Search results for: accuracy improvement
6198 Improving the Logistic System to Secure Effective Food Fish Supply Chain in Indonesia
Authors: Atikah Nurhayati, Asep A. Handaka
Abstract:
Indonesia is a world’s major fish producer which can feed not only its citizens but also the people of the world. Currently, the total annual production is 11 tons and expected to double by the year of 2050. Given the potential, fishery has been an important part of the national food security system in Indonesia. Despite such a potential, a big challenge is facing the Indonesians in making fish the reliable source for their food, more specifically source of protein intake. The long geographic distance between the fish production centers and the consumer concentrations has prevented effective supply chain from producers to consumers and therefore demands a good logistic system. This paper is based on our research, which aimed at analyzing the fish supply chain and is to suggest relevant improvement to the chain. The research was conducted in the Year of 2016 in selected locations of Java Island, where intensive transaction on fishery commodities occur. Data used in this research comprises secondary data of time series reports on production and distribution and primary data regarding distribution aspects which were collected through interviews with purposively selected 100 respondents representing fishers, traders and processors. The data were analyzed following the supply chain management framework and processed following logistic regression and validity tests. The main findings of the research are as follows. Firstly, it was found that improperly managed connectivity and logistic chain is the main cause for insecurity of availability and affordability for the consumers. Secondly, lack of quality of most local processed products is a major obstacle for improving affordability and connectivity. The paper concluded with a number of recommended strategies to tackle the problem. These include rationalization of the length of the existing supply chain, intensification of processing activities, and improvement of distribution infrastructure and facilities.Keywords: fishery, food security, logistic, supply chain
Procedia PDF Downloads 2456197 Ankle Fracture Management: A Unique Cross Departmental Quality Improvement Project
Authors: Langhit Kurar, Loren Charles
Abstract:
Introduction: In light of recent BOAST 12 (August 2016) published guidance on management of ankle fractures, the project aimed to highlight key discrepancies throughout the care trajectory from admission to point of discharge at a district general hospital. Wide breadth of data covering three key domains: accident and emergency, radiology, and orthopaedic surgery were subsequently stratified and recommendations on note documentation, and outpatient follow up were made. Methods: A retrospective twelve month audit was conducted reviewing results of ankle fracture management in 37 patients. Inclusion criterion involved all patients seen at Darent Valley Hospital (DVH) emergency department with radiographic evidence of an ankle fracture. Exclusion criterion involved all patients managed solely by nursing staff or having sustained purely ligamentous injury. Medical notes, including discharge summaries and the PACS online radiographic tool were used for data extraction. Results: Cross-examination of the A & E domain revealed limited awareness of the BOAST 12 recent publication including requirements to document skin integrity and neurovascular assessment. This had direct implications as this would have changed the surgical plan for acutely compromised patients. The majority of results obtained from the radiographic domain were satisfactory with appropriate X-rays taken in over 95% of cases. However, due to time pressures within A & E, patients were often left without a post manipulation XRAY in a backslab. Poorly reduced fractures were subsequently left for a long period resulting in swollen ankles and a time-dependent lag to surgical intervention. This had knocked on implications for prolonged inpatient stay resulting in hospital-acquired co-morbidity including pressure sores. Discussion: The audit has highlighted several areas of improvement throughout the disease trajectory from review in the emergency department to follow up as an outpatient. This has prompted the creation of an algorithm to ensure patients with significant fractures presenting to the emergency department are seen promptly and treatment expedited as per recent guidance. This includes timing for X-rays taken in A & E. Re-audit has shown significant improvement in both documentation at time of presentation and appropriate follow-up strategies. Within the orthopedic domain, we are in the process of creating an ankle fracture pathway to ensure imaging and weight bearing status are made clear to the consulting clinicians in an outpatient setting. Significance/Clinical Relevance: As a result of the ankle fracture algorithm we have adapted the BOAST 12 guidance to shape an intrinsic pathway to not only improve patient management within the emergency department but also create a standardised format for follow up.Keywords: ankle, fracture, BOAST, radiology
Procedia PDF Downloads 1806196 Constructing a Semi-Supervised Model for Network Intrusion Detection
Authors: Tigabu Dagne Akal
Abstract:
While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.Keywords: intrusion detection, data mining, computer science, data mining
Procedia PDF Downloads 2986195 Role of von Willebrand Factor Antigen as Non-Invasive Biomarker for the Prediction of Portal Hypertensive Gastropathy in Patients with Liver Cirrhosis
Authors: Mohamed El Horri, Amine Mouden, Reda Messaoudi, Mohamed Chekkal, Driss Benlaldj, Malika Baghdadi, Lahcene Benmahdi, Fatima Seghier
Abstract:
Background/aim: Recently, the Von Willebrand factor antigen (vWF-Ag)has been identified as a new marker of portal hypertension (PH) and its complications. Few studies talked about its role in the prediction of esophageal varices. VWF-Ag is considered a non-invasive approach, In order to avoid the endoscopic burden, cost, drawbacks, unpleasant and repeated examinations to the patients. In our study, we aimed to evaluate the ability of this marker in the prediction of another complication of portal hypertension, which is portal hypertensive gastropathy (PHG), the one that is diagnosed also by endoscopic tools. Patients and methods: It is about a prospective study, which include 124 cirrhotic patients with no history of bleeding who underwent screening endoscopy for PH-related complications like esophageal varices (EVs) and PHG. Routine biological tests were performed as well as the VWF-Ag testing by both ELFA and Immunoturbidimetric techniques. The diagnostic performance of our marker was assessed using sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and receiver operating characteristic curves. Results: 124 patients were enrolled in this study, with a mean age of 58 years [CI: 55 – 60 years] and a sex ratio of 1.17. Viral etiologies were found in 50% of patients. Screening endoscopy revealed the presence of PHG in 20.2% of cases, while for EVsthey were found in 83.1% of cases. VWF-Ag levels, were significantly increased in patients with PHG compared to those who have not: 441% [CI: 375 – 506], versus 279% [CI: 253 – 304], respectively (p <0.0001). Using the area under the receiver operating characteristic curve (AUC), vWF-Ag was a good predictor for the presence of PHG. With a value higher than 320% and an AUC of 0.824, VWF-Ag had an 84% sensitivity, 74% specificity, 44.7% positive predictive value, 94.8% negative predictive value, and 75.8% diagnostic accuracy. Conclusion: VWF-Ag is a good non-invasive low coast marker for excluding the presence of PHG in patients with liver cirrhosis. Using this marker as part of a selective screening strategy might reduce the need for endoscopic screening and the coast of the management of these kinds of patients.Keywords: von willebrand factor, portal hypertensive gastropathy, prediction, liver cirrhosis
Procedia PDF Downloads 2086194 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea
Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro
Abstract:
Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting
Procedia PDF Downloads 1386193 Management of Recurrent Temporomandibular Joint True Bony Ankylosis : A Case Report
Authors: Mahmoud A. Amin, Essam Taman, Ahmed Omran, Mahmoud Shawky, Ahmed Mekawy, Abdallah M. Kotkat, Saber Younes, Nehad N. Ghonemy, Amin Saad, Ezz-Aleslam, Abdullah M. Elosh
Abstract:
Introduction: TMJ is a one-of-a-kind, complicated synovial joint that helps with masticatory function by allowing the mandible to open and close the mouth. True ankylosis is a situation in which condylar movement is limited by a mechanical defect in the joint, whereas false ankylosis is a condition in which there is a restriction in mandibular movement due to muscular spasm myositis ossificans, and coronoid process hyperplasia. Ankylosis is characterized by the inability to open the mouth due to fusion of the TMJ condyle to the base of the skull as a result of trauma, infection, or systemic diseases such as rheumatoid arthritis (the most common) and psoraisis. Ankylosis causes facial asymmetry and affects the patient psychologically as well as speech, difficult mastication, poor oral hygiene, malocclusion, and other factors. TMJ is a technically challenging joint; hence TMJ ankylosis management is complicated. Case presentation: this case is a male patient 25 years old reported to our maxillofacial clinic in Damietta faculty of medicine, Al-Azhar University with the inability to open the mouth at all, with a history of difficulty of mouth breathing and eating foods, there was a history of falling from height at 2006, and the patient underwent corrective surgery before with no improvement because the ankylosis was relapsed short period after the previous operations with that done out of our hospital inter-incisor distant ZERO so, this condition need mandatory management. Clinical examination and radiological investigations were done after complete approval from the patient and his brother; tracheostomy was done for our patient before the operation. The patient entered the operation in our hospital and drastic improvement in mouth opening was noticed, helping to restore the physical psychological health of the patient.Keywords: temporomandibular joint, TMJ, Ankylosis, mouth opening, physiotherapy, condylar plate
Procedia PDF Downloads 1546192 Connecting Life and Learning: Transformative Learning to Increase Student Engagement
Authors: Kashi Raj Pandey
Abstract:
Transformative learning is a form of learning rooted in learners' life experiences and their inherent love for learning. It emphasizes the importance of incorporating students' everyday work through the use of learning diaries and reflective journals. It encourages learners to take a proactive role in their own improvement, fostering creativity and promoting informed discussions about the learning process. Reflecting on the personal experience with English language learning in a rural village in Nepal where rote memorization was the prevailing teaching method, this traditional approach hindered a deeper understanding of the language, prompting the author to recognize the need for more effective pedagogy. In this study, the author delved into the cultural contextualization of English language learning, taking into account learners' backgrounds. The study’s findings highlighted the importance of equity, inclusion, mutuality, and social justice in the classroom, emphasizing the significance of integrating students' lived experiences into the pedagogical approach. This, in turn, can encourage students to engage in profound and collaborative learning practices within the realm of English language education. Upon successfully implementing the research findings, including the eight key conditions of transformative learning, in multiple classrooms, the author collaborated with international educationists and government stakeholders in Nepal. The purpose was to disseminate the research findings, conduct teacher training workshops, and systematically enhance Nepali students’ English language learning. These methods have already demonstrated a significant improvement in student engagement within the same school where the author once learned English as a child. This study aims to explore teachers’ decision-making process regarding the transition from traditional teaching methods to interactive ones, which have gained national recognition within the ESL/EFL teaching community in Nepal. By sharing these experiences, it is expected that other teachers will also contemplate adopting transformative learning pedagogy in their own classrooms.Keywords: reflection, student engagement, pedagogy, transformative learning
Procedia PDF Downloads 836191 Proposed Pattern for Fitted Men's Suit Jacket Using the Method of Draping on the Mannequin
