Search results for: interfacial strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3868

Search results for: interfacial strength

2218 Fabrication of 3D Scaffold Consisting of Spiral-Like Micro-Sized PCL Struts and Selectively Deposited Nanofibers as a Tissue Regenerative Material

Authors: Gi-Hoon Yang, JongHan Ha, MyungGu Yeo, JaeYoon Lee, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

Tissue engineering scaffolds must be biocompatible and biodegradable, provide adequate mechanical strength and cell attachment site for proliferation and differentiation. Furthermore, the scaffold morphology (such as pore size, porosity and pore interconnectivity) plays an important role. The electrospinning process has been widely used to fabricate micro/nano-sized fibres. Electrospinning allows for the fabrication of non-woven meshes containing micro- to nano-sized fibers providing high surface-to-volume area for cell attachment. Due to its advantageous characteristics, electrospinning is a useful method for skin, cartilage, bone, and nerve regeneration. In this study, we fabricated PCL scaffolds (SP) consisting of spiral-like struts using 3D melt-plotting system and micro/nanofibers using direct electrospinning writing. By altering the conditions of the conventional melt-plotting method, spiral-like struts were generated. Then, micro/nanofibers were deposited selectively. The control scaffold composed of perpendicular PCL struts was fabricated using the conventional melt-plotting method to compare the cellular activities. The effect on the attached cells (osteoblast-like cells (MG63)) was evaluated depending on the bending instability of the struts. The SP scaffolds showed enhanced biological properties such as initial cell attachment, proliferation and osteogenic differentiation. These results suggest that the SP scaffolds has potential as a bioengineered substitute for soft and hard tissue regeneration.

Keywords: cell attachment, electrospinning, mechanical strength, melt-plotting

Procedia PDF Downloads 313
2217 Improvement of Resistance Features of Anti- Mic Polyaspartic Coating (DTM) Using Nano Silver Particles by Preventing Biofilm Formation

Authors: Arezoo Assarian, Reza Javaherdashti

Abstract:

Microbiologically influenced corrosion (MIC) is an electrochemical process that can affect both metals and non-metals. The cost of MIC can amount to 40% of the cost of corrosion. MIC is enhanced via factors such as but not limited to the presence of certain bacteria and archaea as well as mechanisms such as external electron transfer. There are five methods by which electrochemical corrosion, including MIC, can be prevented, of which coatings are an effective method due to blinding anode, cathode and, electrolyte from each other. Conventional ordinary coatings may themselves become nutrient sources for the bacteria and therefore show low efficiency in dealing with MIC. Recently our works on polyaspartic coating (DTM) have shown promising results, therefore nominating DTM as the most appropriate coating material to manage both MIC and general electrochemical corrosion very efficiently. Nanosilver particles are known for their antimicrobial properties that make them of desirable distractive impacts on any germs. This coating will be formulated based on Nanosilver phosphate and copper II oxide in the resin network and co-reactant. The nanoparticles are light and heat-sensitive agents. The method which is used to keep nanoparticles in the film coating is the encapsulation of active ingredients. By this method, it will prevent incompatibility between different particles. For producing microcapsules, the interfacial cross-linking method will be used. This is achieved by adding an active ingredient to an aqueous solution of the cross-linkable polymer. In this paper, we will first explain the role of coating materials in controlling and preventing electrochemical corrosion. We will explain MIC and some of its fundamental principles, such as bacteria establishment (biofilm) and the role they play in enhancing corrosion via mechanisms such as the establishment of differential aeration cells. Later we will explain features of DTM coatings that highly contribute to preventing biofilm formation and thus microbial corrosion.

Keywords: biofilm, corrosion, microbiologically influenced corrosion(MIC), nanosilver particles, polyaspartic coating (DTM)

Procedia PDF Downloads 160
2216 Capacity of Cold-Formed Steel Warping-Restrained Members Subjected to Combined Axial Compressive Load and Bending

Authors: Maryam Hasanali, Syed Mohammad Mojtabaei, Iman Hajirasouliha, G. Charles Clifton, James B. P. Lim

Abstract:

Cold-formed steel (CFS) elements are increasingly being used as main load-bearing components in the modern construction industry, including low- to mid-rise buildings. In typical multi-storey buildings, CFS structural members act as beam-column elements since they are exposed to combined axial compression and bending actions, both in moment-resisting frames and stud wall systems. Current design specifications, including the American Iron and Steel Institute (AISI S100) and the Australian/New Zealand Standard (AS/NZS 4600), neglect the beneficial effects of warping-restrained boundary conditions in the design of beam-column elements. Furthermore, while a non-linear relationship governs the interaction of axial compression and bending, the combined effect of these actions is taken into account through a simplified linear expression combining pure axial and flexural strengths. This paper aims to evaluate the reliability of the well-known Direct Strength Method (DSM) as well as design proposals found in the literature to provide a better understanding of the efficiency of the code-prescribed linear interaction equation in the strength predictions of CFS beam columns and the effects of warping-restrained boundary conditions on their behavior. To this end, the experimentally validated finite element (FE) models of CFS elements under compression and bending were developed in ABAQUS software, which accounts for both non-linear material properties and geometric imperfections. The validated models were then used for a comprehensive parametric study containing 270 FE models, covering a wide range of key design parameters, such as length (i.e., 0.5, 1.5, and 3 m), thickness (i.e., 1, 2, and 4 mm) and cross-sectional dimensions under ten different load eccentricity levels. The results of this parametric study demonstrated that using the DSM led to the most conservative strength predictions for beam-column members by up to 55%, depending on the element’s length and thickness. This can be sourced by the errors associated with (i) the absence of warping-restrained boundary condition effects, (ii) equations for the calculations of buckling loads, and (iii) the linear interaction equation. While the influence of warping restraint is generally less than 6%, the code suggested interaction equation led to an average error of 4% to 22%, based on the element lengths. This paper highlights the need to provide more reliable design solutions for CFS beam-column elements for practical design purposes.

Keywords: beam-columns, cold-formed steel, finite element model, interaction equation, warping-restrained boundary conditions

Procedia PDF Downloads 95
2215 Arms and Light Weapons Flow in Nigerian/Chad Border: A Reflection on the How Insurgents Had Access to Their Target

Authors: Lawan Ja’afar Tahir

Abstract:

This research work centered on the problem of free Arms flow around the Nigeria and Chad Border. The whole of the northeastern Nigerian region has been devastated by the crisis of insecurity facilitated by more than a decade of insurgency. One of the major issues of concern to security experts and personnel in the country is how the insurgents are getting access to weapons, which gave them more strength to fight the war for this long period, which has become so difficult to overcome. Among the possible avenues that continue to strengthen the enemies is the easy access to the arms flow from the neighboring countries, especially the Republic of Chad, which borders Nigeria to the east, where Boko Haram gained firm roots. This paper, therefore, looked at the nature of the waterway of the Nigeria/Chad Border, which has become a source of strength to the insurgents as the flow of weapons is one of the cheapest things on the Border. The availability of such arms flow has also led to the People abandoning their lands and economic and commercial activities, especially those settlements between the Border of these two countries. For more than eight years now, they have suspended their livelihood activities, roads were blocked and chances of survival in the rural areas were minimal due to the frequent attacks carried out by the insurgents. However, this research looks at the causes of the arms flow along the Border of these neighboring countries, the extent of damage done as a result of the availability of the weapons, and how far the Nigerian government has gone in curtailing the menace of the flow of dangerous weapons into the country. The research looked at the ways arm dealers are conniving with settlers along the border as well as the various ways they followed to reach their target. The work provided suggestion as to how the fragile Border should be managed with the view to reduce the influx of arms without control, which, according to this research, is the central factor that continues to unleash and give terror groups the opportunity to destroy people for more than a decade.

