Search results for: acid concentration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7460

Search results for: acid concentration

5810 Effect of Chemical Additive on Fixed Abrasive Polishing of LBO Crystal with Non-Water Based Slurry

Authors: Jun Li, Wenze Wang, Zhanggui Hu, Yongwei Zhu, Dunwen Zuo

Abstract:

Non-water based fixed abrasive polishing was adopted to manufacture LBO crystal for nano precision surface quality because of its deliquescent. Ethyl alcohol was selected as the non-water based slurry solvent and ethanediamine, lactic acid, hydrogen peroxide were add in the slurry as a chemical additive, respectively. Effect of different additives with non-water based slurry on material removal rate, surface topography, microscopic appearances and surface roughness were investigated in fixed abrasive polishing of LBO crystal. The results show the best surface quality of LBO crystal with surface roughness Sa 8.2 nm and small damages was obtained by non-water based slurry with lactic acid. Non-water based fixed abrasive polishing can achieve nano precision surface quality of LBO crystal with high material removal.

Keywords: non-water based slurry, LBO crystal, fixed abrasive polishing, surface roughness

Procedia PDF Downloads 454
5809 Poly(Acrylamide-Co-Itaconic Acid) Nanocomposite Hydrogels and Its Use in the Removal of Lead in Aqueous Solution

Authors: Majid Farsadrouh Rashti, Alireza Mohammadinejad, Amir Shafiee Kisomi

Abstract:

Lead (Pb²⁺), a cation, is a prime constituent of the majority of the industrial effluents such as mining, smelting and coal combustion, Pb-based painting and Pb containing pipes in water supply systems, paper and pulp refineries, printing, paints and pigments, explosive manufacturing, storage batteries, alloy and steel industries. The maximum permissible limit of lead in the water used for drinking and domesticating purpose is 0.01 mg/L as advised by Bureau of Indian Standards, BIS. This becomes the acceptable 'safe' level of lead(II) ions in water beyond which, the water becomes unfit for human use and consumption, and is potential enough to lead health problems and epidemics leading to kidney failure, neuronal disorders, and reproductive infertility. Superabsorbent hydrogels are loosely crosslinked hydrophilic polymers that in contact with aqueous solution can easily water and swell to several times to their initial volume without dissolving in aqueous medium. Superabsorbents are kind of hydrogels capable to swell and absorb a large amount of water in their three-dimensional networks. While the shapes of hydrogels do not change extensively during swelling, because of tremendously swelling capacity of superabsorbent, their shape will broadly change.Because of their superb response to changing environmental conditions including temperature pH, and solvent composition, superabsorbents have been attracting in numerous industrial applications. For instance, water retention property and subsequently. Natural-based superabsorbent hydrogels have attracted much attention in medical pharmaceutical, baby diapers, agriculture, and horticulture because of their non-toxicity, biocompatibility, and biodegradability. Novel superabsorbent hydrogel nanocomposites were prepared by graft copolymerization of acrylamide and itaconic acid in the presence of nanoclay (laponite), using methylene bisacrylamide (MBA) and potassium persulfate, former as a crosslinking agent and the second as an initiator. The superabsorbent hydrogel nanocomposites structure was characterized by FTIR spectroscopy, SEM and TGA Spectroscopy adsorption of metal ions on poly (AAm-co-IA). The equilibrium swelling values of copolymer was determined by gravimetric method. During the adsorption of metal ions on polymer, residual metal ion concentration in the solution and the solution pH were measured. The effects of the clay content of the hydrogel on its metal ions uptake behavior were studied. The NC hydrogels may be considered as a good candidate for environmental applications to retain more water and to remove heavy metals.

Keywords: adsorption, hydrogel, nanocomposite, super adsorbent

Procedia PDF Downloads 174
5808 Effects of Variable Properties and Double Dispersion on Magnetohydrodynamic (MHD) Mixed Convection in a Power-Law Fluid Saturated Non-Darcy Porous Medium

Authors: Pranitha Janapatla, Venkata Suman Gontla

Abstract:

The present paper investigates the effects of MHD, double dispersion and variable properties on mixed convection flow from a vertical surface in a power-law fluid saturated non-Darcy porous medium. The governing non-linear partial differential equations are reduced to a system of ordinary differential equations by using a special form of Lie group transformations viz. scaling group of transformations. These ordinary differential equations are solved numerically by using Shooting technique. The influence of relevant parameters on the non-dimensional velocity, temperature, concentration for pseudo-plastic fluid, Newtonian and dilatant fluid are discussed and displayed graphically. The behavior of heat and mass transfer coefficients are shown in tabular form. Comparisons with the published works are performed and are found to be in very good agreement. From this analysis, it is observed that an increase in variable viscosity causes to decrease in velocity profile and increase the temperature and concentration distributions. It is also concluded that increase in the solutal dispersion decreases the velocity and concentration but raises the temperature profile.

Keywords: power-law fluid, thermal conductivity, thermal dispersion, solutal dispersion, variable viscosity

Procedia PDF Downloads 212
5807 Protein-Starch-Potassium Iodide Composite as a Sensor for Chlorine in Water

Authors: S. Mowafi, A. Abou El-Kheir, M. Abou Taleb, H. El-Sayed

Abstract:

Two proteinic biopolymers; namely keratin and sericin, were extracted from their respective natural resources by simple appropriate methods. The said proteins were dissolved in the appropriate solvents followed by regeneration in a form of film polyvinyl alcohol. Protein-starch-potassium iodide (PSPI) composite was prepared by anchoring starch and potassium iodide mixture onto the film surface using appropriate polymeric material. The possibility of using PSPI composite for determination of the concentration of chlorine ions in domestic as well as industrial water was examined. The concentration of chlorine in water was determined spectrophotometrically by measuring the intensity of blue colour of formed between starch and the released iodine obtained by interaction of potassium iodide chlorine in the tested water sample.