Authors: Hazem A. Abdelfattah, Salia H. Khafaji
Abstract:
Apparel industry needs to direct scientific researches to develop it , and because of the importance of a men’s suit jacket industry, the study of the basics of men’s jacket pattern making requires a high degree of accuracy and efficiency which contain a lot of technical and skill aspects to give the jacket a drape, comfort and good fitting , prompting researchers to think about the use of men’s mannequin with sizes (M-L-XL) to devise a method to draft a paper pattern for the men's suit jacket to use it in the industry easily and quickly and achieve the required good fitting.Keywords: draping, pattern, men, jacket
Procedia PDF Downloads 3516190 A Folk’s Theory of the MomConnect (mHealth) Initiative in South Africa
Authors: Eveline Muika Kabongo, Peter Delobelle, Ferdinand Mukumbang, Edward Nicol
Abstract:
Introduction: Studies have been conducted to establish the effect of the MomConnect program in South Africa, but these studies did not focus on the stakeholders' and implementers' perspectives and the underlying program theory of the MomConnect initiative program. We strived to obtain stakeholders’ perspectives and assumptions on the MomConnect program and develop an initial program theory (IPT) of how the MomConnect initiative was expected to work. Methods: A realist-informed explanatory design used. The interviewer was performed with 10 key informants selected purposively among MomConnect key informants at the a national level of NDoH South Africa. The interview was done via zoom and lasted for 30 to 60 minutes. Introduction and abduction inferencing approaches were applied. The deductive and inductive approaches were performed during the analysis. ICAMO hereustic framework was used to analysed the data in order to get key informants expectations on how the MomConnect will work or not. Results: We developed three folk’s theories illustrating how the key informants’ expected the MomConnect to work. These theories showed that the MomConnect intended to provide users with health information and education that will empower and motivate them with knowledge which will allow the improvement of health services delivery among HCPs and improvement of the uptake of MCH services among pregnant women and mothers and decrease the rate of maternal and child mortality in the country. The lack of an updated mechanism to link women to the outcome was an issue. Another problem enlightened was the introduction of the WhatsApp program instead of SMS messaging, which was free of charge to women. Conclusion: The Folk’s theory developed from this study provided an insight into how the MomConnect was expected to work and what did not work. The folk’s theory will be merged with information from candidate theories on synthesis review and document review to develop our initial program theory of the MomConnect initiative.Keywords: mHealth, MomConnect program, realist evaluation, maternal and child health, maternal and child health services, introduction, theory-driven
Procedia PDF Downloads 2006189 Geopolymerization Methods for Clay Soils Treatment
Authors: Baba Hassane Ahmed Hisseini, Abdelkrim Bennabi, Rabah Hamzaoui, Lamis Makki, Gaetan Blanck
Abstract:
Most of the clay soils are known as problematic soils due to their water content, which varies greatly over time. It is observed that they are used to be subject to shrinkage and swelling, thus causing a problem of stability on the structures of civil engineering construction work. They are often excavated and placed in a storage area giving rise to the opening of new quarries. This method has become obsolete today because to protect the environment, we are leading to think differently and opening the way to new research for the improvement of the performance of this type of clay soils to reuse them in the construction field. The solidification and stabilization technique is used to improve the properties of poor quality soils to transform them into materials with a suitable performance for a new use in the civil engineering field rather than to excavate them and store them in the discharge area. In our case, the polymerization method is used for bad clay soils classified as high plasticity soil class A4 according to the French standard NF P11-300, where classical treatment methods with cement or lime are not efficient. Our work concerns clay soil treatment study using raw materials as additives for solidification and stabilization. The geopolymers are synthesized by aluminosilicates materials like fly ash, metakaolin, or blast furnace slag and activated by alkaline solution based on sodium hydroxide (NaOH), sodium silicate (Na2SiO3) or a mixture of both of them. In this study, we present the mechanical properties of the soil clay (A4 type) evolution with geopolymerisation methods treatment. Various mix design of aluminosilicates materials and alkaline solutions were carried at different percentages and different curing times of 1, 7, and 28 days. The compressive strength of the untreated clayey soil could be increased from simple to triple. It is observed that the improvement of compressive strength is associated with a geopolymerization mechanism. The highest compressive strength was found with metakaolin at 28 days.Keywords: treatment and valorization of clay-soil, solidification and stabilization, alkali-activation of co-product, geopolymerization
Procedia PDF Downloads 1626188 Ta(l)king Pictures: Development of an Educational Program (SELVEs) for Adolescents Combining Social-Emotional Learning and Photography Taking
Authors: Adi Gielgun-Katz, Alina S. Rusu
Abstract:
In the last two decades, education systems worldwide have integrated new pedagogical methods and strategies in lesson plans, such as innovative technologies, social-emotional learning (SEL), gamification, mixed learning, multiple literacies, and many others. Visual language, such as photographs, is known to transcend cultures and languages, and it is commonly used by youth to express positions and affective states in social networks. Therefore, visual language needs more educational attention as a linguistic and communicative component that can create connectedness among the students and their teachers. Nowadays, when SEL is gaining more and more space and meaning in the area of academic improvement in relation to social well-being, and taking and sharing pictures is part of the everyday life of the majority of people, it becomes natural to add the visual language to SEL approach as a reinforcement strategy for connecting education to the contemporary culture and language of the youth. This article presents a program conducted in a high school class in Israel, which combines the five SEL with photography techniques, i.e., Social-Emotional Learning Visual Empowerments (SELVEs) program (experimental group). Another class of students from the same institution represents the control group, which is participating in the SEL program without the photography component. The SEL component of the programs addresses skills such as: troubleshooting, uncertainty, personal strengths and collaboration, accepting others, control of impulses, communication, self-perception, and conflict resolution. The aim of the study is to examine the effects of programs on the level of the five SEL aspects in the two groups of high school students: Self-Awareness, Social Awareness, Self-Management, Responsible Decision Making, and Relationship Skills. The study presents a quantitative assessment of the SEL programs’ impact on the students. The main hypothesis is that the students’ questionnaires' analysis will reveal a better understanding and improvement of the five aspects of the SEL in the group of students involved in the photography-enhanced SEL program.Keywords: social-emotional learning, photography, education program, adolescents
Procedia PDF Downloads 896187 Facial Recognition and Landmark Detection in Fitness Assessment and Performance Improvement
Authors: Brittany Richardson, Ying Wang
Abstract:
For physical therapy, exercise prescription, athlete training, and regular fitness training, it is crucial to perform health assessments or fitness assessments periodically. An accurate assessment is propitious for tracking recovery progress, preventing potential injury and making long-range training plans. Assessments include necessary measurements, height, weight, blood pressure, heart rate, body fat, etc. and advanced evaluation, muscle group strength, stability-mobility, and movement evaluation, etc. In the current standard assessment procedures, the accuracy of assessments, especially advanced evaluations, largely depends on the experience of physicians, coaches, and personal trainers. And it is challenging to track clients’ progress in the current assessment. Unlike the tradition assessment, in this paper, we present a deep learning based face recognition algorithm for accurate, comprehensive and trackable assessment. Based on the result from our assessment, physicians, coaches, and personal trainers are able to adjust the training targets and methods. The system categorizes the difficulty levels of the current activity for the client or user, furthermore make more comprehensive assessments based on tracking muscle group over time using a designed landmark detection method. The system also includes the function of grading and correcting the form of the clients during exercise. Experienced coaches and personal trainer can tell the clients' limit based on their facial expression and muscle group movements, even during the first several sessions. Similar to this, using a convolution neural network, the system is trained with people’s facial expression to differentiate challenge levels for clients. It uses landmark detection for subtle changes in muscle groups movements. It measures the proximal mobility of the hips and thoracic spine, the proximal stability of the scapulothoracic region and distal mobility of the glenohumeral joint, as well as distal mobility, and its effect on the kinetic chain. This system integrates data from other fitness assistant devices, including but not limited to Apple Watch, Fitbit, etc. for a improved training and testing performance. The system itself doesn’t require history data for an individual client, but the history data of a client can be used to create a more effective exercise plan. In order to validate the performance of the proposed work, an experimental design is presented. The results show that the proposed work contributes towards improving the quality of exercise plan, execution, progress tracking, and performance.Keywords: exercise prescription, facial recognition, landmark detection, fitness assessments
Procedia PDF Downloads 1356186 Artificial Intelligance Features in Canva
Authors: Amira Masood, Zainah Alshouri, Noor Bantan, Samira Kutbi
Abstract:
Artificial intelligence is continuously becoming more advanced and more widespread and is present in many of our day-to-day lives as a means of assistance in numerous different fields. A growing number of people, companies, and corporations are utilizing Canva and its AI tools as a method of quick and easy media production. Hence, in order to test the integrity of the rapid growth of AI, this paper will explore the usefulness of Canva's advanced design features as well as their accuracy by determining user satisfaction through a survey-based research approach and by investigating whether or not AI is successful enough that it eliminates the need for human alterations.Keywords: artificial intelligence, canva, features, users, satisfaction
Procedia PDF Downloads 1086185 Sliding Mode Power System Stabilizer for Synchronous Generator Stability Improvement
Authors: J. Ritonja, R. Brezovnik, M. Petrun, B. Polajžer
Abstract:
Many modern synchronous generators in power systems are extremely weakly damped. The reasons are cost optimization of the machine building and introduction of the additional control equipment into power systems. Oscillations of the synchronous generators and related stability problems of the power systems are harmful and can lead to failures in operation and to damages. The only useful solution to increase damping of the unwanted oscillations represents the implementation of the power system stabilizers. Power system stabilizers generate the additional control signal which changes synchronous generator field excitation voltage. Modern power system stabilizers are integrated into static excitation systems of the synchronous generators. Available commercial power system stabilizers are based on linear control theory. Due to the nonlinear dynamics of the synchronous generator, current stabilizers do not assure optimal damping of the synchronous generator’s oscillations in the entire operating range. For that reason the use of the robust power system stabilizers which are convenient for the entire operating range is reasonable. There are numerous robust techniques applicable for the power system stabilizers. In