Keywords: border, insecurity, weapons, management

Procedia PDF Downloads 58
2214 Physical and Microbiological Evaluation of Chitosan Films: Effect of Essential Oils and Storage

Authors: N. Valderrama, W. Albarracín, N. Algecira

Abstract:

It was studied the effect of the inclusion of thyme and rosemary essential oils into chitosan films, as well as the microbiological and physical properties when storing chitosan film with and without the mentioned inclusion. The film forming solution was prepared by dissolving chitosan (2%, w/v), polysorbate 80 (4% w/w CH) and glycerol (16% w/w CH) in aqueous lactic acid solutions (control). The thyme (TEO) and rosemary (REO) essential oils (EOs) were included 1:1 w/w (EOs:CH) on their combination 50/50 (TEO:REO). The films were stored at temperatures of 5, 20, 33°C and a relative humidity of 75% during four weeks. The films with essential oil inclusion did not show an antimicrobial activity against strains. This behavior could be explained because the chitosan only inhibits the growth of microorganisms in direct contact with the active sites. However, the inhibition capacity of TEO was higher than the REO and a synergic effect between TEO:REO was found for S. enteritidis strains in the chitosan solution. Some physical properties were modified by the inclusion of essential oils. The addition of essential oils does not affect the mechanical properties (tensile strength, elongation at break, puncture deformation), the water solubility, the swelling index nor the DSC behavior. However, the essential oil inclusion can significantly decrease the thickness, the moisture content, and the L* value of films whereas the b* value increased due to molecular interactions between the polymeric matrix, the loosing of the structure, and the chemical modifications. On the other hand, the temperature and time of storage changed some physical properties on the chitosan films. This could have occurred because of chemical changes, such as swelling in the presence of high humidity air and the reacetylation of amino groups. In the majority of cases, properties such as moisture content, tensile strength, elongation at break, puncture deformation, a*, b*, chrome, ΔE increased whereas water resistance, swelling index, L*, and hue angle decreased.

Keywords: chitosan, food additives, modified films, polymers

Procedia PDF Downloads 362
2213 Temperature Dependent Current-Voltage (I-V) Characteristics of CuO-ZnO Nanorods Based Heterojunction Solar Cells

Authors: Venkatesan Annadurai, Kannan Ethirajalu, Anu Roshini Ramakrishnan

Abstract:

Copper oxide (CuO) and zinc oxide (ZnO) based coaxial (CuO-ZnO nanorods) heterojunction has been the interest of various research communities for solar cells, light emitting diodes (LEDs) and photodetectors applications. Copper oxide (CuO) is a p-type material with the band gap of 1.5 eV and it is considered to be an attractive absorber material in solar cells applications due to its high absorption coefficient and long minority carrier diffusion length. Similarly, n-type ZnO nanorods possess many attractive advantages over thin films such as, the light trapping ability and photosensitivity owing to the presence of oxygen related hole-traps at the surface. Moreover, the abundant availability, non-toxicity, and inexpensiveness of these materials make them suitable for potentially cheap, large area, and stable photovoltaic applications. However, the efficiency of the CuO-ZnO nanorods heterojunction based devices is greatly affected by interface defects which generally lead to the poor performance. In spite of having much potential, not much work has been carried out to understand the interface quality and transport mechanism involved across the CuO-ZnO nanorods heterojunction. Therefore, a detailed investigation of CuO-ZnO heterojunction is needed to understand the interface which affects its photovoltaic performance. Herein, we have fabricated the CuO-ZnO nanorods based heterojunction by simple hydrothermal and electrodeposition technique and investigated its interface quality by carrying out temperature (300 –10 K) dependent current-voltage (I-V) measurements under dark and illumination of visible light. Activation energies extracted from the temperature dependent I-V characteristics reveals that recombination and tunneling mechanism across the interfacial barrier plays a significant role in the current flow.

Keywords: heterojunction, electrical transport, nanorods, solar cells

Procedia PDF Downloads 220
2212 Electric Field-Induced Deformation of Particle-Laden Drops and Structuring of Surface Particles

Authors: Alexander Mikkelsen, Khobaib Khobaib, Zbigniew Rozynek

Abstract:

Drops covered by particles have found important uses in various fields, ranging from stabilization of emulsions to production of new advanced materials. Particles at drop interfaces can be interlocked to form solid capsules with properties tailored for a myriad of applications. Despite the huge potential of particle-laden drops and capsules, the knowledge of their deformation and stability are limited. In this regard, we contribute with experimental studies on the deformation and manipulation of silicone oil drops covered with micrometer-sized particles subjected to electric fields. A mixture of silicone oil and particles were immersed in castor oil using a mechanical pipette, forming millimeter sized drops. The particles moved and adsorbed at the drop interfaces by sedimentation, and were structured at the interface by electric field-induced electrohydrodynamic flows. When applying a direct current electric field, free charges accumulated at the drop interfaces, yielding electric stress that deformed the drops. In our experiments, we investigated how particle properties affected drop deformation, break-up, and particle structuring. We found that by increasing the size of weakly-conductive clay particles, the drop shape can go from compressed to stretched out in the direction of the electric field. Increasing the particle size and electrical properties were also found to weaken electrohydrodynamic flows, induce break-up of drops at weaker electric field strengths and structure particles in chains. These particle parameters determine the dipolar force between the interfacial particles, which can yield particle chaining. We conclude that the balance between particle chaining and electrohydrodynamic flows governs the observed drop mechanics.

Keywords: drop deformation, electric field induced stress, electrohydrodynamic flows, particle structuring at drop interfaces

Procedia PDF Downloads 196
2211 Analysis of the Influence of Fiber Volume and Fiber Orientation on Post-Cracking Behavior of Steel Fiber Reinforced Concrete

Authors: Marilia M. Camargo, Luisa A. Gachet-Barbosa, Rosa C. C. Lintz

Abstract:

The addition of fibers into concrete matrix can enhance some properties of the composite, such as tensile, flexural and impact strengths, toughness, deformation capacity and post-cracking ductility. Many factors affect the mechanical behavior of fiber reinforced concrete, such as concrete matrix (concrete strength, additions, aggregate diameter, etc.), characteristics of the fiber (geometry, type, aspect ratio, volume, orientation, distribution, strength, stiffness, etc.), specimen (size, geometry, method of preparation and loading rate). This research investigates the effects of fiber volume and orientation on the post-cracking behavior of steel fiber reinforced concrete (SFRC). Hooked-end steel fibers with aspect ratios of 45 were added into concrete with volume of 0,32%, 0,64%, 0,94%. The post-cracking behaviour was assessed by double punch test of cubic specimens and the actual volume and orientation of the fibers were determined by non-destructive tests by means of electromagnetic induction. The results showed that the actual volume of fibers in each sample differs in a small amount from the dosed volume of fibers and that the deformation and toughness of the concrete increase with the increase in the actual volume of fibers. In determining the orientation of the fibers, it was found that they tend to distribute more in the X and Y axes due to the influence of the walls of the mold. In addition, it was concluded that the orientation of the fibers is important in the post-cracking behaviour of FRC when analyzed together with the actual volume of fibers, since the greater the volume of fibers, the greater the number of fibers oriented orthogonally to the application of loadings and, consequently, there is a better mechanical behavior of the composite. These results provide a better understanding of the influence of volume and fiber orientation on the post-cracking behavior of the FRC.