Keywords: chlorine, protein, potassium iodide, water

Procedia PDF Downloads 360
5806 Genetic Variability in Advanced Derivatives of Interspecific Hybrids in Brassica

Authors: Yasir Ali, Farhatullah

Abstract:

The present study was conducted to estimate the genetic variability, heritability and genetic advance in six parental lines and their 56 genotypes derived from five introgressed brassica populations on the basis of morphological and biochemical traits. The experiment was laid out in a randomized complete block design with two replications at The University of Agriculture Peshawar-Pakistan during growing season of 2015-2016. The ANOVA of all traits of F5:6 populations showed highly significant differences (P ≤ 0.01) for all morphological and biochemical traits. Among F5:6 populations, the genotype 2(526) was earlier in flowering (108.65 days), and genotype 14(485) was earlier in maturity (170 days). Tallest plants (182.5 cm), largest main raceme (91.5 cm) and maximum number of pods (80.5) on main raceme were recorded for genotype 17(34). Maximum primary branches plant-1(6.2) and longest pods (10.26 cm) were recorded for genotype 15, while genotype 16(171) had more seeds pod⁻¹ (22) and gave maximum yield plant-1 (30.22 g). The maximum 100-seed weight (0.60 g) was observed for genotype 10(506) while high protein content (22.61%) was recorded for genotype 4(99). Maximum oil content (54.08 %) and low linoleic acid (7.07 %) were produced by genotype (12(138) and low glucosinolate (59.01 µMg⁻¹) was recorded for genotype 21(113). The genotype 27(303) having high oleic acid content (51.73 %) and genotype 1(209) gave low erucic acid (35.97 %). Among the F5:6 populations moderate to high heritability observed for all morphological and biochemical traits coupled with high genetic advance. Cluster analysis grouped the 56 F5:6 populations along their parental lines into seven different groups. Each group was different from the other group on the basis of morphological and biochemical traits. Moreover all the F5:6 populations showed sufficient variability. Genotypes 10(506) and 16(171) were superior for high seed yield⁻¹, 100-seeds weight, and seed pod⁻¹ and are recommended for future breeding program.

Keywords: Brassicaceae, biochemical characterization, introgression, morphological characterization

Procedia PDF Downloads 170
5805 An Assessment of Trace Heavy Metal Contamination of Some Edible Oils Regularly Marketed in Benue and Taraba States of Nigeria

Authors: Raphael Odoh, Obida J. Oko, Mary S. Dauda

Abstract:

The determination of Cd, Cr, Cu, Fe,Mn, Ni, Pb and Zn contents in edible oils (palm oil, ground-nut oil and soybean oil) bought from various markets of Benue and Taraba state were carried out with flame atomic absorption spectrophotometric technique. The method 3031 developed acid digestion of oils for metal analysis by atomic absorption or ICP spectrometry was used in the preparation of the edible oil samples for the determination of total metal content in this study. The overall results (µg/g) in palm oil sample ranged from 0.028-0.076, 0.035-0.092, 1.011-1.955, 2.101-4.892, 0.666-0.922, 0.054-0.095, 0.031-0.068 and 1.987-2.971 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively, while in ground-nut oil the overall results ranged from 0.011-0.042, 0.011-0.052, 0.133-0.788, 1.789-2.511, 0.078-0.765, 0.045-0.092, 0.011-0.028 and 1.098-1.997 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. Of the heavy metals considered Cd and Ni showed the highest contamination in the soybean oil sample. The overall results in soybean oil samples ranged from 0.011-0.015, 0.017-0.032, 0.453-0.987, 1.789-2.511, 0.089-0.321, 0.011-0.016, 0.012-0.065 and 1.011-1.997 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. The concentration of Pb was the highest. The degree of contamination by each metal was estimated by the transfer factor. The transfer factors obtained for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in edible oils (palm oil, ground-nut oil and soybean oil) were 10.800, 16.500, 16.000, 18.813, 15.115, 14.230, 23.000 and 9.418 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in palm oil, and 7.000, 12.500, 8.880, 11.333, 7.708, 10.833, 15.00 and 6.608 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in ground-nut oil while for soybean oil the transfer factors were 13.000, 11.000, 7.642, 11.578, 4.486, 13.00, 12.333 and 4.412 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. The inter-element correlation was found among metals in edible oil samples using Pearson’s correlation co-efficient. There were positive and negative correlations among the metals determined. All Metals determined showed degree of contamination but concentrations lower than the USP specification.

Keywords: Benue State, contamination, edible oils, heavy metals, markets, Taraba State

Procedia PDF Downloads 303
5804 Similarity of the Disposition of the Electrostatic Potential of Tetrazole and Carboxylic Group to Investigate Their Bioisosteric Relationship

Authors: Alya A. Arabi

Abstract:

Bioisosteres are functional groups that can be interchangeably used without affecting the potency of the drug. Bioisosteres have similar pharmacological properties. Bioisosterism is useful for modifying the physicochemical properties of a drug while obeying the Lipinski’s rules. Bioisosteres are key in optimizing the pharmacokinetic and pharmacodynamics properties of a drug. Tetrazole and carboxylate anions are non-classic bioisosteres. Density functional theory was used to obtain the wavefunction of the molecules and the optimized geometries. The quantum theory of atoms in molecules (QTAIM) was used to uncover the similarity of the average electron density in tetrazole and carboxylate anions. This similarity between the bioisosteres capped by a methyl group was valid despite the fact that the groups have different volumes, charges, energies, or electron populations. The biochemical correspondence of tetrazole and carboxylic acid was also determined to be a result of the similarity of the topography of the electrostatic potential (ESP). The ESP demonstrates the pharmacological and biochemical resemblance for a matching “key-and-lock” interaction.

Keywords: bioisosteres, carboxylic acid, density functional theory, electrostatic potential, tetrazole

Procedia PDF Downloads 418
5803 Study on Co-Relation of Prostate Specific Antigen with Metastatic Bone Disease in Prostate Cancer on Skeletal Scintigraphy

Authors: Muhammad Waleed Asfandyar, Akhtar Ahmed, Syed Adib-ul-Hasan Rizvi

Abstract:

Objective: To evaluate the ability of serum concentration of prostate specific antigen between two cutting points considering it as a predictor of skeletal metastasis on bone scintigraphy in men with prostate cancer. Settings: This study was carried out in department of Nuclear Medicine at Sindh Institute of Urology and Transplantation (SIUT) Karachi, Pakistan. Materials and Method: From August 2013 to November 2013, forty two (42) consecutive patients with prostate cancer who underwent technetium-99m methylene diphosphonate (Tc-99mMDP) whole body bone scintigraphy were prospectively analyzed. The information was collected from the scintigraphic database at a Nuclear medicine department Sindh institute of urology and transplantation Karachi Pakistan. Patients who did not have a serum PSA concentration available within 1 month before or after the time of performing the Tc-99m MDP whole body bone scintigraphy were excluded from this study. A whole body bone scintigraphy scan (from the toes to top of the head) was performed using a whole-body Moving gamma camera technique (anterior and posterior) 2–4 hours after intravenous injection of 20 mCi of Tc-99m MDP. In addition, all patients necessarily have a pathological report available. Bony metastases were determined from the bone scan studies and no further correlation with histopathology or other imaging modalities were performed. To preserve patient confidentiality, direct patient identifiers were not collected. In all the patients, Prostate specific antigen values and skeletal scintigraphy were evaluated. Results: The mean age, mean PSA, and incidence of bone metastasis on bone scintigraphy were 68.35 years, 370.51 ng/mL and 19/42 (45.23%) respectively. According to PSA levels, patients were divided into 5 groups < 10ng/mL (10/42), 10-20 ng/mL (5/42), 20-50 ng/mL (2/42), 50-100 (3/42), 100- 500ng/mL (3/42) and more than 500ng/mL (0/42) presenting negative bone scan. The incidence of positive bone scan (%) for bone metastasis for each group were O1 patient (5.26%), 0%, 03 patients (15.78%), 01 patient (5.26%), 04 patients (21.05%), and 10 patients (52.63%) respectively. From the 42 patients 19 (45.23%) presented positive scintigraphic examination for the presence of bone metastasis. 1 patient presented bone metastasis on bone scintigraphy having PSA level less than 10ng/mL, and in only 1 patient (5.26%) with bone metastasis PSA concentration was less than 20 ng/mL. therefore, when the cutting point adopted for PSA serum concentration was 10ng/mL, a negative predictive value for bone metastasis was 95% with sensitivity rates 94.74% and the positive predictive value and specificities of the method were 56.53% and 43.48% respectively. When the cutting point of PSA serum concentration was 20ng/mL the observed results for Positive predictive value and specificity were (78.27% and 65.22% respectively) whereas negative predictive value and sensitivity stood (100% and 95%) respectively. Conclusion: Results of our study allow us to conclude that serum PSA concentration of higher than 20ng/mL was the most accurate cutting point than a serum concentration of PSA higher than 10ng/mL to predict metastasis in radionuclide bone scintigraphy. In this way, unnecessary cost can be avoided, since a considerable part of prostate adenocarcinomas present low serum PSA levels less than 20 ng/mL and for these cases radionuclide bone scintigraphy could be unnecessary.

Keywords: bone scan, cut off value, prostate specific antigen value, scintigraphy

Procedia PDF Downloads 299
5802 Genetic Diversity and Discovery of Unique SNPs in Five Country Cultivars of Sesamum indicum by Next-Generation Sequencing

Authors: Nam-Kuk Kim, Jin Kim, Soomin Park, Changhee Lee, Mijin Chu, Seong-Hun Lee

Abstract:

In this study, we conducted whole genome re-sequencing of 10 cultivars originated from five countries including Korea, China, India, Pakistan and Ethiopia with Sesamum indicum (Zhongzho No. 13) genome as a reference. Almost 80% of the whole genome sequences of the reference genome could be covered by sequenced reads. Numerous SNP and InDel were detected by bioinformatic analysis. Among these variants, 266,051 SNPs were identified as unique to countries. Pakistan and Ethiopia had high densities of SNPs compared to other countries. Three main clusters (cluster 1: Korea, cluster 2: Pakistan and India, cluster 3: Ethiopia and China) were recovered by neighbor-joining analysis using all variants. Interestingly, some variants were detected in DGAT1 (diacylglycerol O-acyltransferase 1) and FADS (fatty acid desaturase) genes, which are known to be related with fatty acid synthesis and metabolism. These results can provide useful information to understand the regional characteristics and develop DNA markers for origin discrimination of sesame.

Keywords: Sesamum indicum, NGS, SNP, DNA marker

Procedia PDF Downloads 313
5801 Photocatalytic Degradation of Phenol by Fe-Doped Tio2 under Solar Simulated Light

Authors: Mohamed Gar Alalm, Shinichi Ookawara, Ahmed Tawfik

Abstract:

In the present work, photocatalytic oxidation of phenol by iron (Fe+2) doped titanium dioxide (TiO2) was studied. The source of irradiation was solar simulated light under measured UV flux. The effect of light intensity, pH, catalyst loading, and initial concentration of phenol were investigated. The maximum removal of phenol at optimum conditions was 78%. The optimum pH was 5.3. The most effective degradation occurred when the catalyst dosage was 600 mg/L. increasing the initial concentration of phenol decreased the degradation efficiency due to the deactivation of active sites by additional intermediates. Phenol photocatalytic degradation moderately fitted to the pseudo-first order kinetic equation approximated from Langmuir–Hinshelwood model.

Keywords: phenol, photocatalytic, solar, titanium dioxide

Procedia PDF Downloads 385
5800 The Effects of Local Factors on the Concentrations and Flora of Viable Fungi in School Buildings

Authors: H. Salonen, E. Castagnoli, C. Vornanen-Winqvist, R. Mikkola, C. Duchaine, L. Morawska, J. Kurnitski

Abstract:

A wide range of health effects among occupants are associated with the exposure to bioaerosols from fungal sources. Although the accurate role of these aerosols in causing the symptoms and diseases is poorly understood, the important effect of bioaerosol exposure on human health is well recognized. Thus, there is a need to determine all of the contributing factors related to the concentration of fungi in indoor air. In this study, we reviewed and summarized the different factors affecting the concentrations of viable fungi in school buildings. The literature research was conducted using Pubmed and Google Scholar. In addition, we searched the lists of references of selected articles. According to the literature, the main factors influencing the concentration of viable fungi in the school buildings are moisture damage in building structures, the season (temperature and humidity conditions), the type and rate of ventilation, the number and activities of occupants and diurnal variations. This study offers valuable information that can be used in the interpretation of the fungal analysis and to decrease microbial exposure by reducing known sources and/or contributing factors. However, more studies of different local factors contributing to the human microbial exposure in school buildings—as well as other type of buildings and different indoor environments—are needed.

