Search results for: local features modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10583

Search results for: local features modelling

8933 Exploring the Applications of Neural Networks in the Adaptive Learning Environment

Authors: Baladitya Swaika, Rahul Khatry

Abstract:

Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.

Keywords: computer adaptive tests, item response theory, machine learning, neural networks

Procedia PDF Downloads 175
8932 The Results of the Archaeological Excavations at the Site of Qurh in Al Ula Region

Authors: Ahmad Al Aboudi

Abstract:

The Department of Archaeology at King Saud University conduct a long Term excavations since 2004 at the archaeological site of (Qurh) in Al-Ula area. The history of the site goes back to the eighth century AD. The main aim of the excavations is the training of the students on the archaeological field work associated with the scientific skills of exploring, surveying, classifying, documentations and other necessary in the field archaeology. During the 12th Season of Excavations, an area of 20 × 40 m2 of the site was excavated. The depth of the excavating the site was reached to 2-3 m. Many of the architectural features of a residential area in the northern part of the site were excavated this season. Circular walls made of mud-brick and a brick column drums and tiles made of clay were revealed this season. Additionally, lots of findings such as Gemstones, jars, ceramic plates, metal, glass, and fabric, as well as some jewelers and coins were discovered. This paper will deal with the main results of this field project including the architectural features and phenomena and their interpretations, the classification of excavated material culture remains and stratigraphy.

Keywords: Islamic architecture, Islamic art, excavations, early Islamic city

Procedia PDF Downloads 274
8931 Integrating Cyber-Physical System toward Advance Intelligent Industry: Features, Requirements and Challenges

Authors: V. Reyes, P. Ferreira

Abstract:

In response to high levels of competitiveness, industrial systems have evolved to improve productivity. As a consequence, a rapid increase in volume production and simultaneously, a customization process require lower costs, more variety, and accurate quality of products. Reducing time-cycle production, enabling customizability, and ensure continuous quality improvement are key features in advance intelligent industry. In this scenario, customers and producers will be able to participate in the ongoing production life cycle through real-time interaction. To achieve this vision, transparency, predictability, and adaptability are key features that provide the industrial systems the capability to adapt to customer demands modifying the manufacturing process through an autonomous response and acting preventively to avoid errors. The industrial system incorporates a diversified number of components that in advanced industry are expected to be decentralized, end to end communicating, and with the capability to make own decisions through feedback. The evolving process towards advanced intelligent industry defines a set of stages to empower components of intelligence and enhancing efficiency to achieve the decision-making stage. The integrated system follows an industrial cyber-physical system (CPS) architecture whose real-time integration, based on a set of enabler technologies, links the physical and virtual world generating the digital twin (DT). This instance allows incorporating sensor data from real to virtual world and the required transparency for real-time monitoring and control, contributing to address important features of the advanced intelligent industry and simultaneously improve sustainability. Assuming the industrial CPS as the core technology toward the latest advanced intelligent industry stage, this paper reviews and highlights the correlation and contributions of the enabler technologies for the operationalization of each stage in the path toward advanced intelligent industry. From this research, a real-time integration architecture for a cyber-physical system with applications to collaborative robotics is proposed. The required functionalities and issues to endow the industrial system of adaptability are identified.

Keywords: cyber-physical systems, digital twin, sensor data, system integration, virtual model

Procedia PDF Downloads 118
8930 Modelling, Assessment, and Optimisation of Rules for Selected Umgeni Water Distribution Systems

Authors: Khanyisile Mnguni, Muthukrishnavellaisamy Kumarasamy, Jeff C. Smithers

Abstract:

Umgeni Water is a water board that supplies most parts of KwaZulu Natal with bulk portable water. Currently, Umgeni Water is running its distribution system based on required reservoir levels and demands and does not consider the energy cost at different times of the day, number of pump switches, and background leakages. Including these constraints can reduce operational cost, energy usage, leakages, and increase performance. Optimising pump schedules can reduce energy usage and costs while adhering to hydraulic and operational constraints. Umgeni Water has installed an online hydraulic software, WaterNet Advisor, that allows running different operational scenarios prior to implementation in order to optimise the distribution system. This study will investigate operation scenarios using optimisation techniques and WaterNet Advisor for a local water distribution system. Based on studies reported in the literature, introducing pump scheduling optimisation can reduce energy usage by approximately 30% without any change in infrastructure. Including tariff structures in an optimisation problem can reduce pumping costs by 15%, while including leakages decreases cost by 10%, and pressure drop in the system can be up to 12 m. Genetical optimisation algorithms are widely used due to their ability to solve nonlinear, non-convex, and mixed-integer problems. Other methods such as branch and bound linear programming have also been successfully used. A suitable optimisation method will be chosen based on its efficiency. The objective of the study is to reduce energy usage, operational cost, and leakages, and the feasibility of optimal solution will be checked using the Waternet Advisor. This study will provide an overview of the optimisation of hydraulic networks and progress made to date in multi-objective optimisation for a selected sub-system operated by Umgeni Water.