Keywords: fiber reinforced concrete, steel fibers, volume of fibers, orientation of fibers, post-cracking behaviour

Procedia PDF Downloads 175
2210 Differentials of Motor Fitness Components among the School Children of Rural and Urban Areas of the Jammu Region

Authors: Sukhdev Singh, Baljinder Singh Bal, Amandeep Singh, Kanchan Thappa

Abstract:

A nation's future almost certainly rests on the future of its children, and a nation's wellbeing can be greatly improved by providing for the right upbringing of its children. Participating in physical education and sports programmes is crucial for reaching one's full potential. As we are all aware, sports have recently become incredibly popular on a global scale. Sports are continually becoming more and more popular, and this positive trend is probably going to last for some time to come. Motor abilities will provide more accurate information on the developmental process of children. Motor fitness is a component of physical fitness that includes strength, speed, flexibility, and agility, and is related to enhanced performance and the development of motor skills. In recent years, there has been increased interest in the differences in child growth between urban and rural environments. Differences in student growth, body dimensions, body composition, and fitness levels due to urban and rural environmental disparities have come into focus in recent years. The main aim of this study is to know the differentials of motor fitness components among the school children of rural and urban areas of the Jammu region. Material and Methods: In total, sixty male subjects (mean ± SD; age, 16.475 ± 1.0124 yrs.; height, 172.8 ± 2.0153 cm; Weight, 59.75 ± 3.628 kg) from the Jammu region took part in the study. A minimum sample size of 40 subjects was obtained and was derived from Rural (N1=20) and Urban (N2=20) school-going children. Statistical Applications: The Statistical Package for the Social Sciences (SPSS) version 14.0 was used for all analyses. The differences in the mean of each group for the selected variable were tested for the significance of difference by an independent samples t-test. For testing the hypotheses, the level of significance was set at 0.05. Results: Results revealed that there were significant differences of leg explosive strength (p=0.0040*), dynamic balance (p=0.0056*), and Agility (p=0.0176*) among the School Children of the rural and urban areas of the Jammu region. However, Results further revealed that there were not significant differences of cardio respiratory endurance (p=0.8612), speed (p=0.2231), Low Back/Hamstring Flexibility (p=0.6478), and Two Hand Coordination. (p= 0.0953) among the School Children of the rural and urban areas of the Jammu region. Conclusion: The results of study showed that there is significance difference between Rural and Urban School children of the Jammu region with regards to a variable," leg explosive strength, dynamic balance, Agility” and the there is no significance difference between Rural and Urban School children of the Jammu region with regards variable “cardio-respiratory endurance, speed, Low Back/Hamstring Flexibility, Two Hand Coordination”.

Keywords: motor fitness, rural areas, school children, urban areas

Procedia PDF Downloads 74
2209 Rapid and Easy Fabrication of Collagen-Based Biocomposite Scaffolds for 3D Cell Culture

Authors: Esra Turker, Umit Hakan Yildiz, Ahu Arslan Yildiz

Abstract:

The key of regenerative medicine is mimicking natural three dimensional (3D) microenvironment of tissues by utilizing appropriate biomaterials. In this study, a synthetic biodegradable polymer; poly (L-lactide-co-ε-caprolactone) (PLLCL) and a natural polymer; collagen was used to mimic the biochemical structure of the natural extracellular matrix (ECM), and by means of electrospinning technique the real physical structure of ECM has mimicked. PLLCL/Collagen biocomposite scaffolds enables cell attachment, proliferation and nutrient transport through fabrication of micro to nanometer scale nanofibers. Biocomposite materials are commonly preferred due to limitations of physical and biocompatible properties of natural and synthetic materials. Combination of both materials improves the strength, degradation and biocompatibility of scaffold. Literature studies have shown that collagen is mostly solved with heavy chemicals, which is not suitable for cell culturing. To overcome this problem, a new approach has been developed in this study where polyvinylpyrrolidone (PVP) is used as co-electrospinning agent. PVP is preferred due to its water solubility, so PLLCL/collagen biocomposite scaffold can be easily and rapidly produced. Hydrolytic and enzymatic biodegradation as well as mechanical strength of scaffolds were examined in vitro. Cell adhesion, proliferation and cell morphology characterization studies have been performed as well. Further, on-chip drug screening analysis has been performed over 3D tumor models. Overall, the developed biocomposite scaffold was used for 3D tumor model formation and obtained results confirmed that developed model could be used for drug screening studies to predict clinical efficacy of a drug.

Keywords: biomaterials, 3D cell culture, drug screening, electrospinning, lab-on-a-chip, tissue engineering

Procedia PDF Downloads 306
2208 Preparation and Optimization of Curcumin-HPβCD Complex Bioadhesive Vaginal Films for Vaginal Candidiasis by Factorial Design

Authors: Umme Hani, H. G. Shivakumar, M. D. Younus Pasha

Abstract:

The purpose of this work was to design and optimize a novel vaginal drug delivery system for more effective treatment against vaginal candidiasis. To achieve a better therapeutic efficacy and patient compliance in the treatment for vaginal candidiasis, herbal antifungal agent Curcumin which is 2.5 fold more potent than fluconazole at inhibiting the adhesion of candida albicans has been formulated in a bio-adhesive vaginal film. Curcumin was formulated in bio-adhesive film formulations that could be retained in the vagina for prolonged intervals. The polymeric films were prepared by solvent evaporation and optimized for various physicodynamic and aesthetic properties. Curcumin HPβCD (Hydroxypropyl β Cyclodextrin) was first developed to increase the solubility of curcumin. The formation of the Curcumin HPβCD complex was characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and FT-IR and evaluated for its solubility. Curcumin HPβCD complex was formulated in a bio-adhesive film using hydroxypropyl methyl cellulose (HPMC) and Carbopol 934P and characterized. DSC and FT-IR data of Curcumin HPβCD indicate there was complex formation between the drug and HPβCD. The little moisture content (8.02±0.34% w/w) was present in the film, which helps them to remain stable and kept them from being completely dry and brittle. The mechanical properties, tensile strength, and percentage elongation at break reveal that the formulations were found to be soft and tough. The films showed good peelability, relatively good swelling index, and moderate tensile strength and retained vaginal mucosa up to 8 h. The developed Curcumin vaginal film could be a promising safe herbal medication and can ensure longer residence at the vagina and provide an efficient therapy for vaginal candidiasis.

