses by introducing and managing District Metered Areas (DMA) and Pressure Management Areas (PMA) by analyzing the results of the application of the methodology to the water supply system of the city of Zagreb. Since it is a relatively large system that has been expanding rapidly, approach to addressing water losses was possible only by splitting the system to smaller flow and pressure zones. Besides, the geographical and technical limitations had imposed the necessity of high pressure in the system that needed to be reduced to the technically optimal level. Results of activities were monitored on a general and local level by establishing, monitoring, and controlling indicators that had been established by the International Water Association (IWA), among which the most recognizable were non-revenue water, water losses and real losses as presented in the paper.

Keywords: district metered area, pressure metered area, active leakage control, water losses

Procedia PDF Downloads 184
17176 Formulation and Evaluation of TDDS for Sustained Release Ondansetron HCL Patches

Authors: Baljinder Singh, Navneet Sharma

Abstract:

The skin can be used as the site for drug administration for continuous transdermal drug infusion into the systemic circulation. For the continuous diffusion/penetration of the drugs through the intact skin surface membrane-moderated systems, matrix dispersion type systems, adhesive diffusion controlled systems and micro reservoir systems have been developed. Various penetration enhancers are used for the drug diffusion through skin. In matrix dispersion type systems, the drug is dispersed in the solvent along with the polymers and solvent allowed to evaporate forming a homogeneous drug-polymer matrix. Matrix type systems were developed in the present study. In the present work, an attempt has been made to develop a matrix-type transdermal therapeutic system comprising of ondansetron-HCl with different ratios of hydrophilic and hydrophobic polymeric combinations using solvent evaporation technique. The physicochemical compatibility of the drug and the polymers was studied by infrared spectroscopy. The results obtained showed no physical-chemical incompatibility between the drug and the polymers. The patches were further subjected to various physical evaluations along with the in-vitro permeation studies using rat skin. On the basis of results obtained form the in vitro study and physical evaluation, the patches containing hydrophilic polymers i.e. polyvinyl alcohol and poly vinyl pyrrolidone with oleic acid as the penetration enhancer(5%) were considered as suitable for large scale manufacturing with a backing layer and a suitable adhesive membrane.

Keywords: transdermal drug delivery, penetration enhancers, hydrophilic and hydrophobic polymers, ondansetron HCl

Procedia PDF Downloads 322
17175 Event Monitoring Based On Web Services for Heterogeneous Event Sources

Authors: Arne Koschel

Abstract:

This article discusses event monitoring options for heterogeneous event sources as they are given in nowadays heterogeneous distributed information systems. It follows the central assumption, that a fully generic event monitoring solution cannot provide complete support for event monitoring; instead, event source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Following from this, the core result of the work presented here is the extension of a configurable event monitoring (Web) service for a variety of event sources. A service approach allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA.

Keywords: event monitoring, ECA, CEP, SOA, web services

Procedia PDF Downloads 744
17174 Florida’s Groundwater and Surface Water System Reliability in Terms of Climate Change and Sea-Level Rise

Authors: Rahman Davtalab

Abstract:

Florida is one of the most vulnerable states to natural disasters among the 50 states of the USA. The state exposed by tropical storms, hurricanes, storm surge, landslide, etc. Besides, the mentioned natural phenomena, global warming, sea-level rise, and other anthropogenic environmental changes make a very complicated and unpredictable system for decision-makers. In this study, we tried to highlight the effects of climate change and sea-level rise on surface water and groundwater systems for three different geographical locations in Florida; Main Canal of Jacksonville Beach (in the northeast of Florida adjacent to the Atlantic Ocean), Grace Lake in central Florida, far away from surrounded coastal line, and Mc Dill in Florida and adjacent to Tampa Bay and Mexican Gulf. An integrated hydrologic and hydraulic model was developed and simulated for all three cases, including surface water, groundwater, or a combination of both. For the case study of Main Canal-Jacksonville Beach, the investigation showed that a 76 cm sea-level rise in time horizon 2060 could increase the flow velocity of the tide cycle for the main canal's outlet and headwater. This case also revealed how the sea level rise could change the tide duration, potentially affecting the coastal ecosystem. As expected, sea-level rise can raise the groundwater level. Therefore, for the Mc Dill case, the effect of groundwater rise on soil storage and the performance of stormwater retention ponds is investigated. The study showed that sea-level rise increased the pond’s seasonal high water up to 40 cm by time horizon 2060. The reliability of the retention pond is dropped from 99% for the current condition to 54% for the future. The results also proved that the retention pond could not retain and infiltrate the designed treatment volume within 72 hours, which is a significant indication of increasing pollutants in the future. Grace Lake case study investigates the effects of climate change on groundwater recharge. This study showed that using the dynamically downscaled data of the groundwater recharge can decline up to 24% by the mid-21st century.