Keywords: energy usage, pump scheduling, WaterNet Advisor, leakages

Procedia PDF Downloads 92
8929 Designing Mobile Application to Motivate Young People to Visit Cultural Heritage Sites

Authors: Yuko Hiramatsu, Fumihiro Sato, Atsushi Ito, Hiroyuki Hatano, Mie Sato, Yu Watanabe, Akira Sasaki

Abstract:

This paper presents a mobile phone application developed for sightseeing in Nikko, one of the cultural world heritages in Japan, using the BLE (Bluetooth Low Energy) beacon. Based on our pre-research, we decided to design our application for young people who walk around the area actively, but know little about the tradition and culture of Nikko. One solution is to construct many information boards to explain; however, it is difficult to construct new guide plates in cultural world heritage sites. The smartphone is a good solution to send such information to such visitors. This application was designed using a combination of the smartphone and beacons, set in the area, so that when a tourist passes near a beacon, the application displays information about the area including a map, historical or cultural information about the temples and shrines, and local shops nearby as well as a bus timetable. It is useful for foreigners, too. In addition, we developed quizzes relating to the culture and tradition of Nikko to provide information based on the Zeigarnik effect, a psychological effect. According to the results of our trials, tourists positively evaluated the basic information and young people who used the quiz function were able to learn the historical and cultural points. This application helped young visitors at Nikko to understand the cultural elements of the site. In addition, this application has a function to send notifications. This function is designed to provide information about the local community such as shops, local transportation companies and information office. The application hopes to also encourage people living in the area, and such cooperation from the local people will make this application vivid and inspire young visitors to feel that the cultural heritage site is still alive today. This is a gateway for young people to learn about a traditional place and understand the gravity of preserving such areas.

Keywords: BLE beacon, smartphone application, Zeigarnik effect, world heritage site, school trip

Procedia PDF Downloads 324
8928 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis

Authors: Syed Asif Hassan, Syed Atif Hassan

Abstract:

Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.

Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction

Procedia PDF Downloads 391
8927 The Potential in the Use of Building Information Modelling and Life-Cycle Assessment for Retrofitting Buildings: A Study Based on Interviews with Experts in Both Fields

Authors: Alex Gonzalez Caceres, Jan Karlshøj, Tor Arvid Vik

Abstract:

Life cycle of residential buildings are expected to be several decades, 40% of European residential buildings have inefficient energy conservation measure. The existing building represents 20-40% of the energy use and the CO₂ emission. Since net zero energy buildings are a short-term goal, (should be achieved by EU countries after 2020), is necessary to plan the next logical step, which is to prepare the existing outdated stack of building to retrofit them into an energy efficiency buildings. In order to accomplish this, two specialize and widespread tool can be used Building Information Modelling (BIM) and life-cycle assessment (LCA). BIM and LCA are tools used by a variety of disciplines; both are able to represent and analyze the constructions in different stages. The combination of these technologies could improve greatly the retrofitting techniques. The incorporation of the carbon footprint, introducing a single database source for different material analysis. To this is added the possibility of considering different analysis approaches such as costs and energy saving. Is expected with these measures, enrich the decision-making. The methodology is based on two main activities; the first task involved the collection of data this is accomplished by literature review and interview with experts in the retrofitting field and BIM technologies. The results of this task are presented as an evaluation checklist of BIM ability to manage data and improve decision-making in retrofitting projects. The last activity involves an evaluation using the results of the previous tasks, to check how far the IFC format can support the requirements by each specialist, and its uses by third party software. The result indicates that BIM/LCA have a great potential to improve the retrofitting process in existing buildings, but some modification must be done in order to meet the requirements of the specialists for both, retrofitting and LCA evaluators.