Keywords: curcumin, curcumin-HPβCD complex, bio-adhesive vaginal film, vaginal candidiasis, 23 factorial design

Procedia PDF Downloads 376
2207 Preparation Static Dissipative Nanocomposites of Alkaline Earth Metal Doped Aluminium Oxide and Methyl Vinyl Silicone Polymer

Authors: Aparna M. Joshi

Abstract:

Methyl vinyl silicone polymer (VMQ) - alkaline earth metal doped aluminium oxide composites are prepared by conventional two rolls open mill mixing method. Doped aluminium oxides (DAO) using silvery white coloured alkaline earth metals such as Mg and Ca as dopants in the concentration of 0.4 % are synthesized by microwave combustion method and referred as MA ( Mg doped aluminium oxide) and CA ( Ca doped aluminium oxide). The as-synthesized materials are characterized for the electrical resistance, X–ray diffraction, FE-SEM, TEM and FTIR. The electrical resistances of the DAOs are observed to be ~ 8-20 MΩ. This means that the resistance of aluminium oxide (Corundum) α-Al2O3 which is ~ 1010Ω is reduced by the order of ~ 103 to 104 Ω after doping. XRD studies reveal the doping of Mg and Ca in aluminium oxide. The microstructural study using FE-SEM shows the flaky clusterous structures with the thickness of the flakes between 10 and 20 nm. TEM images depict the rod-shaped morphological geometry of the particles with the diameter of ~50-70 nm. The nanocomposites are synthesized by incorporating the DAOs in the concentration of 75 phr (parts per hundred parts of rubber) into VMQ polymer. The electrical resistance of VMQ polymer, which is ~ 1015Ω, drops by the order of 108Ω. There is a retention of the electrical resistance of ~ 30-50 MΩ for the nanocomposites which is a static dissipative range of electricity. In this work white coloured electrically conductive VMQ polymer-DAO nanocomposites (MAVMQ for Mg doping and CAVMQ for Ca doping) have been synthesized. The physical and mechanical properties of the composites such as specific gravity, hardness, tensile strength and rebound resilience are measured. Hardness and tensile strength are found to increase, with the negligible alteration in the other properties.

Keywords: doped aluminium oxide, methyl vinyl silicone polymer, microwave synthesis, static dissipation

Procedia PDF Downloads 549
2206 Comparison of Mechanical Properties of Three Different Orthodontic Latex Elastic Bands Leached with NaOH Solution

Authors: Thipsupar Pureprasert, Niwat Anuwongnukroh, Surachai Dechkunakorn, Surapich Loykulanant, Chaveewan Kongkaew, Wassana Wichai

Abstract:

Objective: Orthodontic elastic bands made from natural rubber continue to be commonly used due to their favorable characteristics. However, there are concerns associated cytotoxicity due to harmful components released during conventional vulcanization (sulfur-based method). With the co-operation of The National Metal and Materials Technology Center (MTEC) and Faculty of Dentistry Mahidol University, a method was introduced to reduce toxic components by leaching the orthodontic elastic bands with NaOH solution. Objectives: To evaluate the mechanical properties of Thai and commercial orthodontic elastic brands (Ormco and W&H) leached with NaOH solution. Material and methods: Three elastic brands (N =30, size ¼ inch, 4.5 oz.) were tested for mechanical properties in terms of initial extension force, residual force, force loss, breaking strength and maximum displacement using a Universal Testing Machine. Results : Force loss significantly decreased in Thai-LEACH and W&H-LEACH, whereas the values increased in Ormco-LEACH (P < 0.05). The data exhibited a significantly decrease in breaking strength with Thai-LEACH and Ormco-LEACH, whereas all 3 brands revealed a significantly decrease in maximum displacement with the leaching process (P < 0.05). Conclusion: Leaching with NaOH solution is a new method, which can remove toxic components from orthodontic latex elastic bands. However, this process can affect their mechanical properties. Leached elastic bands from Thai had comparable properties with Ormco and have potential to be developed as a promising product.

Keywords: leaching, orthodontic elastics, natural rubber latex, orthodontic

Procedia PDF Downloads 267
2205 In vivo Wound Healing Activity and Phytochemical Screening of the Crude Extract and Various Fractions of Kalanchoe petitiana A. Rich (Crassulaceae) Leaves in Mice

Authors: Awol Mekonnen, Temesgen Sidamo, Epherm Engdawork, Kaleab Asresb

Abstract:

Ethnopharmacological Relevance: The leaves of Kalanchoe petitiana A. Rich (Crassulaceae) are used in Ethiopian folk medicine for treatment of evil eye, fractured surface for bone setting and several skin disorders including for the treatment of sores, boils, and malignant wounds. Aim of the Study: In order to scientifically prove the claimed utilization of the plant, the effects of the extracts and the fractions were investigated using in vivo excision, incision and dead space wound models. Materials and Method: Mice were used for wound healing study, while rats and rabbit were used for skin irritation test. For studying healing activity, 80% methanolic extract and the fractions were formulated in strength of 5% and 10%, either as ointment (hydroalcoholic extract, aqueous and methanol fractions) or gel (chloroform fraction). Oral administration of the crude extract was used for dead space model. Negative controls were treated either with simple ointment or sodium carboxyl methyl cellulose xerogel, while positive controls were treated with nitrofurazone (0.2 w/v) skin ointment. Negative controls for dead space model were treated with 1% carboxy methyl cellulose. Parameters, including rate of wound contraction, period of complete epithelializtion, hydroxyproline contents and skin breaking strength were evaluated. Results: Significant wound healing activity was observed with ointment formulated from the crude extract at both 5% and 10% concentration (p<0.01) compared to controls in both excision and incision models. In dead space model, 600 mg/kg (p<0.01), but not 300 mg/kg, significantly increased hydroxyproline content. Fractions showed variable effect, with the chloroform fraction lacking any significant effect. Both 5% and 10% formulations of the aqueous and methanolic fractions significantly increased wound contraction, decreased epithelializtion time and increased hydroxyproline content in excision wound model (p<0.05) as compared to controls. These fractions were also endowed with higher skin breaking strength in incision wound model (p<0.01). Conclusions: The present study provided evidence that the leaves of Kalanchoe petitiana A. Rich possess remarkable wound healing activities supporting the folkloric assertion of the plant. Fractionation revealed that polar or semi-polar compound may play vital role, as both aqueous and methanolic fractions were endowed with wound healing activity.

Keywords: wound healing, Kalanchoae petitiana, excision wound, incision wound, dead space model

Procedia PDF Downloads 302
2204 Experimental and Numerical Investigation of Fracture Behavior of Foamed Concrete Based on Three-Point Bending Test of Beams with Initial Notch

Authors: M. Kozłowski, M. Kadela

Abstract:

Foamed concrete is known for its low self-weight and excellent thermal and acoustic properties. For many years, it has been used worldwide for insulation to foundations and roof tiles, as backfill to retaining walls, sound insulation, etc. However, in the last years it has become a promising material also for structural purposes e.g. for stabilization of weak soils. Due to favorable properties of foamed concrete, many interests and studies were involved to analyze its strength, mechanical, thermal and acoustic properties. However, these studies do not cover the investigation of fracture energy which is the core factor governing the damage and fracture mechanisms. Only limited number of publications can be found in literature. The paper presents the results of experimental investigation and numerical campaign of foamed concrete based on three-point bending test of beams with initial notch. First part of the paper presents the results of a series of static loading tests performed to investigate the fracture properties of foamed concrete of varying density. Beam specimens with dimensions of 100×100×840 mm with a central notch were tested in three-point bending. Subsequently, remaining halves of the specimens with dimensions of 100×100×420 mm were tested again as un-notched beams in the same set-up with reduced distance between supports. The tests were performed in a hydraulic displacement controlled testing machine with a load capacity of 5 kN. Apart from measuring the loading and mid-span displacement, a crack mouth opening displacement (CMOD) was monitored. Based on the load – displacement curves of notched beams the values of fracture energy and tensile stress at failure were calculated. The flexural tensile strength was obtained on un-notched beams with dimensions of 100×100×420 mm. Moreover, cube specimens 150×150×150 mm were tested in compression to determine the compressive strength. Second part of the paper deals with numerical investigation of the fracture behavior of beams with initial notch presented in the first part of the paper. Extended Finite Element Method (XFEM) was used to simulate and analyze the damage and fracture process. The influence of meshing and variation of mechanical properties on results was investigated. Numerical models simulate correctly the behavior of beams observed during three-point bending. The numerical results show that XFEM can be used to simulate different fracture toughness of foamed concrete and fracture types. Using the XFEM and computer simulation technology allow for reliable approximation of load–bearing capacity and damage mechanisms of beams made of foamed concrete, which provides some foundations for realistic structural applications.

