Search results for: dynamic neural networks
5715 A Feasibility Study of Crowdsourcing Data Collection for Facility Maintenance Management
Authors: Mohamed Bin Alhaj, Hexu Liu, Mohammed Sulaiman, Osama Abudayyeh
Abstract:
An effective facility maintenance management (FMM) system plays a crucial role in improving the quality of services and maintaining the facility in good condition. Current FMM heavily relies on the quality of the data collection function of the FMM systems, at times resulting in inefficient FMM decision-making. The new technology-based crowdsourcing provides great potential to improve the current FMM practices, especially in terms of timeliness and quality of data. This research aims to investigate the feasibility of using new technology-driven crowdsourcing for FMM and highlight its opportunities and challenges. A survey was carried out to understand the human, data, system, geospatial, and automation characteristics of crowdsourcing for an educational campus FMM via social networks. The survey results were analyzed to reveal the challenges and recommendations for the implementation of crowdsourcing for FMM. This research contributes to the body of knowledge by synthesizing the challenges and opportunities of using crowdsourcing for facility maintenance and providing a road map for applying crowdsourcing technology in FMM. In future work, a conceptual framework will be proposed to support data-driven FMM using social networks.Keywords: crowdsourcing, facility maintenance management, social networks
Procedia PDF Downloads 1715714 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: cycle consistency, deformable multimodal image registration, deep learning, GAN
Procedia PDF Downloads 1315713 The Role of Social Capital and Dynamic Capabilities in a Circular Economy: Evidence from German Small and Medium-Sized Enterprises
Authors: Antonia Hoffmann, Andrea Stübner
Abstract:
Resource scarcity and rising material prices are forcing companies to rethink their business models. The conventional linear system of economic growth and rising social needs further exacerbates the problem of resource scarcity. Therefore, it is necessary to separate economic growth from resource consumption. This can be achieved through the circular economy (CE), which focuses on sustainable product life cycles. However, companies face challenges in implementing CE into their businesses. Small and medium-sized enterprises are particularly affected by these problems, as they have a limited resource base. Collaboration and social interaction between different actors can help to overcome these obstacles. Based on a self-generated sample of 1,023 German small and medium-sized enterprises, we use a questionnaire to investigate the influence of social capital and its three dimensions - structural, relational, and cognitive capital - on the implementation of CE and the mediating effect of dynamic capabilities in explaining these relationships. Using regression analyses and structural equation modeling, we find that social capital is positively associated with CE implementation and dynamic capabilities partially mediate this relationship. Interestingly, our findings suggest that not all social capital dimensions are equally important for CE implementation. We theoretically and empirically explore the network forms of social capital and extend the CE literature by suggesting that dynamic capabilities help organizations leverage social capital to drive the implementation of CE practices. The findings of this study allow us to suggest several implications for managers and institutions. From a practical perspective, our study contributes to building circular production and service capabilities in small and medium-sized enterprises. Various CE activities can transform products and services to contribute to a better and more responsible world.Keywords: circular economy, dynamic capabilities, SMEs, social capital
Procedia PDF Downloads 825712 Artificial Intelligence Methods for Returns Expectations in Financial Markets
Authors: Yosra Mefteh Rekik, Younes Boujelbene
Abstract:
We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation
Procedia PDF Downloads 4455711 Fault Diagnosis of Manufacturing Systems Using AntTreeStoch with Parameter Optimization by ACO
Authors: Ouahab Kadri, Leila Hayet Mouss
Abstract:
In this paper, we present three diagnostic modules for complex and dynamic systems. These modules are based on three ant colony algorithms, which are AntTreeStoch, Lumer & Faieta and Binary ant colony. We chose these algorithms for their simplicity and their wide application range. However, we cannot use these algorithms in their basement forms as they have several limitations. To use these algorithms in a diagnostic system, we have proposed three variants. We have tested these algorithms on datasets issued from two industrial systems, which are clinkering system and pasteurization system.Keywords: ant colony algorithms, complex and dynamic systems, diagnosis, classification, optimization
Procedia PDF Downloads 2965710 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions
Authors: Jian Li
Abstract:
The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase
Procedia PDF Downloads 855709 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers
Authors: Nishank Raisinghani
Abstract:
Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.Keywords: drug discovery, transformers, graph neural networks, multiomics
Procedia PDF Downloads 1525708 Seismic Investigation on the Effect of Surface Structures and Twin Tunnel on the Site Response in Urban Areas
Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi
Abstract:
Site response has a profound effect on earthquake damages. Seismic interaction of urban tunnels with surface structures could also affect seismic site response. Here, we use FLAC 2D to investigate the interaction of a single tunnel and twin tunnels-surface structures on the site response. Soil stratification and properties are selected based on Line. No 7 of the Tehran subway. The effect of surface structure is considered in two ways: Equivalent surcharge and geometrical modeling of the structure. Comparison of the results shows that consideration of the structure geometry is vital in dynamic analysis and leads to the changes in the magnitude of displacements, accelerations and response spectrum. Therefore it is necessary for the surface structures to be wholly modeled and not just considered as a surcharge in dynamic analysis. The use of twin tunnel also leads to the reduction of dynamic residual settlement.Keywords: superstructure, tunnel, site response, surcharge, interaction
Procedia PDF Downloads 1635707 A Study on Using Network Coding for Packet Transmissions in Wireless Sensor Networks
Authors: Rei-Heng Cheng, Wen-Pinn Fang
Abstract:
A wireless sensor network (WSN) is composed by a large number of sensors and one or a few base stations, where the sensor is responsible for detecting specific event information, which is sent back to the base station(s). However, how to save electricity consumption to extend the network lifetime is a problem that cannot be ignored in the wireless sensor networks. Since the sensor network is used to monitor a region or specific events, how the information can be reliably sent back to the base station is surly important. Network coding technique is often used to enhance the reliability of the network transmission. When a node needs to send out M data packets, it encodes these data with redundant data and sends out totally M + R packets. If the receiver can get any M packets out from these M + R packets, it can decode and get the original M data packets. To transmit redundant packets will certainly result in the excess energy consumption. This paper will explore relationship between the quality of wireless transmission and the number of redundant packets. Hopefully, each sensor can overhear the nearby transmissions, learn the wireless transmission quality around it, and dynamically determine the number of redundant packets used in network coding.Keywords: energy consumption, network coding, transmission reliability, wireless sensor networks
Procedia PDF Downloads 3885706 “Octopub”: Geographical Sentiment Analysis Using Named Entity Recognition from Social Networks for Geo-Targeted Billboard Advertising
Authors: Oussama Hafferssas, Hiba Benyahia, Amina Madani, Nassima Zeriri
Abstract:
Although data nowadays has multiple forms; from text to images, and from audio to videos, yet text is still the most used one at a public level. At an academical and research level, and unlike other forms, text can be considered as the easiest form to process. Therefore, a brunch of Data Mining researches has been always under its shadow, called "Text Mining". Its concept is just like data mining’s, finding valuable patterns in data, from large collections and tremendous volumes of data, in this case: Text. Named entity recognition (NER) is one of Text Mining’s disciplines, it aims to extract and classify references such as proper names, locations, expressions of time and dates, organizations and more in a given text. Our approach "Octopub" does not aim to find new ways to improve named entity recognition process, rather than that it’s about finding a new, and yet smart way, to use NER in a way that we can extract sentiments of millions of people using Social Networks as a limitless information source, and Marketing for product promotion as the main domain of application.Keywords: textmining, named entity recognition(NER), sentiment analysis, social media networks (SN, SMN), business intelligence(BI), marketing
Procedia PDF Downloads 5885705 Evaluating the Suitability and Performance of Dynamic Modulus Predictive Models for North Dakota’s Asphalt Mixtures
Authors: Duncan Oteki, Andebut Yeneneh, Daba Gedafa, Nabil Suleiman
Abstract:
Most agencies lack the equipment required to measure the dynamic modulus (|E*|) of asphalt mixtures, necessitating the need to use predictive models. This study compared measured |E*| values for nine North Dakota asphalt mixes using the original Witczak, modified Witczak, and Hirsch models. The influence of temperature on the |E*| models was investigated, and Pavement ME simulations were conducted using measured |E*| and predictions from the most accurate |E*| model. The results revealed that the original Witczak model yielded the lowest Se/Sy and highest R² values, indicating the lowest bias and highest accuracy, while the poorest overall performance was exhibited by the Hirsch model. Using predicted |E*| as inputs in the Pavement ME generated conservative distress predictions compared to using measured |E*|. The original Witczak model was recommended for predicting |E*| for low-reliability pavements in North Dakota.Keywords: asphalt mixture, binder, dynamic modulus, MEPDG, pavement ME, performance, prediction
