Search results for: classification of matter
2197 More Than Financial Wealth: An Empirical Study on the Impact of Family Involvement on the Dimensions of Exit Success
Authors: Tim Vollmer, Andrea Greven, Malte Brettel
Abstract:
Family firms represent the predominant business structure worldwide, accounting for 90 percent of all operational businesses. These firms are essential to society and the economy. In the past decade, family firm exits increased by 72%; and in the next five years, 95,000 German family firms will be sold, acquired, or liquidated. For family firms, socioemotional wealth represents the frame of reference and value to preserve when making decisions. Family firm exits threaten the socioemotional wealth, as in extreme scenarios, economic logic may take over. So, a dilemma arises: Maintaining socioemotional wealth versus pursuing financial wealth. Family firm researchers agree that family involvement leads to specific goals, behaviors, and outcomes. For instance, the desire to protect socioemotional wealth when selling the firm and the focus on particular exit success dimensions, depending on the family's role inside the firm. However, despite the regularity of family firm exits, there is little research on the effect of family involvement on the family firm CEOs' perceived exit performance. We investigate the family firm CEOs' perceived exit performance, which we call exit success. Considering the deficiencies in the literature, we identify two research gaps. First, it remains unclear how family involvement affects the dimensions of exit success. Hence, we provide evidence of which success dimensions matter most depending on the family's involvement and how to differentiate successful from unsuccessful exits. Second, prior work has analyzed family involvement in the socioemotional wealth context but found contradictory findings. This work considers, for example, the family generation in control and identifies the tipping point of economic objectives becoming preferable over socioemotional wealth-related goals. This paper theorizes and empirically investigates, through the lens of socioemotional wealth and conflict theory, how socioemotional wealth mediates the relationship between family involvement and family firms' exit success. We analyze family firms' exit success dimensions of personal financial benefits, personal reputation, employee benefits, and firm mission persistence. Family involvement considers the family firms' heterogeneity in ownership, management, and generation. We use a quantitative approach in the form of an online survey by drawing on 116 responses from former family firm CEOs'. This study highlights that socioemotional wealth mediates the relationship between the dimensions of family involvement and exit success. The greater socioemotional wealth, the greater the family firm CEOs focus on the pro-organizational exit success dimensions of employee benefits and firm mission persistence. In contrast, the self-regarding dimension of personal financial benefits is significantly negatively affected. An important finding is that later generations and the number of family managers involved significantly negatively affect the two pro-organizational dimensions of exit success. Family ownership does not show any significant effect. Our work widens implications for research, theory, and practice by contributing in two meaningful ways. First, our results offer insights to differentiate successful from unsuccessful family firm exits and provide evidence of which success dimensions matter and which to focus on, most dependent on the family's role inside the firm. Second, our article advances research and empirical understanding of family firms and socioemotional wealth by clarifying contradictory findings.Keywords: exit success, family firm exit, perceived exit performance, socioemotional wealth
Procedia PDF Downloads 782196 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection
Authors: Praveen S. Muthukumarana, Achala C. Aponso
Abstract:
A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis
Procedia PDF Downloads 1422195 Nanotechnology as a Futuristic Approach to Architecture with Special Reference to Chandigarh
Authors: Chaudhary Archana, Dhingra Poshika
Abstract:
The architecture of the world is at a crossroads with the advent of new technology. The issues of energy efficiency and global warming are getting important with the coming times. New technologies are making their mark. For the architecture profession, nanotechnology will greatly impact construction materials and their properties. Nanotechnology, the understanding and control of matter at a scale of one to one hundred billions of a meter, is bringing incredible changes to the materials and processes of buildings. Materials will behave in many different ways as we are able to more precisely control their properties at the nanoscale. It is precisely called the next industrial revolution. We live in an age where scientific progress continues to transform human lifestyle. This is evermore true when it comes to the progress being made in the field of nanotechnology. This science stands to change and advance the practice of design in a multitude of ways – where architectural progress is being made at the molecular level. The nanotechnology has already been adopted in various buildings across the world. What an impact it shall have on the futuristic architecture in Chandigarh, India shall be discussed in the paper. But before we hurtle off toward a nano-utopia, we need to step back and ask ourselves whether this is a direction in which we really want to go.Keywords: building materials, energy efficiency, nanotechnology, sustainability