Keywords: groundwater, surface water, Florida, retention pond, tide, sea level rise

Procedia PDF Downloads 185
17173 A Conceptual Model of Sex Trafficking Dynamics in the Context of Pandemics and Provisioning Systems

Authors: Brian J. Biroscak

Abstract:

In the United States (US), “sex trafficking” is defined at the federal level in the Trafficking Victims Protection Act of 2000 as encompassing a number of processes such as recruitment, transportation, and provision of a person for the purpose of a commercial sex act. It involves the use of force, fraud, or coercion, or in which the person induced to perform such act has not attained 18 years of age. Accumulating evidence suggests that sex trafficking is exacerbated by social and environmental stressors (e.g., pandemics). Given that “provision” is a key part of the definition, “provisioning systems” may offer a useful lens through which to study sex trafficking dynamics. Provisioning systems are the social systems connecting individuals, small groups, entities, and embedded communities as they seek to satisfy their needs and wants for goods, services, experiences and ideas through value-based exchange in communities. This project presents a conceptual framework for understanding sex trafficking dynamics in the context of the COVID pandemic. The framework is developed as a system dynamics simulation model based on published evidence, social and behavioral science theory, and key informant interviews with stakeholders from the Protection, Prevention, Prosecution, and Partnership sectors in one US state. This “4 P Paradigm” has been described as fundamental to the US government’s anti-trafficking strategy. The present research question is: “How do sex trafficking systems (e.g., supply, demand and price) interact with other provisioning systems (e.g., networks of organizations that help sexually exploited persons) to influence trafficking over time vis-à-vis the COVID pandemic?” Semi-structured interviews with stakeholders (n = 19) were analyzed based on grounded theory and combined for computer simulation. The first step (Problem Definition) was completed by open coding video-recorded interviews, supplemented by a literature review. The model depicts provision of sex trafficking services for victims and survivors as declining in March 2020, coincidental with COVID, but eventually rebounding. The second modeling step (Dynamic Hypothesis Formulation) was completed by open- and axial coding of interview segments, as well as consulting peer-reviewed literature. Part of the hypothesized explanation for changes over time is that the sex trafficking system behaves somewhat like a commodities market, with each of the other subsystems exhibiting delayed responses but collectively keeping trafficking levels below what they would be otherwise. Next steps (Model Building & Testing) led to a ‘proof of concept’ model that can be used to conduct simulation experiments and test various action ideas, by taking model users outside the entire system and seeing it whole. If sex trafficking dynamics unfold as hypothesized, e.g., oscillated post-COVID, then one potential leverage point is to address the lack of information feedback loops between the actual occurrence and consequences of sex trafficking and those who seek to prevent its occurrence, prosecute the traffickers, protect the victims and survivors, and partner with the other anti-trafficking advocates. Implications for researchers, administrators, and other stakeholders are discussed.

Keywords: pandemics, provisioning systems, sex trafficking, system dynamics modeling

Procedia PDF Downloads 79
17172 Conceptual Model of a Residential Waste Collection System Using ARENA Software

Authors: Bruce G. Wilson

Abstract:

The collection of municipal solid waste at the curbside is a complex operation that is repeated daily under varying circumstances around the world. There have been several attempts to develop Monte Carlo simulation models of the waste collection process dating back almost 50 years. Despite this long history, the use of simulation modeling as a planning or optimization tool for waste collection is still extremely limited in practice. Historically, simulation modeling of waste collection systems has been hampered by the limitations of computer hardware and software and by the availability of representative input data. This paper outlines the development of a Monte Carlo simulation model that overcomes many of the limitations contained in previous models. The model uses a general purpose simulation software program that is easily capable of modeling an entire waste collection network. The model treats the stops on a waste collection route as a queue of work to be processed by a collection vehicle (or server). Input data can be collected from a variety of sources including municipal geographic information systems, global positioning system recorders on collection vehicles, and weigh scales at transfer stations or treatment facilities. The result is a flexible model that is sufficiently robust that it can model the collection activities in a large municipality, while providing the flexibility to adapt to changing conditions on the collection route.