Keywords: foamed concrete, fracture energy, three-point bending, XFEM

Procedia PDF Downloads 296
2203 From Modelled Design to Reality through Material and Machinery Lab and Field Tests: Porous Concrete Carparks at the Wanda Metropolitano Stadium in Madrid

Authors: Manuel de Pazos-Liano, Manuel Cifuentes-Antonio, Juan Fisac-Gozalo, Sara Perales-Momparler, Carlos Martinez-Montero

Abstract:

The first-ever game in the Wanda Metropolitano Stadium, the new home of the Club Atletico de Madrid, was played on September 16, 2017, thanks to the work of a multidisciplinary team that made it possible to combine urban development with sustainability goals. The new football ground sits on a 1.2 km² land owned by the city of Madrid. Its construction has dramatically increased the sealed area of the site (transforming the runoff coefficient from 0.35 to 0.9), and the surrounding sewer network has no capacity for that extra flow. As an alternative to enlarge the existing 2.5 m diameter pipes, it was decided to detain runoff on site by means of an integrated and durable infrastructure that would not blow up the construction cost nor represent a burden on the municipality’s maintenance tasks. Instead of the more conventional option of building a large concrete detention tank, the decision was taken on the use of pervious pavement on the 3013 car parking spaces for sub-surface water storage, a solution aligned with the city water ordinance and the Madrid + Natural project. Making the idea a reality, in only five months and during the summer season (which forced to pour the porous concrete only overnight), was a challenge never faced before in Spain, that required of innovation both at the material as well as the machinery side. The process consisted on: a) defining the characteristics required for the porous concrete (compressive strength of 15 N/mm2 and 20% voids); b) testing of different porous concrete dosages at the construction company laboratory; c) stablishing the cross section in order to provide structural strength and sufficient water detention capacity (20 cm porous concrete over a 5 cm 5/10 gravel, that sits on a 50 cm coarse 40/50 aggregate sub-base separated by a virgin fiber polypropylene geotextile fabric); d) hydraulic computer modelling (using the Full Hydrograph Method based on the Wallingford Procedure) to estimate design peak flows decrease (an average of 69% at the three car parking lots); e) use of a variety of machinery for the application of the porous concrete to achieve both structural strength and permeable surface (including an inverse rotating rolling imported from USA, and the so-called CMI, a sliding concrete paver used in the construction of motorways with rigid pavements); f) full-scale pilots and final construction testing by an accredited laboratory (pavement compressive strength average value of 15 N/mm2 and 0,0032 m/s permeability). The continuous testing and innovating construction process explained in detail within this article, allowed for a growing performance with time, finally proving the use of the CMI valid also for large porous car park applications. All this process resulted in a successful story that converts the Wanda Metropolitano Stadium into a great demonstration site that will help the application of the Spanish Royal Decree 638/2016 (it also counts with rainwater harvesting for grass irrigation).

Keywords: construction machinery, permeable carpark, porous concrete, SUDS, sustainable develpoment

Procedia PDF Downloads 136
2202 Surface Thermodynamics Approach to Mycobacterium tuberculosis (M-TB) – Human Sputum Interactions

Authors: J. L. Chukwuneke, C. H. Achebe, S. N. Omenyi

Abstract:

This research work presents the surface thermodynamics approach to M-TB/HIV-Human sputum interactions. This involved the use of the Hamaker coefficient concept as a surface energetics tool in determining the interaction processes, with the surface interfacial energies explained using van der Waals concept of particle interactions. The Lifshitz derivation for van der Waals forces was applied as an alternative to the contact angle approach which has been widely used in other biological systems. The methodology involved taking sputum samples from twenty infected persons and from twenty uninfected persons for absorbance measurement using a digital Ultraviolet visible Spectrophotometer. The variables required for the computations with the Lifshitz formula were derived from the absorbance data. The Matlab software tools were used in the mathematical analysis of the data produced from the experiments (absorbance values). The Hamaker constants and the combined Hamaker coefficients were obtained using the values of the dielectric constant together with the Lifshitz equation. The absolute combined Hamaker coefficients A132abs and A131abs on both infected and uninfected sputum samples gave the values of A132abs = 0.21631x10-21Joule for M-TB infected sputum and Ã132abs = 0.18825x10-21Joule for M-TB/HIV infected sputum. The significance of this result is the positive value of the absolute combined Hamaker coefficient which suggests the existence of net positive van der waals forces demonstrating an attraction between the bacteria and the macrophage. This however, implies that infection can occur. It was also shown that in the presence of HIV, the interaction energy is reduced by 13% conforming adverse effects observed in HIV patients suffering from tuberculosis.

Keywords: absorbance, dielectric constant, hamaker coefficient, lifshitz formula, macrophage, mycobacterium tuberculosis, van der waals forces

Procedia PDF Downloads 268
2201 Efficacy Study of Post-Tensioned I Girder Made of Ultra-High Performance Fiber Reinforced Concrete and Ordinary Concrete for IRC Loading

Authors: Ayush Satija, Ritu Raj

Abstract:

Escalating demand for elevated structures as a remedy for traffic congestion has led to a surge in the construction of viaducts and bridges predominantly employing prestressed beams. However, post-tensioned I-girder superstructures are gaining traction for their attributes like structural efficiency, cost-effectiveness, and easy construction. Recently, Ultra-high-performance fiber-reinforced concrete (UHPFRC) has emerged as a revolutionary material in reshaping conventional infrastructure engineering. UHPFRC offers exceptional properties including high compressive and tensile strength, alongside enhanced durability. Its adoption in bridges yields benefits, notably a remarkable strength-to-weight ratio enabling the design of lighter and slender structural elements, enhancing functionality and sustainability. Despite its myriad advantages, integration of UHPFRC in construction is still evolving, hindered by factors like cost, material availability, and design standardization. Consequently, there's a need to assess the feasibility of substituting ordinary concrete (OC) with UHPFRC in bridges, focusing on economic considerations. This research undertakes an efficacy study between post-tensioned I-girders fabricated from UHPFRC and OC, evaluating cost parameters associated with concrete production, reinforcement, and erection. The study reveals that UHPFRC becomes economically viable for spans exceeding 40.0m. This shift in cost-effectiveness is attributed to factors like reduced girder depth, elimination of un-tensioned steel, diminished need for shear reinforcement and decreased erection costs.