Procedia PDF Downloads 4572194 An Ensemble-based Method for Vehicle Color Recognition
Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi
Abstract:
The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network
Procedia PDF Downloads 812193 Groundwater Seepage Estimation into Amirkabir Tunnel Using Analytical Methods and DEM and SGR Method
Authors: Hadi Farhadian, Homayoon Katibeh
Abstract:
In this paper, groundwater seepage into Amirkabir tunnel has been estimated using analytical and numerical methods for 14 different sections of the tunnel. Site Groundwater Rating (SGR) method also has been performed for qualitative and quantitative classification of the tunnel sections. The obtained results of above-mentioned methods were compared together. The study shows reasonable accordance with results of the all methods unless for two sections of tunnel. In these two sections there are some significant discrepancies between numerical and analytical results mainly originated from model geometry and high overburden. SGR and the analytical and numerical calculations, confirm the high concentration of seepage inflow in fault zones. Maximum seepage flow into tunnel has been estimated 0.425 lit/sec/m using analytical method and 0.628 lit/sec/m using numerical method occurred in crashed zone. Based on SGR method, six sections of 14 sections in Amirkabir tunnel axis are found to be in "No Risk" class that is supported by the analytical and numerical seepage value of less than 0.04 lit/sec/m.Keywords: water Seepage, Amirkabir Tunnel, analytical method, DEM, SGR
Procedia PDF Downloads 4742192 Pre-Industrial Local Architecture According to Natural Properties
Authors: Selin Küçük
Abstract:
Pre-industrial architecture is integration of natural and subsequent properties by intelligence and experience. Since various settlements relatively industrialized or non-industrialized at any time, ‘pre-industrial’ term does not refer to a definite time. Natural properties, which are existent conditions and materials in natural local environment, are climate, geomorphology and local materials. Subsequent properties, which are all anthropological comparatives, are culture of societies, requirements of people and construction techniques that people use. Yet, after industrialization, technology took technique’s place, cultural effects are manipulated, requirements are changed and local/natural properties are almost disappeared in architecture. Technology is universal, global and expands simply; conversely technique is time and experience dependent and should has a considerable cultural background. This research is about construction techniques according to natural properties of a region and classification of these techniques. Understanding local architecture is only possible by searching its background which is hard to reach. There are always changes in positive and negative in architectural techniques through the time. Archaeological layers of a region sometimes give more accurate information about transformation of architecture. However, natural properties of any region are the most helpful elements to perceive construction techniques. Many international sources from different cultures are interested in local architecture by mentioning natural properties separately. Unfortunately, there is no literature deals with this subject as far as systematically in the correct way. This research aims to improve a clear perspective of local architecture existence by categorizing archetypes according to natural properties. The ultimate goal of this research is generating a clear classification of local architecture independent from subsequent (anthropological) properties over the world such like a handbook. Since local architecture is the most sustainable architecture with refer to its economic, ecologic and sociological properties, there should be an excessive information about construction techniques to be learned from. Constructing the same buildings in all over the world is one of the main criticism of modern architectural system. While this critics going on, the same buildings without identity increase incrementally. In post-industrial term, technology widely took technique’s place, yet cultural effects are manipulated, requirements are changed and natural local properties are almost disappeared in architecture. These study does not offer architects to use local techniques, but it indicates the progress of pre-industrial architectural evolution which is healthier, cheaper and natural. Immigration from rural areas to developing/developed cities should be prohibited, thus culture and construction techniques can be preserved. Since big cities have psychological, sensational and sociological impact on people, rural settlers can be convinced to not to immigrate by providing new buildings designed according to natural properties and maintaining their settlements. Improving rural conditions would remove the economical and sociological gulf between cities and rural. What result desired to arrived in, is if there is no deformation (adaptation process of another traditional buildings because of immigration) or assimilation in a climatic region, there should be very similar solutions in the same climatic regions of the world even if there is no relationship (trade, communication etc.) among them.Keywords: climate zones, geomorphology, local architecture, local materials