Keywords: modeling, queues, residential waste collection, Monte Carlo simulation

Procedia PDF Downloads 400
17171 Robotics and Embedded Systems Applied to the Buried Pipeline Inspection

Authors: Robson C. Santos, Julio C. P. Ribeiro, Iorran M. de Castro, Luan C. F. Rodrigues, Sandro R. L. Silva, Diego M. Quesada

Abstract:

The work aims to develop a robot in the form of autonomous vehicle to detect, inspection and mapping of underground pipelines through the ATmega328 Arduino platform. Hardware prototyping very similar to C / C ++ language that facilitates its use in robotics open source, resembles PLC used in large industrial processes. The robot will traverse the surface independently of direct human action, in order to automate the process of detecting buried pipes, guided by electromagnetic induction. The induction comes from coils that sends the signal to the Arduino microcontroller contained in that will make the difference in intensity and the treatment of the information, then this determines actions to electrical components such as relays and motors, allowing the prototype to move on the surface and getting the necessary information. The robot was developed by electrical and electronic assemblies that allowed test your application. The assembly is made up of metal detector coils, circuit boards and microprocessor, which interconnected circuits previously developed can determine, process control and mechanical actions for a robot (autonomous car) that will make the detection and mapping of buried pipelines plates.

Keywords: robotic, metal detector, embedded system, pipeline inspection

Procedia PDF Downloads 614
17170 Spatio-Temporal Data Mining with Association Rules for Lake Van

Authors: Tolga Aydin, M. Fatih Alaeddinoğlu

Abstract:

People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.

Keywords: apriori algorithm, association rules, data mining, spatio-temporal data

Procedia PDF Downloads 374
17169 Perceptions of Cybersecurity in Government Organizations: Case Study of Bhutan

Authors: Pema Choejey, David Murray, Chun Che Fung

Abstract:

Bhutan is becoming increasingly dependent on Information and Communications Technologies (ICTs), especially the Internet for performing the daily activities of governments, businesses, and individuals. Consequently, information systems and networks are becoming more exposed and vulnerable to cybersecurity threats. This paper highlights the findings of the survey study carried out to understand the perceptions of cybersecurity implementation among government organizations in Bhutan. About 280 ICT personnel were surveyed about the effectiveness of cybersecurity implementation in their organizations. A questionnaire based on a 5 point Likert scale was used to assess the perceptions of respondents. The questions were asked on cybersecurity practices such as cybersecurity policies, awareness and training, and risk management. The survey results show that less than 50% of respondents believe that the cybersecurity implementation is effective: cybersecurity policy (40%), risk management (23%), training and awareness (28%), system development life cycle (34%); incident management (26%), and communications and operational management (40%). The findings suggest that many of the cybersecurity practices are inadequately implemented and therefore, there exist a gap in achieving a required cybersecurity posture. This study recommends government organizations to establish a comprehensive cybersecurity program with emphasis on cybersecurity policy, risk management, and awareness and training. In addition, the research study has practical implications to both government and private organizations for implementing and managing cybersecurity.

Keywords: awareness and training, cybersecurity policy, risk management, security risks

Procedia PDF Downloads 345
17168 3-D Visualization and Optimization for SISO Linear Systems Using Parametrization of Two-Stage Compensator Design

Authors: Kazuyoshi Mori, Keisuke Hashimoto

Abstract:

In this paper, we consider the two-stage compensator designs of SISO plants. As an investigation of the characteristics of the two-stage compensator designs, which is not well investigated yet, of SISO plants, we implement three dimensional visualization systems of output signals and optimization system for SISO plants by the parametrization of stabilizing controllers based on the two-stage compensator design. The system runs on Mathematica by using “Three Dimensional Surface Plots,” so that the visualization can be interactively manipulated by users. In this paper, we use the discrete-time LTI system model. Even so, our approach is the factorization approach, so that the result can be applied to many linear models.