Keywords: retrofitting, BIM, LCA, energy efficiency

Procedia PDF Downloads 220
8926 Contributions of Microbial Activities to Tomato Growth and Yield under an Organic Production System

Authors: O. A. Babalola, A. F Adekunle, F. Oladeji, A. T. Osungbade, O. A. Akinlaja

Abstract:

Optimizing microbiological activities in an organic crop production system is crucial to the realization of optimum growth and development of the crops. Field and pot experiments were conducted to assess soil microbial activities, growth and yield of tomato varieties in response to 4 rates of composted plant and animal residues. The compost rates were 0, 5, 10 and 20 t ha-1, and improved Ibadan and Ibadan local constituted the varieties. Fungi population, microbial biomass nitrogen, cellulase and proteinase activities were significantly higher (P≤ 0.05) at the rhizosphere of the local variety than that of improved variety. This led to a significantly higher number of branches, plant height, leaf area, number of fruits and less days to maturity in the local variety. Furthermore, compost-amended soil had significantly higher microbial populations, microbial biomass N, P and C, enzyme activities, soil N, P and organic carbon than control, but amendment of 20 t ha-1 gave significantly higher values than other compost rates. Consequently, growth parameters and tissue N significantly increased in all compost treatments while dry matter yield and weight of fruits were significantly higher in soil amended with 20 t ha-1. Correlation analysis showed that microbial activities at 6 weeks after transplanting (6 WAT) were more consistently and highly correlated with growth and yield parameters. It was concluded that microbial activities could be optimized to improve the yield of the two tomato varieties in an organic production system, through the application of compost, particularly at 20 t ha-1.

Keywords: compost, microbial activities, microbial contribution, tomato growth and yield

Procedia PDF Downloads 265
8925 The Impact of Recurring Events in Fake News Detection

Authors: Ali Raza, Shafiq Ur Rehman Khan, Raja Sher Afgun Usmani, Asif Raza, Basit Umair

Abstract:

Detection of Fake news and missing information is gaining popularity, especially after the advancement in social media and online news platforms. Social media platforms are the main and speediest source of fake news propagation, whereas online news websites contribute to fake news dissipation. In this study, we propose a framework to detect fake news using the temporal features of text and consider user feedback to identify whether the news is fake or not. In recent studies, the temporal features in text documents gain valuable consideration from Natural Language Processing and user feedback and only try to classify the textual data as fake or true. This research article indicates the impact of recurring and non-recurring events on fake and true news. We use two models BERT and Bi-LSTM to investigate, and it is concluded from BERT we get better results and 70% of true news are recurring and rest of 30% are non-recurring.

Keywords: natural language processing, fake news detection, machine learning, Bi-LSTM

Procedia PDF Downloads 23
8924 Examining Motivational Dynamics and L2 Learning Transitions of Air Cadets Between Year One and Year Two: A Retrodictive Qualitative Modelling Approach

Authors: Kanyaporn Sommeechai

Abstract:

Air cadets who aspire to become military pilots upon graduation undergo rigorous training at military academies. As first-year cadets are akin to civilian freshmen, they encounter numerous challenges within the seniority-based military academy system. Imposed routines, such as mandatory morning runs and restrictions on mobile phone usage for two semesters, have the potential to impact their learning process and motivation to study, including second language (L2) acquisition. This study aims to investigate the motivational dynamics and L2 learning transitions experienced by air cadets. To achieve this, a Retrodictive Qualitative Modelling approach will be employed, coupled with the adaptation of the three-barrier structure encompassing institutional factors, situational factors, and dispositional factors. Semi-structured interviews will be conducted to gather rich qualitative data. By analyzing and interpreting the collected data, this research seeks to shed light on the motivational factors that influence air cadets' L2 learning journey. The three-barrier structure will provide a comprehensive framework to identify and understand the institutional, situational, and dispositional factors that may impede or facilitate their motivation and language learning progress. Moreover, the study will explore how these factors interact and shape cadets' motivation and learning experiences. The outcomes of this research will yield fundamental data that can inform strategies and interventions to enhance the motivation and language learning outcomes of air cadets. By better understanding their motivational dynamics and transitions, educators and institutions can create targeted initiatives, tailored pedagogical approaches, and supportive environments that effectively inspire and engage air cadets as L2 learners.