Procedia PDF Downloads 445704 Dynamic Soil-Structure Interaction Analysis of Reinforced Concrete Buildings
Authors: Abdelhacine Gouasmia, Abdelhamid Belkhiri, Allaeddine Athmani
Abstract:
The objective of this paper is to evaluate the effects of soil-structure interaction (SSI) on the modal characteristics and on the dynamic response of current structures. The objective is on the overall behaviour of a real structure of five storeys reinforced concrete (R/C) building typically encountered in Algeria. Sensitivity studies are undertaken in order to study the effects of frequency content of the input motion, frequency of the soil-structure system, rigidity and depth of the soil layer on the dynamic response of such structures. This investigation indicated that the rigidity of the soil layer is the predominant factor in soil-structure interaction and its increases would definitely reduce the deformation in the R/C structure. On the other hand, increasing the period of the underlying soil will cause an increase in the lateral displacements at story levels and create irregularity in the distribution of story shears. Possible resonance between the frequency content of the input motion and soil could also play an important role in increasing the structural response.Keywords: direct method, finite element method, foundation, R/C Frame, soil-structure interaction
Procedia PDF Downloads 6385703 Worst-Case Load Shedding in Electric Power Networks
Authors: Fu Lin
Abstract:
We consider the worst-case load-shedding problem in electric power networks where a number of transmission lines are to be taken out of service. The objective is to identify a prespecified number of line outages that lead to the maximum interruption of power generation and load at the transmission level, subject to the active power-flow model, the load and generation capacity of the buses, and the phase-angle limit across the transmission lines. For this nonlinear model with binary constraints, we show that all decision variables are separable except for the nonlinear power-flow equations. We develop an iterative decomposition algorithm, which converts the worst-case load shedding problem into a sequence of small subproblems. We show that the subproblems are either convex problems that can be solved efficiently or nonconvex problems that have closed-form solutions. Consequently, our approach is scalable for large networks. Furthermore, we prove the convergence of our algorithm to a critical point, and the objective value is guaranteed to decrease throughout the iterations. Numerical experiments with IEEE test cases demonstrate the effectiveness of the developed approach.Keywords: load shedding, power system, proximal alternating linearization method, vulnerability analysis
Procedia PDF Downloads 1385702 Vibration Measurements of Single-Lap Cantilevered SPR Beams
Authors: Xiaocong He
Abstract:
Self-pierce riveting (SPR) is a new high-speed mechanical fastening technique which is suitable for point joining dissimilar sheet materials, as well as coated and pre-painted sheet materials. Mechanical structures assembled by SPR are expected to possess a high damping capacity. In this study, experimental measurement techniques were proposed for the prediction of vibration behavior of single-lap cantilevered SPR beams. The dynamic test software and the data acquisition hardware were used in the experimental measurement of the dynamic response of the single-lap cantilevered SPR beams. Free and forced vibration behavior of the single-lap cantilevered SPR beams was measured using the LMS CADA-X experimental modal analysis software and the LMS-DIFA Scadas II data acquisition hardware. The frequency response functions of the SPR beams of different rivet number were compared. The main goal of the paper is to provide a basic measuring method for further research on vibration based non-destructive damage detection in single-lap cantilevered SPR beams.Keywords: self-piercing riveting, dynamic response, experimental measurement, frequency response functions
Procedia PDF Downloads 4285701 Simulation Studies of High-Intensity, Nanosecond Pulsed Electric Fields Induced Dynamic Membrane Electroporation
Authors: Jiahui Song
Abstract:
The application of an electric field can cause poration at cell membranes. This includes the outer plasma membrane, as well as the membranes of intracellular organelles. In order to analyze and predict such electroporation effects, it becomes necessary to first evaluate the electric fields and the transmembrane voltages. This information can then be used to assess changes in the pore formation energy that finally yields the pore distributions and their radii based on the Smolchowski equation. The dynamic pore model can be achieved by including a dynamic aspect and a dependence on the pore population density into the pore formation energy equation. These changes make the pore formation energy E(r) self-adjusting in response to pore formation without causing uncontrolled growth and expansion. By using dynamic membrane tension, membrane electroporation in response to a 180kV/cm trapezoidal pulse with a 10 ns on time and 1.5 ns rise- and fall-times is discussed. Poration is predicted to occur at times beyond the peak at around 9.2 ns. Modeling also yields time-dependent distributions of the membrane pore population after multiple pulses. It shows that the pore distribution shifts to larger values of the radius with multiple pulsing. Molecular dynamics (MD) simulations are also carried out for a fixed field of 0.5 V/nm to demonstrate nanopore formation from a microscopic point of view. The result shows that the pore is predicted to be about 0.9 nm in diameter and somewhat narrower at the central point.Keywords: high-intensity, nanosecond, dynamics, electroporation
Procedia PDF Downloads 1565700 Investigation of Soil Slopes Stability
Authors: Nima Farshidfar, Navid Daryasafar
Abstract:
In this paper, the seismic stability of reinforced soil slopes is studied using pseudo-dynamic analysis. Equilibrium equations that are applicable to the every kind of failure surface are written using Horizontal Slices Method. In written equations, the balance of the vertical and horizontal forces and moment equilibrium is fully satisfied. Failure surface is assumed to be log-spiral, and non-linear equilibrium equations obtained for the system are solved using Newton-Raphson Method. Earthquake effects are applied as horizontal and vertical pseudo-static coefficients to the problem. To solve this problem, a code was developed in MATLAB, and the critical failure surface is calculated using genetic algorithm. At the end, comparing the results obtained in this paper, effects of various parameters and the effect of using pseudo - dynamic analysis in seismic forces modeling is presented.Keywords: soil slopes, pseudo-dynamic, genetic algorithm, optimization, limit equilibrium method, log-spiral failure surface
Procedia PDF Downloads 3365699 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 415698 Predicting National Football League (NFL) Match with Score-Based System
Authors: Marcho Setiawan Handok, Samuel S. Lemma, Abdoulaye Fofana, Naseef Mansoor
Abstract:
This paper is proposing a method to predict the outcome of the National Football League match with data from 2019 to 2022 and compare it with other popular models. The model uses open-source statistical data of each team, such as passing yards, rushing yards, fumbles lost, and scoring. Each statistical data has offensive and defensive. For instance, a data set of anticipated values for a specific matchup is created by comparing the offensive passing yards obtained by one team to the defensive passing yards given by the opposition. We evaluated the model’s performance by contrasting its result with those of established prediction algorithms. This research is using a neural network to predict the score of a National Football League match and then predict the winner of the game.Keywords: game prediction, NFL, football, artificial neural network
Procedia PDF Downloads 815697 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning
Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan
Abstract:
Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG
Procedia PDF Downloads 2545696 Apply Commitment Method in Power System to Minimize the Fuel Cost
Authors: Mohamed Shaban, Adel Yahya
Abstract:
The goal of this paper study is to schedule the power generation units to minimize fuel consumption cost based on a model that solves unit commitment problems. This can be done by utilizing forward dynamic programming method to determine the most economic scheduling of generating units. The model was applied to a power station, which consists of four generating units. The obtained results show that the applications of forward dynamic programming method offer a substantial reduction in fuel consumption cost. The fuel consumption cost has been reduced from $116,326 to $102,181 within a 24-hour period. This means saving about 12.16 % of fuel consumption cost. The study emphasizes the importance of applying modeling schedule programs to the operation of power generation units. As a consequence less consumption of fuel, less loss of power and less pollutionKeywords: unit commitment, forward dynamic, fuel cost, programming, generation scheduling, operation cost, power system, generating units
Procedia PDF Downloads 6085695 Dynamic Background Updating for Lightweight Moving Object Detection
Authors: Kelemewerk Destalem, Joongjae Cho, Jaeseong Lee, Ju H. Park, Joonhyuk Yoo
Abstract:
Background subtraction and temporal difference are often used for moving object detection in video. Both approaches are computationally simple and easy to be deployed in real-time image processing. However, while the background subtraction is highly sensitive to dynamic background and illumination changes, the temporal difference approach is poor at extracting relevant pixels of the moving object and at detecting the stopped or slowly moving objects in the scene. In this paper, we propose a moving object detection scheme based on adaptive background subtraction and temporal difference exploiting dynamic background updates. The proposed technique consists of a histogram equalization, a linear combination of background and temporal difference, followed by the novel frame-based and pixel-based background updating techniques. Finally, morphological operations are applied to the output images. Experimental results show that the proposed algorithm can solve the drawbacks of both background subtraction and temporal difference methods and can provide better performance than that of each method.Keywords: background subtraction, background updating, real time, light weight algorithm, temporal difference
Procedia PDF Downloads 3405694 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks
Authors: K. Indra Gandhi
Abstract:
Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.Keywords: data acquisition, model-driven development, separation of concern, wireless sensor networks
Procedia PDF Downloads 4345693 [Keynote Talk]: Analysis of Intelligent Based Fault Tolerant Capability System for Solar Photovoltaic Energy Conversion
Authors: Albert Alexander Stonier
Abstract:
Due to the fossil fuel exhaustion and environmental pollution, renewable energy sources especially solar photovoltaic system plays a predominant role in providing energy to the consumers. It has been estimated that by 2050 the renewable energy sources will satisfy 50% of the total energy requirement of the world. In this context, the faults in the conversion process require a special attention which is considered as a major problem. A fault which remains even for a few seconds will cause undesirable effects to the system. The presentation comprises of the analysis, causes, effects and mitigation methods of various faults occurring in the entire solar photovoltaic energy conversion process. In order to overcome the faults in the system, an intelligent based artificial neural networks and fuzzy logic are proposed which can significantly mitigate the faults. Hence the presentation intends to find the problem in renewable energy and provides the possible solution to overcome it with simulation and experimental results. The work performed in a 3kWp solar photovoltaic plant whose results cites the improvement in reliability, availability, power quality and fault tolerant ability.Keywords: solar photovoltaic, power electronics, power quality, PWM
Procedia PDF Downloads 2795692 Effect of Papaverine on Neurospheres
Authors: Noura Shehab-Eldeen, Mohamed Elsherbeeny, Hossam Elmetwally, Mohamed Salama, Ahmed Lotfy, Mohamed Elgamal, Hussein Sheashaa, Mohamed Sobh
Abstract:
Mitochondrial toxins including papaverine may be implicated in the etiology and pathogenesis of Parkinson's disease. The aim was to detect the effect of papaverine on the proliferation and viability of neural stem cells. Rat neural progenitor cells were isolated from embryos (E14) brains. The dispersed tissues were allowed to settle, then, The supernatant was centrifuged at 1,000 g for 5 min. The pellet was placed in Hank’s solution cultured as free-floating neurospheres Dulbecco’s modified Eagle medium (DMEM) and Hams F12 (3:1) supplemented with B27 (Invitrogen GmBH, Karlsruhe, Germany), 20 ng/mL epidermal growth factor (EGF; Biosource, Karlsruhe, Germany), 20 ng/mL recombinant human fibroblast growth factor (rhFGF; R&D Systems, Wiesbaden-Nordenstadt, Germany), and penicillin and streptomycin (1:100; Invitrogen) at 37°C with 7.5% CO2 . Differentiation was initiated by growth factor withdrawal and plating onto a poly-d-lysine/ laminin matrix. The neurospheres were fed every 2-3 days by replacing 50% of the culture media with fresh media. The culture suspension was transferred to a dish containing 16 wells. The wells were divided as follows: 4 wells received no papaverine (control), 4 wells 1 u, 4 wells 5 u and 4 wells 10 u of papaverine solution. In the next 2 weeks, photography (0,4,5,11days) and viability test were done. The photographs were analysed. Results : papaverine didn't affect proliferation of neurospheres, while it affected viability compared to control , this was dose related. Conclusion: This indicates the harmful effect of papaverine suggesting it to be a candidate neurotoxin causing Parkinsonism.Keywords: neurospheres, neural stem cells, papaverine, Parkinsonism
Procedia PDF Downloads 6585691 Finite Element Analysis of Raft Foundation on Various Soil Types under Earthquake Loading
Authors: Qassun S. Mohammed Shafiqu, Murtadha A. Abdulrasool
Abstract:
The design of shallow foundations to withstand different dynamic loads has given considerable attention in recent years. Dynamic loads may be due to the earthquakes, pile driving, blasting, water waves, and machine vibrations. But, predicting the behavior of shallow foundations during earthquakes remains a difficult task for geotechnical engineers. A database for dynamic and static parameters for different soils in seismic active zones in Iraq is prepared which has been collected from geophysical and geotechnical investigation works. Then, analysis of a typical 3-D soil-raft foundation system under earthquake loading is carried out using the database. And a parametric study has been carried out taking into consideration the influence of some parameters on the dynamic behavior of the raft foundation, such as raft stiffness, damping ratio as well as the influence of the earthquake acceleration-time records. The results of the parametric study show that the settlement caused by the earthquake can be decreased by about 72% with increasing the thickness from 0.5 m to 1.5 m. But, it has been noticed that reduction in the maximum bending moment by about 82% was predicted by decreasing the raft thickness from 1.5 m to 0.5 m in all sites model. Also, it has been observed that the maximum lateral displacement, the maximum vertical settlement and the maximum bending moment for damping ratio 0% is about 14%, 20%, and 18% higher than that for damping ratio 7.5%, respectively for all sites model.Keywords: shallow foundation, seismic behavior, raft thickness, damping ratio
Procedia PDF Downloads 1475690 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests
Authors: Julius Onyancha, Valentina Plekhanova
Abstract:
One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.Keywords: web log data, web user profile, user interest, noise web data learning, machine learning
Procedia PDF Downloads 2635689 Predicting Shot Making in Basketball Learnt Fromadversarial Multiagent Trajectories
Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan
Abstract:
In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. Previous approaches to similar problems center on hand-crafting features to capture domain-specific knowledge. Although intuitive, recent work in deep learning has shown, this approach is prone to missing important predictive features. To circumvent this issue, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories, we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.Keywords: basketball, computer vision, image processing, convolutional neural network
Procedia PDF Downloads 1525688 Finite Element Analysis and Multibody Dynamics of 6-DOF Industrial Robot
Authors: Rahul Arora, S. S. Dhami
Abstract:
This paper implements the design structure of industrial robot along with the different transmission components like gear assembly and analysis of complete industrial robot. In this paper, it gives the overview on the most efficient types of modeling and different analysis results that can be obtained for an industrial robot. The investigation is executed in regards to two classifications i.e. the deformation and the stress tests. SolidWorks is utilized to design and review the 3D drawing plan while ANSYS Workbench is utilized to execute the FEA on an industrial robot and the designed component. The CAD evaluation was conducted on a disentangled model of an industrial robot. The study includes design and drafting its transmission system. In CAE study static, modal and dynamic analysis are presented. Every one of the outcomes is divided in regard with the impact of the static and dynamic analysis on the situating exactness of the robot. It gives critical data with respect to parts of the industrial robot that are inclined to harm under higher high force applications. Therefore, the mechanical structure under different operating conditions can help in optimizing the manipulator geometry and in selecting the right material for the same. The FEA analysis is conducted for four different materials on the same industrial robot and gear assembly.Keywords: CAD, CAE, FEA, robot, static, dynamic, modal, gear assembly
Procedia PDF Downloads 3755687 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks
Authors: Sami Baraketi, Jean Marie Garcia, Olivier Brun
Abstract:
Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods.Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic
Procedia PDF Downloads 5265686 An ANN-Based Predictive Model for Diagnosis and Forecasting of Hypertension
Authors: Obe Olumide Olayinka, Victor Balanica, Eugen Neagoe
Abstract:
The effects of hypertension are often lethal thus its early detection and prevention is very important for everybody. In this paper, a neural network (NN) model was developed and trained based on a dataset of hypertension causative parameters in order to forecast the likelihood of occurrence of hypertension in patients. Our research goal was to analyze the potential of the presented NN to predict, for a period of time, the risk of hypertension or the risk of developing this disease for patients that are or not currently hypertensive. The results of the analysis for a given patient can support doctors in taking pro-active measures for averting the occurrence of hypertension such as recommendations regarding the patient behavior in order to lower his hypertension risk. Moreover, the paper envisages a set of three example scenarios in order to determine the age when the patient becomes hypertensive, i.e. determine the threshold for hypertensive age, to analyze what happens if the threshold hypertensive age is set to a certain age and the weight of the patient if being varied, and, to set the ideal weight for the patient and analyze what happens with the threshold of hypertensive age.Keywords: neural network, hypertension, data set, training set, supervised learning
Procedia PDF Downloads 390