Procedia PDF Downloads 4282191 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors
Authors: Ayyaz Hussain, Tariq Sadad
Abstract:
Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.Keywords: breast cancer, DCNN, KNN, mammography
Procedia PDF Downloads 1352190 User Requirements Analysis for the Development of Assistive Navigation Mobile Apps for Blind and Visually Impaired People
Authors: Paraskevi Theodorou, Apostolos Meliones
Abstract:
In the context of the development process of two assistive navigation mobile apps for blind and visually impaired people (BVI) an extensive qualitative analysis of the requirements of potential users has been conducted. The analysis was based on interviews with BVIs and aimed to elicit not only their needs with respect to autonomous navigation but also their preferences on specific features of the apps under development. The elicited requirements were structured into four main categories, namely, requirements concerning the capabilities, functionality and usability of the apps, as well as compatibility requirements with respect to other apps and services. The main categories were then further divided into nine sub-categories. This classification, along with its content, aims to become a useful tool for the researcher or the developer who is involved in the development of digital services for BVI.Keywords: accessibility, assistive mobile apps, blind and visually impaired people, user requirements analysis
Procedia PDF Downloads 1232189 A Deep Reinforcement Learning-Based Secure Framework against Adversarial Attacks in Power System
Authors: Arshia Aflaki, Hadis Karimipour, Anik Islam
Abstract:
Generative Adversarial Attacks (GAAs) threaten critical sectors, ranging from fingerprint recognition to industrial control systems. Existing Deep Learning (DL) algorithms are not robust enough against this kind of cyber-attack. As one of the most critical industries in the world, the power grid is not an exception. In this study, a Deep Reinforcement Learning-based (DRL) framework assisting the DL model to improve the robustness of the model against generative adversarial attacks is proposed. Real-world smart grid stability data, as an IIoT dataset, test our method and improves the classification accuracy of a deep learning model from around 57 percent to 96 percent.Keywords: generative adversarial attack, deep reinforcement learning, deep learning, IIoT, generative adversarial networks, power system
Procedia PDF Downloads 352188 Contextual Toxicity Detection with Data Augmentation
Authors: Julia Ive, Lucia Specia
Abstract:
Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing
Procedia PDF Downloads 1692187 Analytical Study of Data Mining Techniques for Software Quality Assurance
Authors: Mariam Bibi, Rubab Mehboob, Mehreen Sirshar
Abstract:
Satisfying the customer requirements is the ultimate goal of producing or developing any product. The quality of the product is decided on the bases of the level of customer satisfaction. There are different techniques which have been reported during the survey which enhance the quality of the product through software defect prediction and by locating the missing software requirements. Some mining techniques were proposed to assess the individual performance indicators in collaborative environment to reduce errors at individual level. The basic intention is to produce a product with zero or few defects thereby producing a best product quality wise. In the analysis of survey the techniques like Genetic algorithm, artificial neural network, classification and clustering techniques and decision tree are studied. After analysis it has been discovered that these techniques contributed much to the improvement and enhancement of the quality of the product.Keywords: data mining, defect prediction, missing requirements, software quality
Procedia PDF Downloads 4642186 Meaningfulness of Right to Life in Holy Quran
Authors: Masoud Raei, Mohammadmahdi Sadeghi
Abstract:
The right to life as the most essential right in human rights issues and in the first group has devoted a special place to itself. Attention to this right and its domain and its reflection in civil rights is one of the most important axis of the rights to life issues. Issues discussed concerning this matter in public law with regard to its status in human rights are the determination of government’s duty toward identification; application and guarantee of this right. The constitutions of countries have chosen different approaches towards the identification of this right and also its limits and boundaries, determining the territory of governments for citizens. The reason for such a difference is the question arising in this regard. It is claimed that without the determination of meaningfulness of the right to life, it is not possible to provide a clear response to this question. The goal of this paper is to justify its theoretical framework from the view of meaningfulness of right to life relying on Quranic verses with a conceptual approach towards the right to life so that the relationship between government and citizens with regard to right to life is determined. Through a comparative study, it is possible to attain significant differences between the teachings of the Holy Quran and human rights documents. The method of this paper is a descriptive-analytic approach relying on interpretation books on Holy Quran.Keywords: meaningfulness, objectivism, separatism, right to life
Procedia PDF Downloads 3062185 Identifying Promoters and Their Types Based on a Two-Layer Approach
Authors: Bin Liu
Abstract:
Prokaryotic promoter, consisted of two short DNA sequences located at in -35 and -10 positions, is responsible for controlling the initiation and expression of gene expression. Different types of promoters have different functions, and their consensus sequences are similar. In addition, their consensus sequences may be different for the same type of promoter, which poses difficulties for promoter identification. Unfortunately, all existing computational methods treat promoter identification as a binary classification task and can only identify whether a query sequence belongs to a specific promoter type. It is desired to develop computational methods for effectively identifying promoters and their types. Here, a two-layer predictor is proposed to try to deal with the problem. The first layer is designed to predict whether a given sequence is a promoter and the second layer predicts the type of promoter that is judged as a promoter. Meanwhile, we also analyze the importance of feature and sequence conversation in two aspects: promoter identification and promoter type identification. To the best knowledge of ours, it is the first computational predictor to detect promoters and their types.Keywords: promoter, promoter type, random forest, sequence information
Procedia PDF Downloads 1832184 Assessment of Taiwan Railway Occurrences Investigations Using Causal Factor Analysis System and Bayesian Network Modeling Method
Authors: Lee Yan Nian
Abstract:
Safety investigation is different from an administrative investigation in that the former is conducted by an independent agency and the purpose of such investigation is to prevent accidents in the future and not to apportion blame or determine liability. Before October 2018, Taiwan railway occurrences were investigated by local supervisory authority. Characteristics of this kind of investigation are that enforcement actions, such as administrative penalty, are usually imposed on those persons or units involved in occurrence. On October 21, 2018, due to a Taiwan Railway accident, which caused 18 fatalities and injured another 267, establishing an agency to independently investigate this catastrophic railway accident was quickly decided. The Taiwan Transportation Safety Board (TTSB) was then established on August 1, 2019 to take charge of investigating major aviation, marine, railway and highway occurrences. The objective of this study is to assess the effectiveness of safety investigations conducted by the TTSB. In this study, the major railway occurrence investigation reports published by the TTSB are used for modeling and analysis. According to the classification of railway occurrences investigated by the TTSB, accident types of Taiwan railway occurrences can be categorized into: derailment, fire, Signal Passed at Danger and others. A Causal Factor Analysis System (CFAS) developed by the TTSB is used to identify the influencing causal factors and their causal relationships in the investigation reports. All terminologies used in the CFAS are equivalent to the Human Factors Analysis and Classification System (HFACS) terminologies, except for “Technical Events” which was added to classify causal factors resulting from mechanical failure. Accordingly, the Bayesian network structure of each occurrence category is established based on the identified causal factors in the CFAS. In the Bayesian networks, the prior probabilities of identified causal factors are obtained from the number of times in the investigation reports. Conditional Probability Table of each parent node is determined from domain experts’ experience and judgement. The resulting networks are quantitatively assessed under different scenarios to evaluate their forward predictions and backward diagnostic capabilities. Finally, the established Bayesian network of derailment is assessed using investigation reports of the same accident which was investigated by the TTSB and the local supervisory authority respectively. Based on the assessment results, findings of the administrative investigation is more closely tied to errors of front line personnel than to organizational related factors. Safety investigation can identify not only unsafe acts of individual but also in-depth causal factors of organizational influences. The results show that the proposed methodology can identify differences between safety investigation and administrative investigation. Therefore, effective intervention strategies in associated areas can be better addressed for safety improvement and future accident prevention through safety investigation.Keywords: administrative investigation, bayesian network, causal factor analysis system, safety investigation