Keywords: second language, education, motivational dynamics, learning transitions

Procedia PDF Downloads 69
8923 A Topological Approach for Motion Track Discrimination

Authors: Tegan H. Emerson, Colin C. Olson, George Stantchev, Jason A. Edelberg, Michael Wilson

Abstract:

Detecting small targets at range is difficult because there is not enough spatial information present in an image sub-region containing the target to use correlation-based methods to differentiate it from dynamic confusers present in the scene. Moreover, this lack of spatial information also disqualifies the use of most state-of-the-art deep learning image-based classifiers. Here, we use characteristics of target tracks extracted from video sequences as data from which to derive distinguishing topological features that help robustly differentiate targets of interest from confusers. In particular, we calculate persistent homology from time-delayed embeddings of dynamic statistics calculated from motion tracks extracted from a wide field-of-view video stream. In short, we use topological methods to extract features related to target motion dynamics that are useful for classification and disambiguation and show that small targets can be detected at range with high probability.

Keywords: motion tracks, persistence images, time-delay embedding, topological data analysis

Procedia PDF Downloads 114
8922 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification

Procedia PDF Downloads 349
8921 Changes in Geospatial Structure of Households in the Czech Republic: Findings from Population and Housing Census

Authors: Jaroslav Kraus

Abstract:

Spatial information about demographic processes are a standard part of outputs in the Czech Republic. That was also the case of Population and Housing Census which was held on 2011. This is a starting point for a follow up study devoted to two basic types of households: single person households and households of one completed family. Single person households and one family households create more than 80 percent of all households, but the share and spatial structure is in long-term changing. The increase of single households is results of long-term fertility decrease and divorce increase, but also possibility of separate living. There are regions in the Czech Republic with traditional demographic behavior, and regions like capital Prague and some others with changing pattern. Population census is based - according to international standards - on the concept of currently living population. Three types of geospatial approaches will be used for analysis: (i) firstly measures of geographic distribution, (ii) secondly mapping clusters to identify the locations of statistically significant hot spots, cold spots, spatial outliers, and similar features and (iii) finally analyzing pattern approach as a starting point for more in-depth analyses (geospatial regression) in the future will be also applied. For analysis of this type of data, number of households by types should be distinct objects. All events in a meaningful delimited study region (e.g. municipalities) will be included in an analysis. Commonly produced measures of central tendency and spread will include: identification of the location of the center of the point set (by NUTS3 level); identification of the median center and standard distance, weighted standard distance and standard deviational ellipses will be also used. Identifying that clustering exists in census households datasets does not provide a detailed picture of the nature and pattern of clustering but will be helpful to apply simple hot-spot (and cold spot) identification techniques to such datasets. Once the spatial structure of households will be determined, any particular measure of autocorrelation can be constructed by defining a way of measuring the difference between location attribute values. The most widely used measure is Moran’s I that will be applied to municipal units where numerical ratio is calculated. Local statistics arise naturally out of any of the methods for measuring spatial autocorrelation and will be applied to development of localized variants of almost any standard summary statistic. Local Moran’s I will give an indication of household data homogeneity and diversity on a municipal level.

Keywords: census, geo-demography, households, the Czech Republic

Procedia PDF Downloads 96
8920 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments

Authors: Skyler Kim

Abstract:

An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.

Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning

Procedia PDF Downloads 187
8919 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms

Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier

Abstract:

Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.

Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability

Procedia PDF Downloads 107
8918 Public Policy for Quality School Lunch Development in Thailand

Authors: W. Kongnoo, J. Loysongkroa, S. Chotivichien, N. Viriyautsahakul, N. Saiwongse

Abstract:

Obesity, stunting and wasting problems among Thai school-aged children are increasing due to inappropriate food consumption behavior and poor environments for desirable nutritional behavior. Because of a low school lunch budget of only 0.40 USD per person per day, food quality is not up to nutritional standards. Therefore, the Health Department with the Education Ministry and the Thai Health Promotion Foundation have developed a quality school lunch project during 2009–2013. The program objectives were development and management of public policy to increase school lunch budget. The methods used a healthy public policy motivation process and movement in 241 local administrative organizations and 538 schools. The problem and solution research was organized to study school food and nutrition management, create a best practice policy mobilization model and hold a public hearing to motivate an increase of school meal funding. The results showed that local public policy has been motivated during 2009-2011 to increase school meal budget using local budgets. School children with best food consumption behavior and exercise increased from 13.2% in 2009 to 51.6% in 2013 and stunting decreased from 6.0% in 2009 to 4.7% in 2013. As the result of national policy motivation (2012-2013), the cabinet meeting on October 22, 2013 has approved an increase of school lunch budget from 0.40 USD to 0.62 USD per person per day. Thus, 5,800,469 school children nationwide have benefited from the budget increase.