Keywords: post tensioned I girder, superstructure, ultra-high-performance fiber reinforced concrete, ordinary concrete

Procedia PDF Downloads 28
2200 Development of Hydrophilic Materials for Nanofiltration Membrane Achieving Dual Resistance to Fouling and Chlorine

Authors: Xi Quan Cheng, Yan Chao Xu, Xu Jiang, Lu Shao, Cher Hon Lau

Abstract:

A hydrophilic thin-film-composite (TFC) nanofiltration (NF) membrane has been developed through the interfacial polymerization (IP) of amino-functional polyethylene glycol (PEG) and trimesoyl chloride. The selective layer is formed on a polyethersulfone (PES) support that is characterized using FTIR, XPS and SEM, and is dependent on monomer immersion duration, and the concentration of monomers and additives. The higher hydrophilicity alongside the larger pore size of the PEG-based selective layer is the key to a high water flux of 66.0 L m-2 h-1 at 5.0 bar. With mean pore radius of 0.42 nm and narrow pore size distribution, the MgSO4 rejections of the PEG based PA TFC NF membranes can reach up to 80.2 %. The hydrophilic PEG based membranes shows positive charged since the isoelectric points range from pH=8.9 to pH=9.1 and the rejection rates for different salts of the novel membranes are in the order of R(MgCl2)>R(MgSO4)>R(NaCl)>R(Na2SO4). The pore sizes and water permeability of these membranes are tailored by varying the molecular weight and molecular architecture of amino-functional PEG. Due to the unique structure of the selective layer of the PEG based membranes consisting of saturated aliphatic construction unit (CH2-CH2-O), the membranes demonstrate dual resistance to fouling and chlorine. The membranes maintain good salt rejections and high water flux of PEG based membranes after treatment by 2000 ppm NaClO for 24 hours. Interestingly, the PEG based membranes exhibit excellent fouling resistance with a water flux recovery of 90.2 % using BSA as a model molecule. More importantly, the hydrophilic PEG based NF membranes have been exploited to separate several water soluble antibiotics (such as tobramycin, an aminoglycoside antibiotic applied in the treatment of various types of bacterial infections), showing excellent performance in concentration or removal of antibioics.

Keywords: nanofiltration, antibiotic separation, hydrophilic membrane, high flux

Procedia PDF Downloads 315
2199 Comparative Performance of Retting Methods on Quality Jute Fibre Production and Water Pollution for Environmental Safety

Authors: A. K. M. Zakir Hossain, Faruk-Ul Islam, Muhammad Alamgir Chowdhury, Kazi Morshed Alam, Md. Rashidul Islam, Muhammad Humayun Kabir, Noshin Ara Tunazzina, Taufiqur Rahman, Md. Ashik Mia, Ashaduzzaman Sagar

Abstract:

The jute retting process is one of the key factors for the excellent jute fibre production as well as maintaining water quality. The traditional method of jute retting is time-consuming and hampers the fish cultivation by polluting the water body. Therefore, a low cost, time-saving, environment-friendly, and improved technique is essential for jute retting to overcome this problem. Thus the study was focused to compare the extent of water pollution and fibre quality of two retting systems, i.e., traditional retting practices over-improved retting method (macha retting) by assessing different physico-chemical and microbiological properties of water and fibre quality parameters. Water samples were collected from the top and bottom of the retting place at the early, mid, and final stages of retting from four districts of Bangladesh viz., Gaibandha, Kurigram, Lalmonirhat, and Rangpur. Different physico-chemical parameters of water samples viz., pH, dissolved oxygen (DO), conductivity (CD), total dissolved solids (TDS), hardness, calcium, magnesium, carbonate, bicarbonate, chloride, phosphorus and sulphur content were measured. Irrespective of locations, the DO of the final stage retting water samples was very low as compared to the mid and early stage, and the DO of traditional jute retting method was significantly lower than the improved macha method. The pH of the water samples was slightly more acidic in the traditional retting method than that of the improved macha method. Other physico-chemical parameters of the water sample were found higher in the traditional method over-improved macha retting in all the stages of retting. Bacterial species were isolated from the collected water samples following the dilution plate technique. Microbiological results revealed that water samples of improved macha method contained more bacterial species that are supposed to involve in jute retting as compared to water samples of the traditional retting method. The bacterial species were then identified by the sequencing of 16SrDNA. Most of the bacterial species identified belong to the genera Pseudomonas, Bacillus, Pectobacterium, and Stenotrophomonas. In addition, the tensile strength of the jute fibre was tested, and the results revealed that the improved macha method showed higher mechanical strength than the traditional method in most of the locations. The overall results indicate that the water and fibre quality were found better in the improved macha retting method than the traditional method. Therefore, a time-saving and cost-friendly improved macha retting method can be widely adopted for the jute retting process to get the quality jute fiber and to keep the environment clean and safe.

Keywords: jute retting methods, physico-chemical parameters, retting microbes, tensile strength, water quality

Procedia PDF Downloads 153
2198 URM Infill in-Plane and out-of-Plane Interaction in Damage Evaluation of RC Frames

Authors: F. Longo, G. Granello, G. Tecchio, F. Da Porto

Abstract:

Unreinforced masonry (URM) infill walls are widely used throughout the world, also in seismic prone regions, as partitions in reinforced concrete building frames. Even if they do not represent structural elements, they can dramatically affect both strength and stiffness of RC structures by acting as a diagonal strut, modifying shear and displacements distribution along the building height, with uncertain consequences on structural safety. In the last decades, many refined models have been developed to describe infill walls effect on frame structural behaviour, but generally restricted to in-plane actions. Only very recently some new approaches were implemented to consider in-plane/out-of-plane interaction of URM infill walls in progressive collapse simulations. In the present work, a particularly promising macro-model was adopted for the progressive collapse analysis of infilled RC frames. The model allows to consider the bi-directional interaction in terms of displacement and strength capacity for URM infills, and to remove the infill contribution when the URM wall is supposed to fail during the analysis process. The model was calibrated on experimental data regarding two different URM panels thickness, modelling with particular care the post-critic softening branch. A frame specimen set representing the most common Italian structures was built considering two main normative approaches: a traditional design philosophy, corresponding to structures erected between 50’s-80’s basically designed to support vertical loads, and a seismic design philosophy, corresponding to current criteria that take into account horizontal actions. Non-Linear Static analyses were carried out on the specimen set and some preliminary evaluations were drawn in terms of different performance exhibited by the RC frame when the contemporary effect of the out-of-plane damage is considered for the URM infill.

Keywords: infill Panels macromodels, in plane-out of plane interaction, RC frames, URM infills

Procedia PDF Downloads 510
2197 A Lightweight Interlock Block from Foamed Concrete with Construction and Agriculture Waste in Malaysia

Authors: Nor Azian Binti Aziz, Muhammad Afiq Bin Tambichik, Zamri Bin Hashim

Abstract:

The rapid development of the construction industry has contributed to increased construction waste, with concrete waste being among the most abundant. This waste is generated from ready-mix batching plants after the concrete cube testing process is completed and disposed of in landfills, leading to increased solid waste management costs. This study aims to evaluate the engineering characteristics of foamed concrete with waste mixtures construction and agricultural waste to determine the usability of recycled materials in the construction of non-load-bearing walls. This study involves the collection of construction wastes, such as recycled aggregates (RCA) obtained from the remains of finished concrete cubes, which are then tested in the laboratory. Additionally, agricultural waste, such as rice husk ash, is mixed into foamed concrete interlock blocks to enhance their strength. The optimal density of foamed concrete for this study was determined by mixing mortar and foam-backed agents to achieve the minimum targeted compressive strength required for non-load-bearing walls. The tests conducted in this study involved two phases. In Phase 1, elemental analysis using an X-ray fluorescence spectrometer (XRF) was conducted on the materials used in the production of interlock blocks such as sand, recycled aggregate/recycled concrete aggregate (RCA), and husk ash paddy/rice husk ash (RHA), Phase 2 involved physical and thermal tests, such as compressive strength test, heat conductivity test, and fire resistance test, on foamed concrete mixtures. The results showed that foamed concrete can produce lightweight interlock blocks. X-ray fluorescence spectrometry plays a crucial role in the characterization, quality control, and optimization of foamed concrete mixes containing construction and agriculture waste. The unique composition mixer of foamed concrete and the resulting chemical and physical properties, as well as the nature of replacement (either as cement or fine aggregate replacement), the waste contributes differently to the performance of foamed concrete. Interlocking blocks made from foamed concrete can be advantageous due to their reduced weight, which makes them easier to handle and transport compared to traditional concrete blocks. Additionally, foamed concrete typically offers good thermal and acoustic insulation properties, making it suitable for a variety of building projects. Using foamed concrete to produce lightweight interlock blocks could contribute to more efficient and sustainable construction practices. Additionally, RCA derived from concrete cube waste can serve as a substitute for sand in producing lightweight interlock blocks.