Keywords: fungi, concentration, indoor, school, contributing factor

Procedia PDF Downloads 253
5799 Effect of Flour Concentration and Retrogradation Treatment on Physical Properties of Instant Sinlek Brown Rice

Authors: Supat Chaiyakul, Direk Sukkasem, Patnachapa Natthapanpaisith

Abstract:

Sinlek rice flour beverage or instant product is a dietary supplement for dysphagia, or difficulty swallowing. It is also consumed by individuals who need to consume supplements to maintain their calorific needs. This product provides protein, fat, iron, and a high concentration of carbohydrate from rice flour. However, the application of native flour is limited due to its high viscosity. Starch modification by controlling starch retrogradation was used in this study. The research studies the effects of rice flour concentration and retrogradation treatment on the physical properties of instant Sinlek brown rice. The native rice flour, gelatinized rice flour, and flour gels retrograded under 4 °C for 3 and 7 days were investigated. From the statistical results, significant differences between native and retrograded flour were observed. The concentration of rice flour was the main factor influencing the swelling power, solubility, and pasting properties. With the increase in rice flour content from 10 to 15%, swelling power, peak viscosity, trough, and final viscosity decreased; but, solubility, pasting temperature, peak time, breakdown, and setback increased. The peak time, pasting temperature, peak viscosity, trough, and final viscosity decreased as the storage period increased from 3 to 7 days. The retrograded rice flour powders had lower pasting temperature, peak viscosity, breakdown, and final viscosity than the gelatinized and native flour powders. Reduction of starch viscosity by gelatinization and controlling starch retrogradation could allow for increased quantities of rice flour in instant rice beverages. Also, the treatment could increase the energy and nutrient densities of rice beverages without affecting the viscosity of this product.

Keywords: instant rice, pasting properties, pregelatinization, retrogradation

Procedia PDF Downloads 228
5798 Study the Effect of Rubbery Phase on Morphology Development of PP/PA6/(EPDM:EPDM-g-MA) Ternary Blends

Authors: B. Afsari, M. Hassanpour, M. Shabani

Abstract:

This study aimed to investigate the phase morphology of ternary blends comprising PP, PA6, and a blend of EPDM and EPDM-g-MA in a 70/15/15 ratio. Varying ratios of EPDM to EPDM-g-MA were examined. As the proportion of EPDM-g-MA increased, an interlayer phase formed between the dispersed PA6 domains and the PP matrix. This resulted in the development of a core-shell encapsulation morphology within the blends. The concentration of the EPDM-g-MA component is inversely correlated with the average size of PA6 particles. Additionally, blends containing higher proportions of the EPDM-g-MA rubbery phase exhibited an aggregated structure of the modifier particles. Notably, as the concentration of EPDM-g-MA increased from 0% to 15% in the blend, there was a consistent monotonic reduction in the size of PA6 particles.

Keywords: phase morphology, rubbery phase, rubber functionality, ternary blends

Procedia PDF Downloads 63
5797 Increase in the Shelf Life Anchovy (Engraulis ringens) from Flaying then Bleeding in a Sodium Citrate Solution

Authors: Santos Maza, Enzo Aldoradin, Carlos Pariona, Eliud Arpi, Maria Rosales

Abstract:

The objective of this study was to investigate the effect of flaying then bleeding anchovy (Engraulis ringens) immersed within a sodium citrate solution. Anchovy is a pelagic fish that readily deteriorates due to its high content of polyunsaturated fatty acids. As such, within the Peruvian food industry, the shelf life of frozen anchovy is explicitly 6 months, this short duration imparts a barrier to use for direct consumption human. Thus, almost all capture of anchovy by the fishing industry is eventually used in the production of fishmeal. We offer this an alternative to its typical production process in order to increase shelf life. In the present study, 100 kg of anchovies were captured and immediately mixed with ice on ship, maintaining a high quality sensory metric (e.g., with color blue in back) while still arriving for processing less than 2 h after capture. Anchovies with fat content of 3% were immediately flayed (i.e., reducing subcutaneous fat), beheaded, gutted and bled (i.e., removing hemoglobin) by immersion in water (Control) or in a solution of 2.5% sodium citrate (treatment), then subsequently frozen at -30 °C for 8 h in 2 kg batches. Subsequent glazing and storage at -25 °C for 14 months completed the experiments parameters. The peroxide value (PV), acidity (A), fatty acid profile (FAP), thiobarbituric acid reactive substances (TBARS), heme iron (HI), pH and sensory attributes of the samples were evaluated monthly. The results of the PV, TBARS, A, pH and sensory analyses displayed significant differences (p<0.05) between treatment and control sample; where the sodium citrate treated samples showed increased preservation features. Specifically, at the beginning of the study, flayed, beheaded, gutted and bled anchovies displayed low content of fat (1.5%) with moderate amount of PV, A and TBARS, and were not rejected by sensory analysis. HI values and FAP displayed varying behavior, however, results of HI did not reveal a decreasing trend. This result is indicative of the fact that levels of iron were maintained as HI and did not convert into no heme iron, which is known to be the primary catalyst of lipid oxidation in fish. According to the FAP results, the major quantity of fatty acid was of polyunsaturated fatty acid (PFA) followed by saturated fatty acid (SFA) and then monounsaturated fatty acid (MFA). According to sensory analysis, the shelf life of flayed, beheaded and gutted anchovy (control and treatment) was 14 months. This shelf life was reached at laboratory level because high quality anchovies were used and immediately flayed, beheaded, gutted, bled and frozen. Therefore, it is possible to maintain the shelf life of anchovies for a long time. Overall, this method displayed a large increase in shelf life relative to that commonly seen for anchovies in this industry. However, these results should be extrapolated at industrial scales to propose better processing conditions and improve the quality of anchovy for direct human consumption.

Keywords: citrate sodium solution, heme iron, polyunsaturated fatty acids, shelf life of frozen anchovy

Procedia PDF Downloads 279
5796 Screening of Minimal Salt Media for Biosurfactant Production by Bacillus spp.

Authors: Y. M. Al-Wahaibi, S. N. Al-Bahry, A. E. Elshafie, A. S. Al-Bemani, S. J. Joshi, A. K. Al-Bahri

Abstract:

Crude oil is a major source of global energy. The major problem is its widespread use and demand resulted is in increasing environmental pollution. One associated pollution problem is ‘oil spills’. Oil spills can be remediated with the use of chemical dispersants, microbial biodegradation and microbial metabolites such as biosurfactants. Four different minimal salt media for biosurfactant production by Bacillus isolated from oil contaminated sites from Oman were screened. These minimal salt media were supplemented with either glucose or sucrose as a carbon source. Among the isolates, W16 and B30 produced the most active biosurfactants. Isolate W16 produced better biosurfactant than the rest, and reduced surface tension (ST) and interfacial tension (IFT) to 25.26mN/m and 2.29mN/m respectively within 48h which are characteristics for removal of oil in contaminated sites. Biosurfactant was produced in bulk and extracted using acid precipitation method. Thin Layer Chromatography (TLC) of acid precipitate biosurfactant revealed two concentrated bands. Further studies of W16 biosurfactant in bioremediation of oil spills are recommended.