Keywords: public policy, quality school lunch, Thailand, obesity

Procedia PDF Downloads 348
8917 Combining the Noble Values of Traditional Architecture on Modern Architecture

Authors: Dwi Retno Sri Ambarwati

Abstract:

Recently, the traditional architecture were getting lost, replaced by modern architecture. The existence of many traditional houses often changing the function and change the values in an effort to adjust to the modern lifestyle, whereas the spiritual background of traditional architectural design is very specific and be the basis for consideration in the construction of the building, both in terms of determining the location of the building, the direction toward building, the spatial pattern and organization of space, zoning, hierarchical space, building form, ornamentation, the selection of building materials, and so on. The changes in function and form will transformed the spiritual values contained in it, because the architecture affects human behavior and reflects the culture. The traditional architecture views the architecture as a concept that has different tendencies in terms of orientation, shape, and attitude toward nature that tends to harmony with the social environment and local culture. The concept of the spirit of place made the architecture looks familiar, not arrogant and give a positive value to the surrounding environment. Every culture has a traditional architecture that full of spiritual values, although in the simplest form. Humans can learn about human values and local wisdom through the positive values that contained in traditional architecture, the desire to balance themselves with nature and the environment, not overbearing, strict adherence to the prevailing norms, openness in public life and intimacy family life that form a harmonious in life. The great and the wise value of traditional architecture should be revived in modern architecture that tends to ignore the spiritual values and more concerned with the functional and aesthetic pleasure, by combining the noble values of traditional architecture into modern architecture.

Keywords: architecture, combining noble values, local wisdom, traditional architecture

Procedia PDF Downloads 459
8916 [Keynote Speech]: Curiosity, Innovation and Technological Advancements Shaping the Future of Science, Technology, Engineering and Mathematics Education

Authors: Ana Hol

Abstract:

We live in a constantly changing environment where technology has become an integral component of our day to day life. We rely heavily on mobile devices, we search for data via web, we utilise smart home sensors to create the most suited ambiences and we utilise applications to shop, research, communicate and share data. Heavy reliance on technology therefore is creating new connections between STEM (Science, Technology, Engineering and Mathematics) fields which in turn rises a question of what the STEM education of the future should be like? This study was based on the reviews of the six Australian Information Systems students who undertook an international study tour to India where they were given an opportunity to network, communicate and meet local students, staff and business representatives and from them learn about the local business implementations, local customs and regulations. Research identifies that if we are to continue to implement and utilise electronic devices on the global scale, such as for example implement smart cars that can smoothly cross borders, we will need the workforce that will have the knowledge about the cars themselves, their parts, roads and transport networks, road rules, road sensors, road monitoring technologies, graphical user interfaces, movement detection systems as well as day to day operations, legal rules and regulations of each region and country, insurance policies, policing and processes so that the wide array of sensors can be controlled across country’s borders. In conclusion, it can be noted that allowing students to learn about the local conditions, roads, operations, business processes, customs and values in different countries is giving students a cutting edge advantage as such knowledge cannot be transferred via electronic sources alone. However once understanding of each problem or project is established, multidisciplinary innovative STEM projects can be smoothly conducted.

Keywords: STEM, curiosity, innovation, advancements

Procedia PDF Downloads 199
8915 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine

Procedia PDF Downloads 176
8914 Impacts of COVID-19 on Communal Based Natural Resources Management in Newtown, Bekezela Village, Eastern Cape, South Africa

Authors: James Donald Nyamahono, Kelvin Tinashe Pikirai

Abstract:

Communal based natural resource management (CBNRM) is regarded as one of the most significant methods for sustainable natural resource conservation. This is due to the fact that it entails the engagement of local communities as well as the use of indigenous knowledge and customary conservation. The emergence of COVID-19 had a devastating impact on this sector since it has resulted in the disbandment of all collective activities, such as group gatherings, including those with a good cause. This is supported by research, which demonstrates that throughout the era of full lockdowns, the coordination of diverse activities and the sustainability of various working groups were severely harmed. This study was undertaken in the CBNRM niche to examine how COVID-19 affected this sector. Data were gathered through focus group discussions with youths, women, and the elderly active in CBNRM in Newtown, Bekezela Village, Eastern Cape. The study concluded that the sustainability of indigenous knowledge in natural resource management was endangered due to the restricted movements and community participation in developmental initiatives. The study also revealed a 'environment-community divide,' since COVID-19 hindered local communities from holding their regular conservation meetings. The research, on the other hand, discovered that there were 'secret' gatherings in which local communities attempted to adopt Afrocentric ways in which the available natural resources would provide a remedy for COVID-19.