Keywords: construction waste, recycled aggregates (RCA), sustainable concrete, structure material

Procedia PDF Downloads 49
2196 Effect of Sodium Hydroxide Treatment on the Mechanical Properties of Crushed and Uncrushed Luffa cylindrica Fibre Reinforced rLDPE Composites

Authors: Paschal A. Ubi, Salawu Abdul Rahman Asipita

Abstract:

The use of suitable engineering materials which poses less harm to ,an and the environment is sort for in recent times, thus giving rise to polymer composites filled with natural organic reinforcement which are biodegradable. Treatment of natural fibres is essential in improving matrix to filler adhesion, hence improving its mechanical properties. In this study, investigations were carried out to determine the effect of sodium hydroxide treatment on the tensile, flexural, impact and hardness properties of crushed and uncrushed luffa cylindrica fibre reinforced recycled low density polyethylene composites. The LC (Luffa Cylindrica) fibres were treated with 0%, 2%, 4%, 6%, 8%, and 10% wt. NaOH concentrations for a period of 24 hours under room temperature conditions. The compounding of the waste LDPE was done using a two roll mill at a temperature of 150 oC and cured in a hydraulic press at a temperature of 150oC for 3 minutes at 3 metric tonnes. A formulation of 20/80g (reinforcement to matrix ratio in grams) was maintained for all fabricated samples. Analysis of the results showed that the uncrushed luffa fibre samples gave better mechanical properties compared with the crushed luffa fibre samples. The uncrushed luffa fibre composites had optimum tensile and flexural strengths of 7.65MPa and 17.08Mpa respectively corresponding to a young modulus and flexural modulus of 21.08MPa and 232.22MPa for the 8% and 4%wt. NaOH concentration respectively. Results obtained in the research showed that NaOH treatment with the 8% NaOH concentration improves the mechanical properties of the LC fibre reinforced composites when compared with other NaOH treatment concentration values.

Keywords: LC fibres, NaOH concentration, LC/rLDPE composite, tensile strength, flexural strength

Procedia PDF Downloads 274
2195 Effects of Accelerated Environment Aging on the Mechanical Properties of a Coir Fiber Reinforced Polyester Composite

Authors: Ricardo Mendoza, Jason Briceño, Juan F. Santa, Gabriel Peluffo, Mauricio Márquez, Beatriz Cardozo, Carlos Gutiérrez

Abstract:

Coir natural fiber reinforced polyester composites were exposed to an accelerated environment aging in order to study the influence on the mechanical properties. Coir fibers were obtained in local plantations of the Caribbean coast of Colombia. A physical and mechanical characterization was necessary to found the best behavior between three types of coconut. Composites were fabricated by hand lay-up technique and samples were cut by water jet technique. An accelerated aging test simulates environmental climate conditions in a hygrothermal and ultraviolet chamber. Samples were exposed to the UV/moisture rich environment for 500 and 1000 hours. The tests were performed in accordance with ASTM G154. An additional water absorption test was carried out by immersing specimens in a water bath. Mechanical behaviors of the composites were tested by tensile, flexural and impact test according to ASTM standards, after aging and compared with unaged composite specimens. It was found that accelerated environment aging affects mechanical properties in comparison with unaged ones. Tensile and flexural strength were lower after aging, meantime elongation at break and flexural deflection increased. Impact strength was found that reduced after aging. Other result revealed that the percentage of moisture uptake increased with aging. This results showed that composite materials reinforced with natural fibers required an improvement adding a protective barrier to reduce water absorption and increase UV resistance.

Keywords: coir fiber, polyester composites, environmental aging, mechanical properties

Procedia PDF Downloads 267
2194 Thermal Proprieties of Date Palm Wood

Authors: K. Almi, S. Lakel, A. Benchabane, A. Kriker

Abstract:

Several researches are focused on natural resources for the production of biomaterials intended for technical applications. Date palm wood present one of the world’s most important natural resource. Its use as insulating materials will help to solve the severe environmental and recycling problems which other artificial insulating materials caused. This paper reports the results of an experimental investigation on the thermal proprieties of date palm wood from Algeria. A study of physical, chemical, and mechanical properties is also carried out. The goal is to use this natural material in the manufacture of thermal insulation materials for buildings. The local natural resources used in this study are the date palm fibers from Biskra oasis in Algeria. The results have shown that there is no significant difference in the morphological proprieties of the four types of residues. Their chemical composition differed slightly; with the lowest amounts of cellulose and lignin content belong to Petiole. Water absorption study proved that Rachis has a low value of sorption whereas Petiole and Fibrillium have a high value of sorption what influenced their mechanical properties. It is seen that the Rachis and leaflets exhibit high tensile strength values compared to the other residue. On the other hand, the low value of the bulk density of Petiole and Fibrillium leads to a high value of specific tensile strength and young modulus. It was found that the specific young modulus of Petiole and Fibrillium was higher than that of Rachis and Leaflets and that of other natural fibers or even artificial fibers. Compared to the other materials date palm wood provide a good thermal proprieties thus, date palm wood will be a good candidate for the manufacturing efficient and safe insulating materials.

Keywords: composite materials, date palm fiber, natural fibers, tensile tests, thermal proprieties

Procedia PDF Downloads 285
2193 In-Situ Formation of Particle Reinforced Aluminium Matrix Composites by Laser Powder Bed Fusion of Fe₂O₃/AlSi12 Powder Mixture Using Consecutive Laser Melting+Remelting Strategy

Authors: Qimin Shi, Yi Sun, Constantinus Politis, Shoufeng Yang

Abstract:

In-situ preparation of particle-reinforced aluminium matrix composites (PRAMCs) by laser powder bed fusion (LPBF) additive manufacturing is a promising strategy to strengthen traditional Al-based alloys. The laser-driven thermite reaction can be a practical mechanism to in-situ synthesize PRAMCs. However, introducing oxygen elements through adding Fe₂O₃ makes the powder mixture highly sensitive to form porosity and Al₂O₃ film during LPBF, bringing challenges to producing dense Al-based materials. Therefore, this work develops a processing strategy combined with consecutive high-energy laser melting scanning and low-energy laser remelting scanning to prepare PRAMCs from a Fe₂O₃/AlSi12 powder mixture. The powder mixture consists of 5 wt% Fe₂O₃ and the remainder AlSi12 powder. The addition of 5 wt% Fe₂O₃ aims to achieve balanced strength and ductility. A high relative density (98.2 ± 0.55 %) was successfully obtained by optimizing laser melting (Emelting) and laser remelting surface energy density (Eremelting) to Emelting = 35 J/mm² and Eremelting = 5 J/mm². Results further reveal the necessity of increasing Emelting, to improve metal liquid’s spreading/wetting by breaking up the Al₂O₃ films surrounding the molten pools; however, the high-energy laser melting produced much porosity, including H₂₋, O₂₋ and keyhole-induced pores. The subsequent low-energy laser remelting could close the resulting internal pores, backfill open gaps and smoothen solidified surfaces. As a result, the material was densified by repeating laser melting and laser remelting layer by layer. Although with two-times laser scanning, the microstructure still shows fine cellular Si networks with Al grains inside (grain size of about 370 nm) and in-situ nano-precipitates (Al₂O₃, Si, and Al-Fe(-Si) intermetallics). Finally, the fine microstructure, nano-structured dispersion strengthening, and high-level densification strengthened the in-situ PRAMCs, reaching yield strength of 426 ± 4 MPa and tensile strength of 473 ± 6 MPa. Furthermore, the results can expect to provide valuable information to process other powder mixtures with severe porosity/oxide-film formation potential, considering the evidenced contribution of laser melting/remelting strategy to densify material and obtain good mechanical properties during LPBF.