this paper the use of sliding mode control for synchronous generator stability improvement is studied. On the basis of the sliding mode theory, the robust power system stabilizer was developed. The main advantages of the sliding mode controller are simple realization of the control algorithm, robustness to parameter variations and elimination of disturbances. The advantage of the proposed sliding mode controller against conventional linear controller was tested for damping of the synchronous generator oscillations in the entire operating range. Obtained results show the improved damping in the entire operating range of the synchronous generator and the increase of the power system stability. The proposed study contributes to the progress in the development of the advanced stabilizer, which will replace conventional linear stabilizers and improve damping of the synchronous generators.Keywords: control theory, power system stabilizer, robust control, sliding mode control, stability, synchronous generator
Procedia PDF Downloads 2276184 Perinatal Optimisation for Preterm Births Less than 34 Weeks at OLOL, Drogheda, Ireland
Authors: Stephane Maingard, Babu Paturi, Maura Daly, Finnola Armstrong
Abstract:
Background: Perinatal optimization involves the implementation of twelve intervention bundles of care at Our Lady of Lourdes Hospital, reliably delivering evidence-based interventions in the antenatal, intrapartum, and neonatal period to improve preterm outcomes. These key interventions (e.g. Antenatal steroids, Antenatal counselling, Optimal cord management, Respiratory management etc.) are based on WHO (World Health Organization, BAPM (British Association of Perinatal Medicine), and the latest 2022 European Consensus guidelines recommendations. Methodology: In February 2023, a quality improvement project team (pediatricians, neonatologists, obstetricians, clinical skills managers) was established, and a project implementation plan was developed. The Program Study Act implemented the following: 1. Antenatal consultation pathway, 2. Creation and implementation of a perinatal checklist for preterm births less than 34 weeks of gestation, 3. Process changes to ensure the checklist is completed, 4. Completion of parent and staff surveys, 5. Ongoing training. We collected and compared a range of data before and after implementation. Results: Preliminary analysis so far at 1 month demonstrates improvement in the following areas: 50% increase in antenatal counselling. Right place of birth increased from 85% to 100%. Magnesium sulphate increased from 56% to 100%. No change was observed in buccal colostrum administration (28%), delayed cord clamping (75%), caffeine administration (100%), blood glucose level at one hour of life > 2,6mmol (85%). There was also no change noted in respiratory support at resuscitation, CPAP only (47%), IPPV with CPAP (45%), IPPV with intubation (20%), and surfactant administration (28%). A slight decrease in figures was noted in the following: steroid administration from 80% to 75% and thermal care obtaining optimal temperature on admission (65% to 50%). Discussion: Even though the findings are preliminary, the directional improvement shows promise. Improved communication has been achieved between all stakeholders, including our patients, who are key team members. Adherence to the bundles of care will help to improve survival and neurodevelopmental outcomes as well as reduce the length of stay, thereby overall reducing the financial cost, considering the lifetime cost of cerebral palsy is estimated at €800,000 and reducing the length of stay can result in savings of up to €206,000. Conclusion: Preliminary results demonstrate improvements across a range of patient, process, staff, and financial outcomes. Our future goal is a seamless pathway of patient centered care for babies and their families. This project is an interdisciplinary collaboration to implement best practices for a vulnerable patient cohort. Our two main challenges are changing our organization’s culture as well as ensuring the sustainability of the project.Keywords: perinatal, optimization, antenatal, counselling, IPPV
Procedia PDF Downloads 216183 Combined Effect of Therapeutic Exercises and Shock Wave versus Therapeutic Exercises and Phonophoresis in Treatment of Shoulder Impingement Syndrome: A Randomized Controlled Trial
Authors: Mohamed M. Mashaly, Ahmed M. F. El Shiwi
Abstract:
Background: Shoulder impingement syndrome is an encroachment of subacromial tissues, rotator cuff, subacromial bursa, and the long head of the biceps tendon, as a result of narrowing of the subacromial space. Activities requiring repetitive or sustained use of the arms over head often predispose the rotator cuff tendon to injury. Purpose: To compare between Combined effect therapeutic exercises and Shockwave therapy versus therapeutic exercises and phonophoresis in the treatment of shoulder impingement syndrome. Methods: Thirty patients diagnosed as shoulder impingement syndrome stage II Neer classification due to mechanical causes. Patients were randomly distributed into two equal groups. The first group consisted of 15 patients with a mean age of (45.46+8.64) received therapeutic exercises (stretching exercise of posterior shoulder capsule and strengthening exercises of shoulder muscles) and shockwave therapy (6000 shocks, 2000/session, 3 sessions, 2 weeks apart, 0.22mJ/mm^2) years. The second group consisted of 15 patients with a mean age of 46.26 (+ 8.05) received same therapeutic exercises and phonophoresis (3 times per week, each other day, for 4 consecutive weeks). Patients were evaluated pretreatment and post treatment for shoulder pain severity, shoulder functional disability, shoulder flexion, abduction and internal rotation motions. Results: Patients of both groups showed significant improvement in all the measured variables. In between groups difference the shock wave group showed a significant improvement in all measured variables than phonophoresis group. Interpretation/Conclusion: Combined effect of therapeutic exercises and shock wave were more effective than therapeutic exercises and phonophoresis on decreasing shoulder pain severity, shoulder functional disability, increasing in shoulder flexion, abduction, internal rotation in patients with shoulder impingement syndrome.Keywords: shoulder impingement syndrome, therapeutic exercises, shockwave, phonophoresis