Keywords: CBNRM, COVID-19, indigenous knowledge, South Africa

Procedia PDF Downloads 93
8913 Numerical Simulation of Erosion Control in Slurry Pump Casing by Geometrical Flow Pattern Modification Analysis

Authors: A. R. Momeninezhad

Abstract:

Erosion of Slurry Pumps in Related Industries, is one of the major costs in their production process. Many factories in extractive industries try to find ways to diminish this cost. In this paper, we consider the flow pattern modifications by geometric variations made of numerical simulation of flow inside pump casing, which is one of the most important parts analyzed for erosion. The mentioned pump is a cyclone centrifugal slurry pump, which is operating in Sarcheshmeh Copper Industries in Kerman-Iran, named and tagged as HM600 cyclone pump. Simulation shows many improvements in local wear information and situations for better and more qualified design of casing shape and impeller position, before and after geometric corrections. By theory of liquid-solid two-phase flow, the local wear defeats are analyzed and omitted.

Keywords: flow pattern, slurry pump, simulation, wear

Procedia PDF Downloads 457
8912 A Comparative Study of Social Entrepreneurship Centers in Universities of the World

Authors: Farnoosh Alami, Nazgol Azimi

Abstract:

Universities have recently paid much attention to the subject of social entrepreneurship. As a result, many of the highly ranked universities have established centers in this regard. The present research aims to investigate vision and mission of social entrepreneurship centers of the best universities ranked under 50 by Shanghai List 2013. It tries to find the common goals and features of their mission, vision, and activities which lead to their present success. This investigation is based on the web content of the first top 10 universities; among which six had social entrepreneurship centers. This is a qualitative research, and the findings are based on content analysis of documents. The findings confirm that education, research, talent development, innovative solutions, and supporting social innovation, are shared in the vision of these centers. In regard to their missions, social participation, networking, and leader education are the most shared features. Their common activities are focused on five categories of education, research, support, promotion, and networking.

Keywords: comparative study, qualitative research, social entrepreneurship centers, universities in the world

Procedia PDF Downloads 297
8911 Wind Velocity Mitigation for Conceptual Design: A Spatial Decision (Support Framework)

Authors: Mohamed Khallaf, Hossein M Rizeei

Abstract:

Simulating wind pattern behavior over proposed urban features is critical in the early stage of the conceptual design of both architectural and urban disciplines. However, it is typically not possible for designers to explore the impact of wind flow profiles across new urban developments due to a lack of real data and inaccurate estimation of building parameters. Modeling the details of existing and proposed urban features and testing them against wind flows is the missing part of the conceptual design puzzle where architectural and urban discipline can focus. This research aims to develop a spatial decision-support design method utilizing LiDAR, GIS, and performance-based wind simulation technology to mitigate wind-related hazards on a design by simulating alternative design scenarios at the pedestrian level prior to its implementation in Sydney, Australia. The result of the experiment demonstrates the capability of the proposed framework to improve pedestrian comfort in relation to wind profile.

Keywords: spatial decision-support design, performance-based wind simulation, LiDAR, GIS

Procedia PDF Downloads 124
8910 A Comparison of Image Data Representations for Local Stereo Matching

Authors: André Smith, Amr Abdel-Dayem

Abstract:

The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.

Keywords: colour data, local stereo matching, stereo correspondence, disparity map

Procedia PDF Downloads 370
8909 Combination between Intrusion Systems and Honeypots

Authors: Majed Sanan, Mohammad Rammal, Wassim Rammal

Abstract:

Today, security is a major concern. Intrusion Detection, Prevention Systems and Honeypot can be used to moderate attacks. Many researchers have proposed to use many IDSs ((Intrusion Detection System) time to time. Some of these IDS’s combine their features of two or more IDSs which are called Hybrid Intrusion Detection Systems. Most of the researchers combine the features of Signature based detection methodology and Anomaly based detection methodology. For a signature based IDS, if an attacker attacks slowly and in organized way, the attack may go undetected through the IDS, as signatures include factors based on duration of the events but the actions of attacker do not match. Sometimes, for an unknown attack there is no signature updated or an attacker attack in the mean time when the database is updating. Thus, signature-based IDS fail to detect unknown attacks. Anomaly based IDS suffer from many false-positive readings. So there is a need to hybridize those IDS which can overcome the shortcomings of each other. In this paper we propose a new approach to IDS (Intrusion Detection System) which is more efficient than the traditional IDS (Intrusion Detection System). The IDS is based on Honeypot Technology and Anomaly based Detection Methodology. We have designed Architecture for the IDS in a packet tracer and then implemented it in real time. We have discussed experimental results performed: both the Honeypot and Anomaly based IDS have some shortcomings but if we hybridized these two technologies, the newly proposed Hybrid Intrusion Detection System (HIDS) is capable enough to overcome these shortcomings with much enhanced performance. In this paper, we present a modified Hybrid Intrusion Detection System (HIDS) that combines the positive features of two different detection methodologies - Honeypot methodology and anomaly based intrusion detection methodology. In the experiment, we ran both the Intrusion Detection System individually first and then together and recorded the data from time to time. From the data we can conclude that the resulting IDS are much better in detecting intrusions from the existing IDSs.

Keywords: security, intrusion detection, intrusion prevention, honeypot, anomaly-based detection, signature-based detection, cloud computing, kfsensor

Procedia PDF Downloads 383
8908 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: opinion mining, opinion summarization, sentiment analysis, text mining

Procedia PDF Downloads 332
8907 The Effect of Foreign Owned Firms and Licensed Manufacturing Agreements on Innovation: Case of Pharmaceutical Firms in Developing Countries

Authors: Ilham Benali, Nasser Hajji, Nawfal Acha

Abstract:

Given the fact that the pharmaceutical industry is a commonly studied sector in the context of innovation, the majority of innovation research is devoted to the developed markets known by high research and development (R&D) assets and intensive innovation. In contrast, in developing countries where R&D assets are very low, there is relatively little research to mention in the area of pharmaceutical sector innovation, characterized mainly by two principal elements which are the presence of foreign-owned firms and licensed manufacturing agreements between local firms and multinationals. With the scarcity of research in this field, this paper attempts to study the effect of these two elements on the firms’ innovation tendencies. Other traditional factors that influence innovation, which are the age and the size of the firm, the R&D activities and the market structure, revealed in the literature review, will be included in the study in order to try to make this work more exhaustive. The study starts by examining innovation tendency in pharmaceutical firms located in developing countries before analyzing the effect of foreign-owned firms and licensed manufacturing agreements between local firms and multinationals on technological, organizational and marketing innovation. Based on the related work and on the theoretical framework developed, there is a probability that foreign-owned firms and licensed manufacturing agreements between local firms and multinationals have a negative influence on technological innovation. The opposite effect is possible in the case of organizational and marketing innovation.

Keywords: developing countries, foreign owned firms, innovation, licensed manufacturing agreements, pharmaceutical industry

Procedia PDF Downloads 164
8906 The Establishing Cultural Learning Center of Wayang Artwork for Creative Tourism: Challenge and Opportunities

Authors: Pornnapat Berndt

Abstract:

The purpose of this research is to explore challenge and opportunities to establish cultural learning center of Wayang Artwork for creative tourism within the house of Mr. Sa-ngat Jaiprom. To accomplish the goals and objectives, qualitative research will be applied. The research instruments used are observation, questionnaires (pretest and posttest), basic interviews, in-depth interviews and interviewed of key local informants. The study also uses both primary data and secondary data. From research result, it is revealed that the sample groups more realized valuable heritage value after learning about the history of wayang and the way to practices. The sample group indicated that it not too difficult for them to carving Wayang artwork as they have knowledge about Thai art before. However, in their opinion, they comment that it might difficult for others who have no basic knowledge to learn to carve wayang artwork.