Keywords: oil contamination, remediation, Bacillus spp, biosurfactant, surface tension, interfacial tension

Procedia PDF Downloads 261
5795 Effect of Concentration Level and Moisture Content on the Detection and Quantification of Nickel in Clay Agricultural Soil in Lebanon

Authors: Layan Moussa, Darine Salam, Samir Mustapha

Abstract:

Heavy metal contamination in agricultural soils in Lebanon poses serious environmental and health problems. Intensive efforts are employed to improve existing quantification methods of heavy metals in contaminated environments since conventional detection techniques have shown to be time-consuming, tedious, and costly. The implication of hyperspectral remote sensing in this field is possible and promising. However, factors impacting the efficiency of hyperspectral imaging in detecting and quantifying heavy metals in agricultural soils were not thoroughly studied. This study proposes to assess the use of hyperspectral imaging for the detection of Ni in agricultural clay soil collected from the Bekaa Valley, a major agricultural area in Lebanon, under different contamination levels and soil moisture content. Soil samples were contaminated with Ni, with concentrations ranging from 150 mg/kg to 4000 mg/kg. On the other hand, soil with background contamination was subjected to increased moisture levels varying from 5 to 75%. Hyperspectral imaging was used to detect and quantify Ni contamination in the soil at different contamination levels and moisture content. IBM SPSS statistical software was used to develop models that predict the concentration of Ni and moisture content in agricultural soil. The models were constructed using linear regression algorithms. The spectral curves obtained reflected an inverse correlation between both Ni concentration and moisture content with respect to reflectance. On the other hand, the models developed resulted in high values of predicted R2 of 0.763 for Ni concentration and 0.854 for moisture content. Those predictions stated that Ni presence was well expressed near 2200 nm and that of moisture was at 1900 nm. The results from this study would allow us to define the potential of using the hyperspectral imaging (HSI) technique as a reliable and cost-effective alternative for heavy metal pollution detection in contaminated soils and soil moisture prediction.

Keywords: heavy metals, hyperspectral imaging, moisture content, soil contamination

Procedia PDF Downloads 83
5794 Expression of ACSS2 Genes in Peripheral Blood Mononuclear Cells of Patients with Alzheimer’s Disease

Authors: Ali Bayram, Burak Uz, Remzi Yiğiter

Abstract:

The impairment of lipid metabolism in the central nervous system has been suggested as a critical factor of Alzheimer’s disease (AD) pathogenesis. Homo sapiens acyl-coenyme A synthetase short-chain family member 2 (ACSS2) gene encodes the enzyme acetyl-Coenzyme A synthetase (AMP forming; AceCS) providing acetyl-coenzyme A (Ac-CoA) for various physiological processes, such as cholesterol and fatty acid synthesis, as well as the citric acid cycle. We investigated ACSS2, transcript variant 1 (ACSS2*1), mRNA levels in the peripheral blood mononuclear cells (PBMC) of patients with AD and compared them with the controls. The study group comprised 50 patients with the diagnosis of AD who have applied to Gaziantep University Faculty of Medicine, and Department of Neurology. 49 healthy individuals without any neurodegenerative disease are included as controls. ACSS2 mRNA expression in PBMC of AD/control patients was 0.495 (95% confidence interval: 0.410-0.598), p= .000000001902). Further studies are needed to better clarify this association.

Keywords: Alzheimer’s disease, ACSS2 Genes, mRNA expression, RT-PCR

Procedia PDF Downloads 369
5793 FE Analysis of the Notch Effect on the Behavior of Repaired Crack with Bonded Composite Patch in Aircraft Structures

Authors: Faycal Benyahia, Abdelmohsen Albedah, Bel Abbes Bachir Bouiadjra

Abstract:

In this paper, the finite element analysis is applied to study the performance of the bonded composite reinforcement or repair for reducing stress concentration at a semi-circular lateral notch and repairing cracks emanating from this kind of notch. The effects of the adhesive properties on the variation of the stress intensity factor at the crack tip were highlighted. The obtained results show that the stress concentration factor at the notch tip is reduced about 30% and the maximal reduction of the stress intensity factor is about 80%. The adhesive properties must be optimized in order to increase the performance of the patch repair or reinforcement.

Keywords: bonded repair, notch, crack, adhesive, composite

Procedia PDF Downloads 377
5792 Biodiesel Production from Broiler Chicken Waste

Authors: John Abraham, Ramesh Saravana Kumar, Francis, Xavier, Deepak Mathew

Abstract:

Broiler slaughter waste has become a major source of pollution throughout the world. Utilization of broiler slaughter waste by dry rendering process produced Rendered Chicken Oil (RCO) a cheap raw material for biodiesel production and Carcass Meal a feed ingredient for pets and fishes. Conversion of RCO into biodiesel may open new vistas for generating wealth from waste besides controlling the major havoc of environmental pollution. A two-step process to convert RCO to good quality Biodiesel was invented. Acid catalysed esterification of FFA followed by base catalysed transesterification of triglycerides was carried out after meticulously standardising the methanol molar ratio, catalyst concentration, reaction temperature and reaction time to obtain the maximum biodiesel yield of 97.62% and lowest glycerol yield of 6.96%. RCO biodiesel blended was tested in a Mahindra Scorpio CRDI engine. The results revealed that the blending of commercial diesel with 20% RCO biodiesel lead to less engine wear, a quieter engine and better fuel economy. The better lubricating qualities of RCO B20 prevented over heating of engine, which prolongs the engine life. The blending of biodiesel at 20% to commercial diesel can reduce the import of costly crude oil and simultaneously, substantially reduce the engine emissions as proved by significantly lower smoke levels, thus mitigating climatic changes.