Procedia PDF Downloads 1232183 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology
Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik
Abstract:
Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms
Procedia PDF Downloads 772182 Ultrasonographic Manifestation of Periventricular Leukomalacia in Preterm Neonates at Teaching Hospital Peradeniya, Sri Lanka
Authors: P. P. Chandrasekera, P. B. Hewavithana, S. Rosairo, M. H. M. N. Herath, D. M. R. D. Mirihella
Abstract:
Periventricular Leukomalacia (PVL) is a White Matter Injury (WMI) of preterm neonatal brain. Objectives of the study were to assess the neuro-developmental outcome at one year of age and to determine a good protocol of cranial ultrasonography to detect PVL. Two hundred and sixty four preterm neonates were included in the study. Series of cranial ultrasound scans were done by using a dedicated neonatal head probe 4-10 MHz of Logic e portable ultrasound scanner. Clinical history of seizures, abnormal head growth (hydrocephalus or microcephaly) and developmental milestones were assessed and neurological examinations were done until one year of age. Among live neonates, 57% who had cystic PVL (Grades2 and 3) manifested as cerebral palsy. In conclusion cystic PVL has permanent neurological disabilities like cerebral palsy. Good protocol of real time cranial ultrasonography to detect PVL is to perform scans at least once a week until one month and at term (40 weeks of gestation).Keywords: cerebral palsy, cranial ultrasonography, Periventricular Leukomalacia, preterm neonates
Procedia PDF Downloads 3922181 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker
Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation
Procedia PDF Downloads 222180 Investigation of the Multiaxial Pedicle Screw Tulip Design Using Finite Element Analysis
Authors: S. Daqiqeh Rezaei, S. Mohajerzadeh, M. R. Sharifi
Abstract:
Pedicle screws are used to stabilize vertebrae and treat several types of spinal diseases and injuries. Multiaxial pedicle screws are a type of pedicle screw that increase surgical versatility, but they also increase design complexity. Failure of multiaxial pedicle screws caused by static loading, dynamic loading and fatigue can lead to irreparable damage to the patient. Inappropriate deformation of the multiaxial pedicle screw tulip can cause system failure. Investigation of deformation and stress in these tulips can be employed to optimize multiaxial pedicle screw design. The sensitivity of this matter necessitates precise analyzing and modeling of pedicle screws. In this work, three commercial multiaxial pedicle screw tulips and a newly designed tulip are investigated using finite element analysis. Employing video measuring machine (VMM), tulips are modeled. Afterwards, utilizing ANSYS, static analysis is performed on these models. In the end, stresses and displacements of the models are compared.Keywords: pedicle screw, multiaxial pedicle screw, finite element analysis, static analysis
Procedia PDF Downloads 3662179 Finding Out the Best Place for Resettling of Victims after the Earthquake: A Case Study for Tehran, Iran
Authors: Reyhaneh Saeedi, Nima Ghasemloo
Abstract:
Iran is a capable zone for earthquake that follows loss of lives and financial damages. To have sheltering for earthquake victims is one of the basic requirements although it is hard to select suitable places for temporary resettling after an earthquake happens. Before these kinds of disasters happen, the best places for resettling the victims must be designated. This matter is an important issue in disaster management and planning. Geospatial Information System (GIS) has a determining role in disaster management; it can determine the best places for temporary resettling after such a disaster. In this paper the best criteria have been determined associated with their weights and buffers by use of research and questionnaire for locating the best places. In this paper, AHP method is used as decision model and to locate the best places for temporary resettling is done based on the selected criteria. Also in this research are made the buffer layers of criteria and change them to the raster layers. Later on, the raster layers are multiplied on desired weights then, the results are added together. Finally there are suitable places for resettling of victims by desired criteria by different colors with their optimum rate in QGIS software.Keywords: disaster management, temporary resettlement, earthquake, criteria
Procedia PDF Downloads 4632178 Suitable Indoor Plants for Green Office Development in Faculty of Science and Technology, Suan Sunandha Rajabhat University, Thailand
Authors: Tatsanawalai Utarasakul
Abstract:
Nowadays, green office principles are very broadly initiated in many offices, organizations, as well as in universities. The concepts of green office are composed of seven prominent issues. One of them, physical implementation, is to develop a pleasant atmosphere for staff in the faculty with selected optimum plant species for the office. 50 species from NASA research and other documents were studied for the selection criteria of plants which were appropriate for specific locations in order to reduce indoor air pollutants such as formaldehyde, benzene, and trichloroethylene. For the copy and examination preparation room in which particulate matter and volatile organic compounds can be found, some plants such as peace lily, gerbera daisy, and bamboo palm should be set, which are very effective in treating trichloroethylene. For common rooms and offices where formaldehyde can be found, which is generated from many building materials, bamboo palm, mother-in-law's tongue, peace lily, striped dracaena, cornstalk plant, golden pathos, and green spider plant should be set.Keywords: indoor plants, indoor air quality, phytoremediation, green office
Procedia PDF Downloads 4552177 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition
Procedia PDF Downloads 2722176 Effects of Specific Essential Oil Compounds on, Feed Intake, Milk Production, and Ruminal Environment in Dairy Cows during Heat Exposure
Authors: Kamran Reza-Yazdi, Mohammad Fallah, Mahdi Khodaparast, Farshad Kateb, Morteza Hosseini-Ghaffari
Abstract:
The objective of this study was to determine effect of dietary essential oil (EO) compounds, which contained cinnamaldehyde, eugenol, peppermint, coriander, cumin, lemongrass, and an organic carrier on feed intake, milk composition, and rumen fermentation of dairy cows during heat exposure. Thirty-two Holstein cows (days in milk= 60 ± 5) were assigned to one of two treatment groups: a Control and EO fed. The experiment lasted 28 days. Dry matter intake (DMI) was measured daily while and milk production was measured weekly. Our result showed that DMI and milk yield was decreased (P < 0.01) in control cows relative to EO cows. Furthermore, supplementation with EO was associated with a decrease in the molar proportion of propionate (P < 0.05) and increase (P < 0.05) in acetate to propionate ratio. In conclusion, EO supplementations in diets can be useful nutritional modification to alleviate for the decrease DMI and milk production during heat exposure in lactating dairy cows.Keywords: dairy cow, feed additive, plant extract, eugenol
Procedia PDF Downloads 7932175 Gender Differences in E-Society: The Case of Slovenia
Authors: Mitja Dečman
Abstract:
The ever-increasing presence and use of information and communication technology (ICT) influences the different social relationships of today's society. Gender differences are especially important from the viewpoint of modern society since ICT can either deepen the existing inequalities or diminish them. In a developed Western world, gender equality has been a well-focused area for decades in many parts of society including education, employment or politics and has led to a decrease in the inequality of women and men in these and other areas. The area of digital equality, or inequality for that matter, is one of the areas where gender differences still exist in many countries of the world. The research presented in this paper focuses on Slovenia, one of the smallest EU member states, being an average achiever in the area of e-society according to the many different European benchmarking indexes. On the other hand, Slovenia is working in an alignment with many European gender equality guidelines and showing good results. The results of our research are based on the analysis of survey data from 2014 to 2017 dealing with Slovenian citizens and their households and the use of ICT. Considering gender issues, the synthesis showed that cultural differences influence some measured ICT indicators but on the other hand the differences are low and only sometimes statistically significant.Keywords: digital divide, gender inequality, Slovenia, e-society
Procedia PDF Downloads 1662174 Threat Analysis: A Technical Review on Risk Assessment and Management of National Testing Service (NTS)
Authors: Beenish Urooj, Ubaid Ullah, Sidra Riasat
Abstract:
National Testing Service-Pakistan (NTS) is an agency in Pakistan that conducts student success appraisal examinations. In this research paper, we must present a security model for the NTS organization. The security model will depict certain security countermeasures for a better defense against certain types of breaches and system malware. We will provide a security roadmap, which will help the company to execute its further goals to maintain security standards and policies. We also covered multiple aspects in securing the environment of the organization. We introduced the processes, architecture, data classification, auditing approaches, survey responses, data handling, and also training and awareness of risk for the company. The primary contribution is the Risk Survey, based on the maturity model meant to assess and examine employee training and knowledge of risks in the company's activities.Keywords: NTS, risk assessment, threat factors, security, services