Keywords: creative tourism, local community, cultural learning center, wayang artwork  

Procedia PDF Downloads 368
8905 Photoemission Momentum Microscopy of Graphene on Ir (111)

Authors: Anna V. Zaporozhchenko, Dmytro Kutnyakhov, Katherina Medjanik, Christian Tusche, Hans-Joachim Elmers, Olena Fedchenko, Sergey Chernov, Martin Ellguth, Sergej A. Nepijko, Gerd Schoenhense

Abstract:

Graphene reveals a unique electronic structure that predetermines many intriguing properties such as massless charge carriers, optical transparency and high velocity of fermions at the Fermi level, opening a wide horizon of future applications. Hence, a detailed investigation of the electronic structure of graphene is crucial. The method of choice is angular resolved photoelectron spectroscopy ARPES. Here we present experiments using time-of-flight (ToF) momentum microscopy, being an alternative way of ARPES using full-field imaging of the whole Brillouin zone (BZ) and simultaneous acquisition of up to several 100 energy slices. Unlike conventional ARPES, k-microscopy is not limited in simultaneous k-space access. We have recorded the whole first BZ of graphene on Ir(111) including all six Dirac cones. As excitation source we used synchrotron radiation from BESSY II (Berlin) at the U125-2 NIM, providing linearly polarized (both polarizations p- and s-) VUV radiation. The instrument uses a delay-line detector for single-particle detection up the 5 Mcps range and parallel energy detection via ToF recording. In this way, we gather a 3D data stack I(E,kx,ky) of the full valence electronic structure in approx. 20 mins. Band dispersion stacks were measured in the energy range of 14 eV up to 23 eV with steps of 1 eV. The linearly-dispersing graphene bands for all six K and K’ points were simultaneously recorded. We find clear features of hybridization with the substrate, in particular in the linear dichroism in the angular distribution (LDAD). Recording of the whole Brillouin zone of graphene/Ir(111) revealed new features. First, the intensity differences (i.e. the LDAD) are very sensitive to the interaction of graphene bands with substrate bands. Second, the dark corridors are investigated in detail for both, p- and s- polarized radiation. They appear as local distortions of photoelectron current distribution and are induced by quantum mechanical interference of graphene sublattices. The dark corridors are located in different areas of the 6 Dirac cones and show chirality behaviour with a mirror plane along vertical axis. Moreover, two out of six show an oval shape while the rest are more circular. It clearly indicates orientation dependence with respect to E vector of incident light. Third, a pattern of faint but very sharp lines is visible at energies around 22eV that strongly remind on Kikuchi lines in diffraction. In conclusion, the simultaneous study of all six Dirac cones is crucial for a complete understanding of dichroism phenomena and the dark corridor.

Keywords: band structure, graphene, momentum microscopy, LDAD

Procedia PDF Downloads 340
8904 Analyzing the Commentator Network Within the French YouTube Environment

Authors: Kurt Maxwell Kusterer, Sylvain Mignot, Annick Vignes

Abstract:

To our best knowledge YouTube is the largest video hosting platform in the world. A high number of creators, viewers, subscribers and commentators act in this specific eco-system which generates huge sums of money. Views, subscribers, and comments help to increase the popularity of content creators. The most popular creators are sponsored by brands and participate in marketing campaigns. For a few of them, this becomes a financially rewarding profession. This is made possible through the YouTube Partner Program, which shares revenue among creators based on their popularity. We believe that the role of comments in increasing the popularity is to be emphasized. In what follows, YouTube is considered as a bilateral network between the videos and the commentators. Analyzing a detailed data set focused on French YouTubers, we consider each comment as a link between a commentator and a video. Our research question asks what are the predominant features of a video which give it the highest probability to be commented on. Following on from this question, how can we use these features to predict the action of the agent in commenting one video instead of another, considering the characteristics of the commentators, videos, topics, channels, and recommendations. We expect to see that the videos of more popular channels generate higher viewer engagement and thus are more frequently commented. The interest lies in discovering features which have not classically been considered as markers for popularity on the platform. A quick view of our data set shows that 96% of the commentators comment only once on a certain video. Thus, we study a non-weighted bipartite network between commentators and videos built on the sub-sample of 96% of unique comments. A link exists between two nodes when a commentator makes a comment on a video. We run an Exponential Random Graph Model (ERGM) approach to evaluate which characteristics influence the probability of commenting a video. The creation of a link will be explained in terms of common video features, such as duration, quality, number of likes, number of views, etc. Our data is relevant for the period of 2020-2021 and focuses on the French YouTube environment. From this set of 391 588 videos, we extract the channels which can be monetized according to YouTube regulations (channels with at least 1000 subscribers and more than 4000 hours of viewing time during the last twelve months).In the end, we have a data set of 128 462 videos which consist of 4093 channels. Based on these videos, we have a data set of 1 032 771 unique commentators, with a mean of 2 comments per a commentator, a minimum of 1 comment each, and a maximum of 584 comments.

Keywords: YouTube, social networks, economics, consumer behaviour

Procedia PDF Downloads 68