Keywords: broiler waste, rendered chicken oil, biodiesel, engine testing

Procedia PDF Downloads 409
5791 Polyhedral Oligomeric Silsesquioxane in Poly Lactic Acid and Poly Butylene Adipate-Co-Terephthalate Blend

Authors: Elahe Moradi, Hoseinali A. Khonakdar

Abstract:

The escalating interest in renewable polymers is undeniable, albeit accompanied by inherent challenges. In our study, we endeavored to make a significant contribution to environmental conservation by introducing an eco-friendly structure, developed through an innovative approach. Specifically, we enhanced the compatibility between two immiscible polymers, namely poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT). Our strategy involved the use of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles, equipped with an epoxy functional group (Epoxy-POSS), to accomplish this objective with solution casting method. The incorporation of 1% nanoparticles into the PLA blend resulted in a decrease in its cold crystallization temperature. Furthermore, these nanoparticles possess the requisite capability to enhance molecular mobility, facilitated by the induction of a lubrication effect. The emergence of a PLA-CO-POSS-CO-PBAT structure at the interface between PLA and PBAT led to a significant amplification of the interactions at the interface of the matrix and the dispersed phase.

Keywords: compatibilization, thermal behavior, structure-properties, nanocomposite, PLA, PBAT

Procedia PDF Downloads 42
5790 Increase of Atmosphere CO2 Concentration and Its Effects on Culture/Weed Interaction

Authors: J. I. Santos, A. E. Cesarin, C. A. R. Sales, M. B. B. Triano, P. F. R. B. Martins, A. F. Braga, N. J. Neto, A., A. M. Barroso, P. L. C. A. Alves, C. A. M. Huaman

Abstract:

Climate change projections based on the emission of greenhouse effect gases suggest an increase in the concentration of atmospheric carbon dioxide, in up to 750 ppm. In this scenario, we have significant changes in plant development, and consequently, in agricultural systems. This study aims to evaluate the interaction between culture (Glycine max) and weed (Amaranthus viridis and Euphorbia heterophylla) in two conditions of CO2, 400 and 800 ppm. The results showed that the coexistence of culture with both weed species resulted in a mutual loss, with decrease in dry mass productivity of culture + weeds, in both conditions of CO2. However, when the culture is grown in association with E. heterophylla, total dry mass of culture + weed was smaller at 800 ppm. Soybean was more aggressive in comparison to the A. viridis in both the concentrations of CO2, but not in relation to the E. heterophylla.

Keywords: plants interaction, increase of [CO₂], plants of metabolismo C3, glycine max

Procedia PDF Downloads 380
5789 Feeding Effects of Increasing Levels of Yerba Mate on Lamb Meat Quality

Authors: Yuli Andrea P. Bermudez, Richard R. Lobo, Tamyres R. D. Amorim, Danny Alexander R. Moreno, Angelica Simone C. Pereira, Ives Claudio D. Bueno

Abstract:

The use of natural antioxidants in animal feed can positively modify the profile of fatty acids (FAs) in meat, due to the presence of secondary metabolites, mainly phenolic and flavonoid compounds, which promote an increase in the associated polyunsaturated fatty acids (PUFA) with beneficial factors in human health. The goal of this study was to evaluate the effect of the dietary inclusion percentage of yerba mate extract (Ilex paraguariensis St. Hilaire) as a natural antioxidant on lamb meat quality. The animals were confined for 53 days and fed with corn silage and concentrated in the proportion of 60:40, respectively, were divided into four homogeneous groups (n = 9 lambs/group), to each of the treatments, one control group without yerba mate extract - YME (0%) and three treatments with 1, 2 and 4% the inclusion of YME on a DM basis. Samples of the Longissimus thoracis (LT) muscle were collected from the deboning of 36 lambs, analyzing pH values, color parameters (brightness: L*, red value: a*, and yellow: b*), fatty acid profile, total lipids, and sensory analysis. The inclusion of YME modified the value of b* (P = 0.0041), indicating a higher value of yellow color in the meat, for the group supplemented with 4% YME. All data were statistically evaluated using the MIXED procedure of the statistical package SAS 9.4. However, it did not show differences in the final live weight in the groups evaluated, as well as in the pH values (P = 0.1923) and the total lipid concentration (P = 0.0752). The FAs (P ≥ 0.1360) and health indexes were not altered by the inclusion of YME (P ≥ 0.1360); only branched-chain fatty acids (BCFA) exhibited a diet effect (P = 0.0092) in the group that had 4% of the extract. In the sensory analysis test with a hedonic scale it did not show differences between the treatments (P ≥ 0.1251). Nevertheless, in the just about-right test, using (note 1) to 'very strong, softness or moist' (note 5); the softness was different between the evaluated treatments (P = 0.0088) where groups with 2% YME had a better acceptance of tasters (4.15 ± 0.08) compared to the control (3.89 ± 0.08). In conclusion, although the addition of YME has shown positive results in sensory acceptance and in increasing the concentration of BCFA, fatty acids beneficial to human health, without changing the physical-chemical parameters in lamb meat, the absolute changes are considered to have been quite small, which was probably related to the high efficiency of PUFA biohydrogenation in the n the rumen.

Keywords: composition, health, antioxidant, meat analysis

Procedia PDF Downloads 102
5788 Enhanced Growth of Microalgae Chlamydomonas reinhardtii Cultivated in Different Organic Waste and Effective Conversion of Algal Oil to Biodiesel

Authors: Ajith J. Kings, L. R. Monisha Miriam, R. Edwin Raj, S. Julyes Jaisingh, S. Gavaskar

Abstract:

Microalgae are a potential bio-source for rejuvenated solutions in various disciplines of science and technology, especially in medicine and energy. Biodiesel is being replaced for conventional fuels in automobile industries with reduced pollution and equivalent performance. Since it is a carbon neutral fuel by recycling CO2 in photosynthesis, global warming potential can be held in control using this fuel source. One of the ways to meet the rising demand of automotive fuel is to adopt with eco-friendly, green alternative fuels called sustainable microalgal biodiesel. In this work, a microalga Chlamydomonas reinhardtii was cultivated and optimized in different media compositions developed from under-utilized waste materials in lab scale. Using the optimized process conditions, they are then mass propagated in out-door ponds, harvested, dried and oils extracted for optimization in ambient conditions. The microalgal oil was subjected to two step esterification processes using acid catalyst to reduce the acid value (0.52 mg kOH/g) in the initial stage, followed by transesterification to maximize the biodiesel yield. The optimized esterification process parameters are methanol/oil ratio 0.32 (v/v), sulphuric acid 10 vol.%, duration 45 min at 65 ºC. In the transesterification process, commercially available alkali catalyst (KOH) is used and optimized to obtain a maximum biodiesel yield of 95.4%. The optimized parameters are methanol/oil ratio 0.33(v/v), alkali catalyst 0.1 wt.%, duration 90 min at 65 ºC 90 with smooth stirring. Response Surface Methodology (RSM) is employed as a tool for optimizing the process parameters. The biodiesel was then characterized with standard procedures and especially by GC-MS to confirm its compatibility for usage in internal combustion engine.