Procedia PDF Downloads 702173 Between Legal Authority and Epistemic Competence: A Case Study of the Brazilian Supreme Court
Authors: Júlia Massadas
Abstract:
The objective of this paper is to analyze the role played by the institute of the public hearings in the Brazilian Supreme Court. The public hearings are regulated since 1999 by the Brazilian Laws nº 9.868, nº 9.882 and by the Intern Regiment of the Brazilian Supreme Court. According to this legislation, the public hearings are supposed to be called when a matter of circumstance of fact must be clarified, what can be done through the hearing of the testimonies of persons with expertise and authority in the theme related to the cause. This work aims to investigate what is the role played by the public hearings and by the experts in the Brazilian Supreme Court. The hypothesis of this research is that: (I) The public hearings in the Brazilian Supreme Court are used to uphold a rhetoric of a democratic legitimacy of the Court`s decisions; (II) The Legislative intentions have been distorted. To test this hypothesis, the adopted methodology involves an empirical study of the Brazilian jurisprudence. As a conclusion, it follows that the public hearings convened by the Brazilian Supreme Court do not correspond, in practice, to the role assigned to them by the Congress since they do not serve properly to epistemic interests. The public hearings not only do not legitimate democratically the decisions, but also, do not properly clarify technical issues.Keywords: Brazilian Supreme Court, constitutional law, public hearings, epistemic competence, legal authority
Procedia PDF Downloads 4012172 Foreign Direct Investment and Its Impact on the Economic Growth of Emerging Economies: Does Ease of Doing Business Matter?
Authors: Mutaju Marobhe, Pastory Dickson
Abstract:
This study explores the role of Foreign Direct Investment (FDI) in stimulating economic growth of emerging economies. FDIs have been associated with higher economic growth rates in developed countries due to the presence of conducive business conditions e.g. advanced financial markets which may accelerate the rate at which FDI boosts economic growth. So this study sets out to evaluate this macroeconomic phenomenon in emerging economies using the case study of Southern Africa Development Community (SADC) countries. The study uses Ease of Doing Business Index as a variable that moderates the relationship between FDI and economic growth. Panel data ranging from 2010 to 2019 from all SADC members are used and due to the unbalanced nature of the data, fixed effects regression analysis with moderation effect is used to assess this phenomenon. The conclusions and recommendations generated by this study will enable emerging economies to depict how they can be able to significantly improve FDI’s role in accelerating economic growth similarly to developed economies.Keywords: ease of doing business, economic growth, emerging economies, foreign direct investment
Procedia PDF Downloads 1422171 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals
Authors: Christine F. Boos, Fernando M. Azevedo
Abstract:
Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing
Procedia PDF Downloads 5282170 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy
Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh
Abstract:
Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography
Procedia PDF Downloads 1522169 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision
Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias
Abstract:
Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.Keywords: healthcare, fall detection, transformer, transfer learning
Procedia PDF Downloads 1422168 Finding out the Best Criteria for Locating the Best Place Resettling of Victims after the Earthquake: A Case Study for Tehran, Iran
Authors: Reyhaneh Saeedi
Abstract:
Iran is a capable zone for the earthquake that follows the loss of lives and financial damages. To have sheltering for earthquake victims is one of the basic requirements although it is hard to select suitable places for temporary resettling after an earthquake happens. Before these kinds of disasters happen, the best places for resettling the victims must be designated. This matter is an important issue in disaster management and planning. Geospatial Information System(GIS) has a determining role in disaster management, it can determine the best places for temporary resettling after such a disaster. In this paper, the best criteria have been determined associated with their weights and buffers by use of research and questionnaire for locating the best places. In this paper, AHP method is used as decision model and to locate the best places for temporary resettling is done based on the selected criteria. Also, in this research are made the buffer layers of criteria and change them to the raster layers. Later on, the raster layers are multiplied on desired weights then, the results are added together. Finally, there are suitable places for resettling of victims by desired criteria by different colors with their optimum rate in ArcGIS software.Keywords: disaster management, temporary resettlement, earthquake, criteria
Procedia PDF Downloads 291