Procedia PDF Downloads 4746182 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 686181 The Unscented Kalman Filter Implementation for the Sensorless Speed Control of a Permanent Magnet Synchronous Motor
Authors: Justas Dilys
Abstract:
ThispaperaddressestheimplementationandoptimizationofanUnscentedKalmanFilter(UKF) for the Permanent Magnet Synchronous Motor (PMSM) sensorless control using an ARM Cortex- M3 microcontroller. A various optimization levels based on arithmetic calculation reduction was implemented in ARM Cortex-M3 microcontroller. The execution time of UKF estimator was up to 90µs without loss of accuracy. Moreover, simulation studies on the Unscented Kalman filters are carried out using Matlab to explore the usability of the UKF in a sensorless PMSMdrive.Keywords: unscented kalman filter, ARM, PMSM, implementation
Procedia PDF Downloads 1716180 Groundwater Potential Delineation Using Geodetector Based Convolutional Neural Network in the Gunabay Watershed of Ethiopia
Authors: Asnakew Mulualem Tegegne, Tarun Kumar Lohani, Abunu Atlabachew Eshete
Abstract:
Groundwater potential delineation is essential for efficient water resource utilization and long-term development. The scarcity of potable and irrigation water has become a critical issue due to natural and anthropogenic activities in meeting the demands of human survival and productivity. With these constraints, groundwater resources are now being used extensively in Ethiopia. Therefore, an innovative convolutional neural network (CNN) is successfully applied in the Gunabay watershed to delineate groundwater potential based on the selected major influencing factors. Groundwater recharge, lithology, drainage density, lineament density, transmissivity, and geomorphology were selected as major influencing factors during the groundwater potential of the study area. For dataset training, 70% of samples were selected and 30% were used for serving out of the total 128 samples. The spatial distribution of groundwater potential has been classified into five groups: very low (10.72%), low (25.67%), moderate (31.62%), high (19.93%), and very high (12.06%). The area obtains high rainfall but has a very low amount of recharge due to a lack of proper soil and water conservation structures. The major outcome of the study showed that moderate and low potential is dominant. Geodetoctor results revealed that the magnitude influences on groundwater potential have been ranked as transmissivity (0.48), recharge (0.26), lineament density (0.26), lithology (0.13), drainage density (0.12), and geomorphology (0.06). The model results showed that using a convolutional neural network (CNN), groundwater potentiality can be delineated with higher predictive capability and accuracy. CNN-based AUC validation platform showed that 81.58% and 86.84% were accrued from the accuracy of training and testing values, respectively. Based on the findings, the local government can receive technical assistance for groundwater exploration and sustainable water resource development in the Gunabay watershed. Finally, the use of a detector-based deep learning algorithm can provide a new platform for industrial sectors, groundwater experts, scholars, and decision-makers.Keywords: CNN, geodetector, groundwater influencing factors, Groundwater potential, Gunabay watershed
Procedia PDF Downloads 246179 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1706178 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1606177 Evaluating and Improving Healthcare Staff Knowledge of the [NG179] NICE Guidelines on Elective Surgical Care during the COVID-19 Pandemic: A Quality Improvement Project
Authors: Stavroula Stavropoulou-Tatla, Danyal Awal, Mohammad Ayaz Hossain
Abstract:
The first wave of the COVID-19 pandemic saw several countries issue guidance postponing all non-urgent diagnostic evaluations and operations, leading to an estimated backlog of 28 million cases worldwide and over 4 million in the UK alone. In an attempt to regulate the resumption of elective surgical activity, the National Institute for Health and Care Excellence (NICE) introduced the ‘COVID-19 rapid guideline [NG179]’. This project aimed to increase healthcare staff knowledge of the aforementioned guideline to a targeted score of 100% in the disseminated questionnaire within 3 months at the Royal Free Hospital. A standardized online questionnaire was used to assess the knowledge of surgical and medical staff at baseline and following each 4-week-long Plan-Study-Do-Act (PDSA) cycle. During PDSA1, the A4 visual summary accompanying the guideline was visibly placed in all relevant clinical areas and the full guideline was distributed to the staff in charge together with a short briefing on the salient points. PDSA2 involved brief small-group teaching sessions. A total of 218 responses was collected. Mean percentage scores increased significantly from 51±19% at baseline to 81±16% after PDSA1 (t=10.32, p<0.0001) and further to 93±8% after PDSA2 (t=4.9, p<0.0001), with 54% of participants achieving a perfect score. In conclusion, the targeted distribution of guideline printouts and visual aids, combined with small-group teaching sessions, were simple and effective ways of educating healthcare staff about the new standards of elective surgical care at the time of COVID-19. This could facilitate the safe restoration of surgical activity, which is critical in order to mitigate the far-reaching consequences of surgical delays on an unprecedented scale during a time of great crisis and uncertainty.Keywords: COVID-19, elective surgery, NICE guidelines, quality improvement
Procedia PDF Downloads 1956176 Examining the Effects of Increasing Lexical Retrieval Attempts in Tablet-Based Naming Therapy for Aphasia
Authors: Jeanne Gallee, Sofia Vallila-Rohter
Abstract:
Technology-based applications are increasingly being utilized in aphasia rehabilitation as a means of increasing intensity of treatment and improving accessibility to treatment. These interactive therapies, often available on tablets, lead individuals to complete language and cognitive rehabilitation tasks that draw upon skills such as the ability to name items, recognize semantic features, count syllables, rhyme, and categorize objects. Tasks involve visual and auditory stimulus cues and provide feedback about the accuracy of a person’s response. Research has begun to examine the efficacy of tablet-based therapies for aphasia, yet much remains unknown about how individuals interact with these therapy applications. Thus, the current study aims to examine the efficacy of a tablet-based therapy program for anomia, further examining how strategy training might influence the way that individuals with aphasia engage with and benefit from therapy. Individuals with aphasia are enrolled in one of two treatment paradigms: traditional therapy or strategy therapy. For ten weeks, all participants receive 2 hours of weekly in-house therapy using Constant Therapy, a tablet-based therapy application. Participants are provided with iPads and are additionally encouraged to work on therapy tasks for one hour a day at home (home logins). For those enrolled in traditional therapy, in-house sessions involve completing therapy tasks while a clinician researcher is present. For those enrolled in the strategy training group, in-house sessions focus on limiting cue use in order to maximize lexical retrieval attempts and naming opportunities. The strategy paradigm is based on the principle that retrieval attempts may foster long-term naming gains. Data have been collected from 7 participants with aphasia (3 in the traditional therapy group, 4 in the strategy training group). We examine cue use, latency of responses and accuracy through the course of therapy, comparing results across group and setting (in-house sessions vs. home logins).Keywords: aphasia, speech-language pathology, traumatic brain injury, language
Procedia PDF Downloads 2046175 Topographic Characteristics Derived from UAV Images to Detect Ephemeral Gully Channels
Authors: Recep Gundogan, Turgay Dindaroglu, Hikmet Gunal, Mustafa Ulukavak, Ron Bingner
Abstract:
A majority of total soil losses in agricultural areas could be attributed to ephemeral gullies caused by heavy rains in conventionally tilled fields; however, ephemeral gully erosion is often ignored in conventional soil erosion assessments. Ephemeral gullies are often easily filled from normal soil tillage operations, which makes capturing the existing ephemeral gullies in croplands difficult. This study was carried out to determine topographic features, including slope and aspect composite topographic index (CTI) and initiation points of gully channels, using images obtained from unmanned aerial vehicle (UAV) images. The study area was located in Topcu stream watershed in the eastern Mediterranean Region, where intense rainfall events occur over very short time periods. The slope varied between 0.7 and 99.5%, and the average slope was 24.7%. The UAV (multi-propeller hexacopter) was used as the carrier platform, and images were obtained with the RGB camera mounted on the UAV. The digital terrain models (DTM) of Topçu stream micro catchment produced using UAV images and manual field Global Positioning System (GPS) measurements were compared to assess the accuracy of UAV based measurements. Eighty-one gully channels were detected in the study area. The mean slope and CTI values in the micro-catchment obtained from DTMs generated using UAV images were 19.2% and 3.64, respectively, and both slope and CTI values were lower than those obtained using GPS measurements. The total length and volume of the gully channels were 868.2 m and 5.52 m³, respectively. Topographic characteristics and information on ephemeral gully channels (location of initial point, volume, and length) were estimated with high accuracy using the UAV images. The results reveal that UAV-based measuring techniques can be used in lieu of existing GPS and total station techniques by using images obtained with high-resolution UAVs.Keywords: aspect, compound topographic index, digital terrain model, initial gully point, slope, unmanned aerial vehicle
Procedia PDF Downloads 1156174 Innovative Power Engineering in a Selected Rural Commune
Authors: Pawel Sowa, Joachim Bargiel
Abstract:
This paper presents modern solutions of distributed generation in rural communities aiming at the improvement of energy and environmental security, as well as power supply reliability to important customers (e.g. health care, sensitive consumer required continuity). Distributed sources are mainly gas and biogas cogeneration units, as well as wind and photovoltaic sources. Some examples of their applications in a selected Silesian community are given.Keywords: energy security, mini energy centres , power engineering, power supply reliability
Procedia PDF Downloads 3026173 The Possible Double-Edged Sword Effects of Online Learning on Academic Performance: A Quantitative Study of Preclinical Medical Students
Authors: Atiwit Sinyoo, Sekh Thanprasertsuk, Sithiporn Agthong, Pasakorn Watanatada, Shaun Peter Qureshi, Saknan Bongsebandhu-Phubhakdi
Abstract:
Background: Since the SARS-CoV-2 virus became extensively disseminated throughout the world, online learning has become one of the most hotly debated topics in educational reform. While some studies have already shown the advantage of online learning, there are still questions concerning how online learning affects students’ learning behavior and academic achievement when each student learns in a different way. Hence, we aimed to develop a guide for preclinical medical students to avoid drawbacks and get benefits from online learning that possibly a double-edged sword. Methods: We used a multiple-choice questionnaire to evaluate the learning behavior of second-year Thai medical students in the neuroscience course. All traditional face-to-face lecture classes were video-recorded and promptly posted to the online learning platform throughout this course. Students could pick and choose whatever classes they wanted to attend, and they may use online learning as often as they wished. Academic performance was evaluated as summative score, spot exam score and pre-post-test improvement. Results: More frequently students used online learning platform, the less they attended lecture classes (P = 0.035). High proactive online learners (High PO) who were irregular attendee (IrA) had significantly lower summative scores (P = 0.026), spot exam score (P = 0.012) and pre-post-test improvement (P = 0.036). In the meanwhile, conditional attendees (CoA) who only attended classes with attendance check had significantly higher summative score (P = 0.025) and spot exam score (P = 0.001) if they were in the High PO group. Conclusions: The benefit and drawbacks edges of using an online learning platform were demonstrated in our research. Based on this double-edged sword effect, we believe that online learning is a valuable learning strategy, but students must carefully plan their study schedule to gain the “benefit edge” meanwhile avoiding its “drawback edge”.Keywords: academic performance, assessment, attendance, online learning, preclinical medical students