Keywords: microalgae, organic media, optimization, transesterification, characterization

Procedia PDF Downloads 218
5787 Adsorption of Phosphate from Aqueous Solution Using Filter Cake for Urban Wastewater Treatment

Authors: Girmaye Abebe, Brook Lemma

Abstract:

Adsorption of phosphorus (P as PO43-) in filter cake was studied to assess the media's capability in removing phosphorous from wastewaters. The composition of the filter cake that was generated from alum manufacturing process as waste residue has high amount of silicate from the complete silicate analysis of the experiment. Series of batches adsorption experiments were carried out to evaluate parameters that influence the adsorption capacity of PO43-. The factors studied include the effect of contact time, adsorbent dose, thermal pretreatment of the adsorbent, neutralization of the adsorbent, initial PO43- concentration, pH of the solution and effect of co-existing anions. Results showed that adsorption of PO43- is fairly rapid in first 5 min and after that it increases slowly to reach the equilibrium in about 1 h. The treatment efficiency of PO43- was increased with adsorbent extent. About 90% removal efficiency was increased within 1 h at an optimum adsorbent dose of 10 g/L for initial PO43- concentration of 10 mg/L. The amount of PO43- adsorbed increased with increasing initial PO43- concentration. Heat treatment and surface neutralization of the adsorbent did not improve the PO43- removal capacity and efficiency. The percentage of PO43- removal remains nearly constant within the pH range of 3-8. The adsorption data at ambient pH were well fitted to the Langmuir Isotherm and Dubinin–Radushkevick (D–R) isotherm model with a capacity of 25.84 and 157.55 mg/g of the adsorbent respectively. The adsorption kinetic was found to follow a pseudo-second-order rate equation with an average rate constant of 3.76 g.min−1.mg−1. The presence of bicarbonate or carbonate at higher concentrations (10–1000 mg/L) decreased the PO43- removal efficiency slightly while other anions (Cl-, SO42-, and NO3-) have no significant effect within the concentration range tested. The overall result shows that the filter cake is an efficient PO43- removing adsorbent against many parameters.

Keywords: wastewater, filter cake, adsorption capacity, phosphate (PO43-)

Procedia PDF Downloads 220
5786 Sintering of Functionally Graded WC-TiC-Co Cemented Carbides

Authors: Stella Sten, Peter Hedström, Joakim Odqvist, Susanne Norgren

Abstract:

Two functionally graded cemented carbide samples have been produced by local addition of Titanium carbide (TiC) to a pressed Tungsten carbide and Cobalt, WC-10 wt% Co, green body prior to sintering, with the aim of creating a gradient in both composition and grain size in the as-sintered component. The two samples differ only by the in-going WC particle size, where one sub-micron and one coarse WC particle size have been chosen for comparison. The produced sintered samples had a gradient, thus a non-homogenous structure. The Titanium (Ti), Cobalt (Co), and Carbon (C) concentration profiles have been investigated using SEM-EDS and WDS; in addition, the Vickers hardness profile has been measured. Moreover, the Ti concentration profile has been simulated using DICTRA software and compared with experimental results. The concentration and hardness profiles show a similar trend for both samples. Ti and C levels decrease, as expected from the area of TiC application, whereas Co increases towards the edge of the samples. The non-homogenous composition affects the number of stable phases and WC grain size evolution. The sample with finer in-going WC grain size shows a shorter gamma (γ) phase zone and a larger difference in WC grain size compared to the coarse-grained sample. Both samples show, independent of the composition, the presence of abnormally large grains.

Keywords: cemented carbide, functional gradient material, grain growth, sintering

Procedia PDF Downloads 77
5785 Dietary Flaxseed Decreases Central Blood Pressure and the Concentrations of Plasma Oxylipins Associated with Hypertension in Patients with Peripheral Arterial Disease

Authors: Stephanie PB Caligiuri, Harold M Aukema, Delfin Rodriguez-Leyva, Amir Ravandi, Randy Guzman, Grant N. Pierce

Abstract:

Background: Hypertension leads to cardiac and cerebral events and therefore is the leading risk factor attributed to death in the world. Oxylipins may be mediators in these events as they can regulate vascular tone and inflammation. Oxylipins are derived from fatty acids. Dietary flaxseed is rich in the n3 fatty acid, alpha-linolenic acid, and, therefore, may have the ability to change the substrate profile of oxylipins. As a result, this could alter blood pressure. Methods: A randomized, double-blinded, controlled clinical trial, the Flax-PAD trial, was used to assess the impact of dietary flaxseed on blood pressure (BP), and to also assess the relationship of plasma oxylipins to BP in 81 patients with peripheral arterial disease (PAD). Patients with PAD were chosen for the clinical trial as they are at an increased risk for hypertension and cardiac and cerebral events. Thirty grams of ground flaxseed were added to food products to consume on a daily basis for 6 months. The control food products contained wheat germ, wheat bran, and mixed dietary oils instead of flaxseed. Central BP, which is more significantly associated to organ damage, cardiac, and cerebral events versus brachial BP, was measured by pulse wave analysis at baseline and 6 months. A plasma profile of 43 oxylipins was generated using solid phase extraction, HPLC-MS/MS, and stable isotope dilution quantitation. Results: At baseline, the central BP (systolic/diastolic) in the placebo and flaxseed group were, 131/73 ± 2.5/1.4 mmHg and 128/71 ± 2.6/1.4 mmHg, respectively. After 6 months of intervention, the flaxseed group exhibited a decrease in blood pressure of 4.0/1.0 mmHg. The 6 month central BP in the placebo and flaxseed groups were, 132/74 ± 2.9/1.8 mmHg and 124/70 ± 2.6/1.6 mmHg (P<0.05). Correlation and logistic regression analyses between central blood pressure and oxylipins were performed. Significant associations were observed between central blood pressure and 17 oxylipins, primarily produced from arachidonic acid. Every 1 nM increase in 16-hydroxyeicosatetraenoic acid (HETE) increased the odds of having high central systolic BP by 15-fold, of having high central diastolic BP by 6-fold and of having high central mean arterial pressure by 15-fold. In addition, every 1 nM increase in 5,6-dihydroxyeicosatrienoic acid (DHET) and 11,12-DHET increased the odds of having high central mean arterial pressure by 45- and 18-fold, respectively. Flaxseed induced a significant decrease in these as well as 4 other vasoconstrictive oxylipins. Conclusion: Dietary flaxseed significantly lowered blood pressure in patients with PAD and hypertension. Plasma oxylipins were strongly associated with central blood pressure and may have mediated the flaxseed-induced decrease in blood pressure.