Keywords: densification, laser powder bed fusion, metal matrix composites, microstructures, mechanical properties

Procedia PDF Downloads 150
2192 Triplet Shear Tests on Retrofitted Brickwork Masonry Walls

Authors: Berna Istegun, Erkan Celebi

Abstract:

The main objective of this experimental study is to assess the shear strength and the crack behavior of the triplets built of perforated brickwork masonry elements. In order to observe the influence of shear resistance and energy dissipating before and after retrofitting applications by using the reinforcing system, static-cyclic shear tests were employed in the structural mechanics laboratory of Sakarya University. The reinforcing system is composed of hybrid multiaxial seismic fabric consisting of alkali resistant glass and polypropylene fibers. The plaster as bonding material used in the specimen’s retrofitting consists of expanded glass granular. In order to acquire exact measuring data about the failure behavior of the two mortar joints under shear stressing, vertical load-controlled cylinder having force capacity of 50 kN and loading rate of 1.5 mm/min. with an internal inductive displacement transducers is carried out perpendicular to the triplet specimens. In this study, a total of six triplet specimens with textile reinforcement were prepared for these shear bond tests. The three of them were produced as single-sided reinforced triplets with seismic fabric, while the others were strengthened on both sides. In addition, three triplet specimens without retrofitting and plaster were also tested as reference samples. The obtained test results were given in the manner of force-displacement relationships, ductility coefficients and shear strength parameters comparatively. It is concluded that two-side seismic textile applications on masonry elements with relevant plaster have considerably increased the sheer force resistance and the ductility capacity.

Keywords: expanded glass granular, perforated brickwork, retrofitting, seismic fabric, triplet shear tests

Procedia PDF Downloads 200
2191 Kinetics and Mechanism Study of Photocatalytic Degradation Using Heterojunction Semiconductors

Authors: Ksenija Milošević, Davor Lončarević, Tihana Mudrinić, Jasmina Dostanić

Abstract:

Heterogeneous photocatalytic processes have gained growing interest as an efficient method to generate hydrogen by using clean energy sources and degrading various organic pollutants. The main obstacles that restrict efficient photoactivity are narrow light-response range and high rates of charge carrier recombination. The formation of heterojunction by combining a semiconductor with low VB and a semiconductor with high CB and a suitable band gap was found to be an efficient method to prepare more sensible materials with improved charge separation, appropriate oxidation and reduction ability, and enhanced visible-light harvesting. In our research, various binary heterojunction systems based on the wide-band gap (TiO₂) and narrow bandgap (g-C₃N₄, CuO, and Co₂O₃) photocatalyst were studied. The morphology, optical, and electrochemical properties of the photocatalysts were analyzed by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), N₂ physisorption, diffuse reflectance measurements (DRS), and Mott-Schottky analysis. The photocatalytic performance of the synthesized catalysts was tested in single and simultaneous systems. The synthesized photocatalysts displayed good adsorption capacity and enhanced visible-light photocatalytic performance. The mutual interactions of pollutants on their adsorption and degradation efficiency were investigated. The interfacial connection between photocatalyst constituents and the mechanism of the transport pathway of photogenerated charge species was discussed. A radical scavenger study revealed the interaction mechanisms of the photocatalyst constituents in single and multiple pollutant systems under solar and visible light irradiation, indicating the type of heterojunction system (Z scheme or type II).

Keywords: bandgap alignment, heterojunction, photocatalysis, reaction mechanism

Procedia PDF Downloads 97
2190 Optimization of Sodium Lauryl Surfactant Concentration for Nanoparticle Production

Authors: Oluwatoyin Joseph Gbadeyan, Sarp Adali, Bright Glen, Bruce Sithole

Abstract:

Sodium lauryl surfactant concentration optimization, for nanoparticle production, provided the platform for advanced research studies. Different concentrations (0.05 %, 0.1 %, and 0.2 %) of sodium lauryl surfactant was added to snail shells powder during milling processes for producing CaCO3 at smaller particle size. Epoxy nanocomposites prepared at filler content 2 wt.% synthesized with different volumes of sodium lauryl surfactant were fabricated using a conventional resin casting method. Mechanical properties such as tensile strength, stiffness, and hardness of prepared nanocomposites was investigated to determine the effect of sodium lauryl surfactant concentration on nanocomposite properties. It was observed that the loading of the synthesized nano-calcium carbonate improved the mechanical properties of neat epoxy at lower concentrations of sodium lauryl surfactant 0.05 %. Meaningfully, loading of achatina fulica snail shell nanoparticles manufactures, with small concentrations of sodium lauryl surfactant 0.05 %, increased the neat epoxy tensile strength by 26%, stiffness by 55%, and hardness by 38%. Homogeneous dispersion facilitated, by the addition of sodium lauryl surfactant during milling processes, improved mechanical properties. Research evidence suggests that nano-CaCO3, synthesized from achatina fulica snail shell, possesses suitable reinforcement properties that can be used for nanocomposite fabrication. The evidence showed that adding small concentrations of sodium lauryl surfactant 0.05 %, improved dispersion of nanoparticles in polymetrix material that provided mechanical properties improvement.

Keywords: sodium lauryl surfactant, mechanical properties , achatina fulica snail shel, calcium carbonate nanopowder

Procedia PDF Downloads 137
2189 Utilizing Fiber-Based Modeling to Explore the Presence of a Soft Storey in Masonry-Infilled Reinforced Concrete Structures

Authors: Akram Khelaifia, Salah Guettala, Nesreddine Djafar Henni, Rachid Chebili

Abstract:

Recent seismic events have underscored the significant influence of masonry infill walls on the resilience of structures. The irregular positioning of these walls exacerbates their adverse effects, resulting in substantial material and human losses. Research and post-earthquake evaluations emphasize the necessity of considering infill walls in both the design and assessment phases. This study delves into the presence of soft stories in reinforced concrete structures with infill walls. Employing an approximate method relying on pushover analysis results, fiber-section-based macro-modeling is utilized to simulate the behavior of infill walls. The findings shed light on the presence of soft first stories, revealing a notable 240% enhancement in resistance for weak column—strong beam-designed frames due to infill walls. Conversely, the effect is more moderate at 38% for strong column—weak beam-designed frames. Interestingly, the uniform distribution of infill walls throughout the structure's height does not influence soft-story emergence in the same seismic zone, irrespective of column-beam strength. In regions with low seismic intensity, infill walls dissipate energy, resulting in consistent seismic behavior regardless of column configuration. Despite column strength, structures with open-ground stories remain vulnerable to soft first-story emergence, underscoring the crucial role of infill walls in reinforced concrete structural design.

Keywords: masonry infill walls, soft Storey, pushover analysis, fiber section, macro-modeling

Procedia PDF Downloads 58