Procedia PDF Downloads 1636172 The Effect of Bilingualism on Prospective Memory
Authors: Aslı Yörük, Mevla Yahya, Banu Tavat
Abstract:
It is well established that bilinguals outperform monolinguals on executive function tasks. However, the effects of bilingualism on prospective memory (PM), which also requires executive functions, have not been investigated vastly. This study aimed to compare bi and monolingual participants' PM performance in focal and non-focal PM tasks. Considering that bilinguals have greater executive function abilities than monolinguals, we predict that bilinguals’ PM performance would be higher than monolinguals on the non-focal PM task, which requires controlled monitoring processes. To investigate these predictions, we administered the focal and non-focal PM task and measured the PM and ongoing task performance. Forty-eight Turkish-English bilinguals residing in North Macedonia and forty-eight Turkish monolinguals living in Turkey between the ages of 18-30 participated in the study. They were instructed to remember responding to rarely appearing PM cues while engaged in an ongoing task, i.e., spatial working memory task. The focality of the task was manipulated by giving different instructions for PM cues. In the focal PM task, participants were asked to remember to press an enter key whenever a particular target stimulus appeared in the working memory task; in the non-focal PM task, instead of responding to a specific target shape, participants were asked to remember to press the enter key whenever the background color of the working memory trials changes to a specific color (yellow). To analyze data, we performed a 2 × 2 mixed factorial ANOVA with the task (focal versus non-focal) as a within-subject variable and language group (bilinguals versus monolinguals) as a between-subject variable. The results showed no direct evidence for a bilingual advantage in PM. That is, the group’s performance did not differ in PM accuracy and ongoing task accuracy. However, bilinguals were overall faster in the ongoing task, yet this was not specific to PM cue’s focality. Moreover, the results showed a reversed effect of PM cue's focality on the ongoing task performance. That is, both bi and monolinguals showed enhanced performance in the non-focal PM cue task. These findings raise skepticism about the literature's prevalent findings and theoretical explanations. Future studies should investigate possible alternative explanations.Keywords: bilingualism, executive functions, focality, prospective memory
Procedia PDF Downloads 1176171 A Three-modal Authentication Method for Industrial Robots
Authors: Luo Jiaoyang, Yu Hongyang
Abstract:
In this paper, we explore a method that can be used in the working scene of intelligent industrial robots to confirm the identity information of operators to ensure that the robot executes instructions in a sufficiently safe environment. This approach uses three information modalities, namely visible light, depth, and sound. We explored a variety of fusion modes for the three modalities and finally used the joint feature learning method to improve the performance of the model in the case of noise compared with the single-modal case, making the maximum noise in the experiment. It can also maintain an accuracy rate of more than 90%.Keywords: multimodal, kinect, machine learning, distance image
Procedia PDF Downloads 816170 Exploring Pre-Trained Automatic Speech Recognition Model HuBERT for Early Alzheimer’s Disease and Mild Cognitive Impairment Detection in Speech
Authors: Monica Gonzalez Machorro
Abstract:
Dementia is hard to diagnose because of the lack of early physical symptoms. Early dementia recognition is key to improving the living condition of patients. Speech technology is considered a valuable biomarker for this challenge. Recent works have utilized conventional acoustic features and machine learning methods to detect dementia in speech. BERT-like classifiers have reported the most promising performance. One constraint, nonetheless, is that these studies are either based on human transcripts or on transcripts produced by automatic speech recognition (ASR) systems. This research contribution is to explore a method that does not require transcriptions to detect early Alzheimer’s disease (AD) and mild cognitive impairment (MCI). This is achieved by fine-tuning a pre-trained ASR model for the downstream early AD and MCI tasks. To do so, a subset of the thoroughly studied Pitt Corpus is customized. The subset is balanced for class, age, and gender. Data processing also involves cropping the samples into 10-second segments. For comparison purposes, a baseline model is defined by training and testing a Random Forest with 20 extracted acoustic features using the librosa library implemented in Python. These are: zero-crossing rate, MFCCs, spectral bandwidth, spectral centroid, root mean square, and short-time Fourier transform. The baseline model achieved a 58% accuracy. To fine-tune HuBERT as a classifier, an average pooling strategy is employed to merge the 3D representations from audio into 2D representations, and a linear layer is added. The pre-trained model used is ‘hubert-large-ls960-ft’. Empirically, the number of epochs selected is 5, and the batch size defined is 1. Experiments show that our proposed method reaches a 69% balanced accuracy. This suggests that the linguistic and speech information encoded in the self-supervised ASR-based model is able to learn acoustic cues of AD and MCI.Keywords: automatic speech recognition, early Alzheimer’s recognition, mild cognitive impairment, speech impairment
Procedia PDF Downloads 1286169 A New Criterion Using Pose and Shape of Objects for Collision Risk Estimation
Authors: DoHyeung Kim, DaeHee Seo, ByungDoo Kim, ByungGil Lee
Abstract:
As many recent researches being implemented in aviation and maritime aspects, strong doubts have been raised concerning the reliability of the estimation of collision risk. It is shown that using position and velocity of objects can lead to imprecise results. In this paper, therefore, a new approach to the estimation of collision risks using pose and shape of objects is proposed. Simulation results are presented validating the accuracy of the new criterion to adapt to collision risk algorithm based on fuzzy logic.Keywords: collision risk, pose, shape, fuzzy logic
Procedia PDF Downloads 531