Keywords: linear systems, visualization, optimization, Mathematica

Procedia PDF Downloads 298
17167 Fijian Women’s Role in Disaster Risk Management: Climate Change

Authors: Priyatma Singh, Manpreet Kaur

Abstract:

Climate change is progressively being identified as a global crisis and this has immediate repercussions for Fiji Islands due to its geographical location being prone to natural disasters. In the Pacific, it is common to find significant differences between men and women, in terms of their roles and responsibilities. In the pursuit of prudent preparedness before disasters, Fijian women’s engagement is constrained due to socially constructed roles and expectation of women here in Fiji. This vulnerability is aggravated by viewing women as victims, rather than as key people who have vital information of their society, economy, and environment, as well as useful skills, which, when recognized and used, can be effective in disaster risk reduction. The focus of this study on disaster management is to outline ways in which Fijian women can be actively engaged in disaster risk management, articulating in decision-making, negating the perceived ideology of women’s constricted roles in Fiji and unveiling social constraints that limit women’s access to practical disaster management strategic plan. This paper outlines the importance of gender mainstreaming in disaster risk reduction and the ways of mainstreaming gender based on a literature review. It analyses theoretical study of academic literature as well as papers and reports produced by various national and international institutions and explores ways to better inform and engage women for climate change per ser disaster management in Fiji. The empowerment of women is believed to be a critical element in constructing disaster resilience as women are often considered to be the designers of community resilience at the local level. Gender mainstreaming as a way of bringing a gender perspective into climate related disasters can be applied to distinguish the varying needs and capacities of women, and integrate them into climate change adaptation strategies. This study will advocate women articulation in disaster risk management, thus giving equal standing to females in Fiji and also identify the gaps and inform national and local Disaster Risk Management authorities to implement processes that enhance gender equality and women’s empowerment towards a more equitable and effective disaster practice.

Keywords: disaster risk management, climate change, gender mainstreaming, women empowerment

Procedia PDF Downloads 388
17166 Resource Sharing Issues of Distributed Systems Influences on Healthcare Sector Concurrent Environment

Authors: Soo Hong Da, Ng Zheng Yao, Burra Venkata Durga Kumar

Abstract:

The Healthcare sector is a business that consists of providing medical services, manufacturing medical equipment and drugs as well as providing medical insurance to the public. Most of the time, the data stored in the healthcare database is to be related to patient’s information which is required to be accurate when it is accessed by authorized stakeholders. In distributed systems, one important issue is concurrency in the system as it ensures the shared resources to be synchronized and remains consistent through multiple read and write operations by multiple clients. The problems of concurrency in the healthcare sector are who gets the access and how the shared data is synchronized and remains consistent when there are two or more stakeholders attempting to the shared data simultaneously. In this paper, a framework that is beneficial to distributed healthcare sector concurrent environment is proposed. In the proposed framework, four different level nodes of the database, which are national center, regional center, referral center, and local center are explained. Moreover, the frame synchronization is not symmetrical. There are two synchronization techniques, which are complete and partial synchronization operation are explained. Furthermore, when there are multiple clients accessed at the same time, synchronization types are also discussed with cases at different levels and priorities to ensure data is synchronized throughout the processes.

Keywords: resources, healthcare, concurrency, synchronization, stakeholders, database

Procedia PDF Downloads 150
17165 [Keynote]: No-Trust-Zone Architecture for Securing Supervisory Control and Data Acquisition

Authors: Michael Okeke, Andrew Blyth

Abstract:

Supervisory Control And Data Acquisition (SCADA) as the state of the art Industrial Control Systems (ICS) are used in many different critical infrastructures, from smart home to energy systems and from locomotives train system to planes. Security of SCADA systems is vital since many lives depend on it for daily activities and deviation from normal operation could be disastrous to the environment as well as lives. This paper describes how No-Trust-Zone (NTZ) architecture could be incorporated into SCADA Systems in order to reduce the chances of malicious intent. The architecture is made up of two distinctive parts which are; the field devices such as; sensors, PLCs pumps, and actuators. The second part of the architecture is designed following lambda architecture, which is made up of a detection algorithm based on Particle Swarm Optimization (PSO) and Hadoop framework for data processing and storage. Apache Spark will be a part of the lambda architecture for real-time analysis of packets for anomalies detection.

Keywords: industrial control system (ics, no-trust-zone (ntz), particle swarm optimisation (pso), supervisory control and data acquisition (scada), swarm intelligence (SI)

Procedia PDF Downloads 345
17164 Integrated Teaching of Hardware Courses for the Undergraduates of Computer Science and Engineering to Attain Focused Outcomes

Authors: Namrata D. Hiremath, Mahalaxmi Bhille, P. G. Sunitha Hiremath

Abstract:

Computer systems play an integral role in all facets of the engineering profession. This calls for an understanding of the processor-level components of computer systems, their design and operation, and their impact on the overall performance of the systems. Systems users are always in need of faster, more powerful, yet cheaper computer systems. The focus of Computer Science engineering graduates is inclined towards software oriented base. To be an efficient programmer there is a need to understand the role of hardware architecture towards the same. It is essential for the students of Computer Science and Engineering to know the basic building blocks of any computing device and how the digital principles can be used to build them. Hence two courses Digital Electronics of 3 credits, which is associated with lab of 1.5 credits and Computer Organization of 5 credits, were introduced at the sophomore level. Activity was introduced with the objective to teach the hardware concepts to the students of Computer science engineering through structured lab. The students were asked to design and implement a component of a computing device using MultiSim simulation tool and build the same using hardware components. The experience of the activity helped the students to understand the real time applications of the SSI and MSI components. The impact of the activity was evaluated and the performance was measured. The paper explains the achievement of the ABET outcomes a, c and k.

Keywords: digital, computer organization, ABET, structured enquiry, course activity

Procedia PDF Downloads 501
17163 CONDUCTHOME: Gesture Interface Control of Home Automation Boxes

Authors: J. Branstett, V. Gagneux, A. Leleu, B. Levadoux, J. Pascale

Abstract:

This paper presents the interface CONDUCTHOME which controls home automation systems with a Leap Motion using ‘invariant gesture protocols’. The function of this interface is to simplify the interaction of the user with its environment. A hardware part allows the Leap Motion to be carried around the house. A software part interacts with the home automation box and displays the useful information for the user. An objective of this work is the development a natural/invariant/simple gesture control interface to help elder people/people with disabilities.

Keywords: automation, ergonomics, gesture recognition, interoperability

Procedia PDF Downloads 431
17162 Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks

Authors: E. Sobhani-Tehrani, K. Khorasani, N. Meskin

Abstract:

This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.

Keywords: hybrid fault diagnosis, dynamic neural networks, nonlinear systems, fault tolerant observer

Procedia PDF Downloads 401
17161 The Impact of Corporate Social Responsibility Information Disclosure on the Accuracy of Analysts' Earnings Forecasts

Authors: Xin-Hua Zhao

Abstract:

In recent years, the growth rate of social responsibility reports disclosed by Chinese corporations has grown rapidly. The economic effects of the growing corporate social responsibility reports have become a hot topic. The article takes the chemical listed engineering corporations that disclose social responsibility reports in China as a sample, and based on the information asymmetry theory, examines the economic effect generated by corporate social responsibility disclosure with the method of ordinary least squares. The research is conducted from the perspective of analysts’ earnings forecasts and studies the impact of corporate social responsibility information disclosure on improving the accuracy of analysts' earnings forecasts. The results show that there is a statistically significant negative correlation between corporate social responsibility disclosure index and analysts’ earnings forecast error. The conclusions confirm that enterprises can reduce the asymmetry of social and environmental information by disclosing social responsibility reports, and thus improve the accuracy of analysts’ earnings forecasts. It can promote the effective allocation of resources in the market.

Keywords: analysts' earnings forecasts, corporate social responsibility disclosure, economic effect, information asymmetry

Procedia PDF Downloads 156
17160 Reconsidering Taylor’s Law with Chaotic Population Dynamical Systems

Authors: Yuzuru Mitsui, Takashi Ikegami

Abstract:

The exponents of Taylor’s law in deterministic chaotic systems are computed, and their meanings are intensively discussed. Taylor’s law is the scaling relationship between the mean and variance (in both space and time) of population abundance, and this law is known to hold in a variety of ecological time series. The exponents found in the temporal Taylor’s law are different from those of the spatial Taylor’s law. The temporal Taylor’s law is calculated on the time series from the same locations (or the same initial states) of different temporal phases. However, with the spatial Taylor’s law, the mean and variance are calculated from the same temporal phase sampled from different places. Most previous studies were done with stochastic models, but we computed the temporal and spatial Taylor’s law in deterministic systems. The temporal Taylor’s law evaluated using the same initial state, and the spatial Taylor’s law was evaluated using the ensemble average and variance. There were two main discoveries from this work. First, it is often stated that deterministic systems tend to have the value two for Taylor’s exponent. However, most of the calculated exponents here were not two. Second, we investigated the relationships between chaotic features measured by the Lyapunov exponent, the correlation dimension, and other indexes with Taylor’s exponents. No strong correlations were found; however, there is some relationship in the same model, but with different parameter values, and we will discuss the meaning of those results at the end of this paper.

Keywords: chaos, density effect, population dynamics, Taylor’s law

Procedia PDF Downloads 174