Keywords: hypertension, flaxseed, oxylipins, peripheral arterial disease

Procedia PDF Downloads 453
5784 Estimation of the Antioxidant Potential of Microalgae With ABTS and CUPRAC Assays

Authors: Juliana Ianova, Lyudmila Kabaivanova, Tanya Toshkova- Yotova

Abstract:

Background: Microalgae are widely known for their nutritional and therapeutic applications due to the richness in nutrients and bioactive elements. The aim of this research was to investigate the growth and production of bioactive compounds with antioxidant properties by different microalgal strains: Scenedesmus acutus M Tomaselli 8, Scenedesmus obliquus BGP, Porphyridium aerugineum and Porphyridium cruentum (Chlorophyta and Rhodophyta). Most of them are freshwater species, with only one marine microalga P. cruentum. Methods: Monoalgal, non-axenic cultures of the investigated strains were grown autotrophically in 200 ml flasks, CO2 - 2% at 132 μmol m-2 s-1 photon flux density and T 25°C. Algal biomass concentration was measured daily by the dry weight. The ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid, C18H18N4O6S4) scavenging assay and CUPRAC assay (cupric ion reducing antioxidant capacity) were used to establish the antioxidant activity of the four algae at the end of the cultivation process, when stationary phase of growth was reached. Results: The highest biomass yield was achieved by Scenedesmus obliquus BGP- (6.6 g/L) after 144 hours of cultivation. Scenedesmus obliquus showed much higher levels of antioxidant properties from the assessed strains. The red microalga Porphyridium aerugineum also exhibits promising reducing antioxidant power. Conclusion: This study confirmed the view that microalgae are promising producers of food supplements and pharmaceuticals.

Keywords: microalgae, dry weight, antioxidant activity, CUPRAC, ABTS

Procedia PDF Downloads 96
5783 Phytotreatment of Polychlorinated Biphenyls Contaminated Soil by Chromolaena odorata L. King and Robinson

Authors: R. O. Anyasi, H. I. Atagana

Abstract:

In this study, phytoextraction ability of a weed on Aroclor 1254 was studied under greenhouse conditions. Chromolaena odorata plants were transplanted into soil containing 100, 200, and 500 ppm of Aroclor in 1L pots. The experiments were watered daily at 70 % moisture field capacity. Parameters such as fully expanded leaves per plant, shoot length, leaf chlorophyll content as well as root length at harvest were measured. PCB was not phytotoxic to C. odorata growth but plants in the 500 ppm treatment only showed diminished growth at the sixth week. Percentage increases in height of plant were 45.9, 39.4 and 40.0 for 100, 200 and 500 ppm treatments respectively. Such decreases were observed in the leaf numbers, root length and leaf chlorophyll concentration. The control sample showed 48.3 % increase in plant height which was not significant from the treated samples, an indication that C. odorata could survive such PCB concentration and could be used to remediate contaminated soil. Mean total PCB absorbed by C. odorata plant was between 6.40 and 64.60 ppm per kilogram of soil, leading to percentage PCB absorption of 0.03 and 17.03 % per kilogram of contaminated soil. PCBs were found mostly in the root tissues of the plants, and the Bioaccumulation factor were between 0.006-0.38. Total PCB absorbed by the plant increases as the concentration of the compound is increased. With these high BAF ensured, C. odorata could serve as a promising candidate plant in phytoextraction of PCB from a PCB-contaminated soil.

Keywords: phytoremediation, bioremediation, soil restoration, polychlorinated biphenyls (PCB), biological treatment, aroclor

Procedia PDF Downloads 366
5782 Study on Metabolic and Mineral Balance, Oxidative Stress and Cardiovascular Risk Factors in Type 2 Diabetic Patients on Different Therapy

Authors: E. Nemes-Nagy, E. Fogarasi, M. Croitoru, A. Nyárádi, K. Komlódi, S. Pál, A. Kovács, O. Kopácsy, R. Tripon, Z. Fazakas, C. Uzun, Z. Simon-Szabó, V. Balogh-Sămărghițan, E. Ernő Nagy, M. Szabó, M. Tilinca

Abstract:

Intense oxidative stress, increased glycated hemoglobin and mineral imbalance represent risk factors for complications in diabetic patients. Cardiovascular complications are most common in these patients, including nephropathy. This study was conducted in 2015 at the Procardia Laboratory in Tîrgu Mureș, Romania on 40 type 2 diabetic adults. Routine biochemical tests were performed on the Konleab 20XTi analyzer (serum glucose, total cholesterol, LDL and HDL cholesterol, triglyceride, creatinine, urea). We also measured serum uric acid, magnesium and calcium concentration by photometric procedures, potassium, sodium and chloride by ion selective electrode, and chromium by atomic absorption spectrometry in a group of patients. Glycated hemoglobin (HbA1c) dosage was made by reflectometry. Urine analysis was performed using the HandUReader equipment. The level of oxidative stress was measured by serum malondialdehyde dosage using the thiobarbituric acid reactive substances method. MDRD (Modification of Diet in Renal Disease) formula was applied for calculation of creatinine-derived glomerular filtration rate. GraphPad InStat software was used for statistical analysis of the data. The diabetic subject included in the study presented high MDA concentrations, showing intense oxidative stress. Calcium was deficient in 5% of the patients, chromium deficiency was present in 28%. The atherogenic cholesterol fraction was elevated in 13% of the patients. Positive correlation was found between creatinine and MDRD-creatinine values (p<0.0001), 68% of the patients presented increased creatinine values. The majority of the diabetic patients had good control of their diabetes, having optimal HbA1c values, 35% of them presented fasting serum glucose over 120 mg/dl and 18% had glucosuria. Intense oxidative stress and mineral deficiencies can increase the risk of cardiovascular complications in diabetic patients in spite of their good metabolic balance. More than two third of the patients present biochemical signs of nephropathy, cystatin C dosage and microalbuminuria could reveal better the kidney disorder, but glomerular filtration rate calculation formulas are also useful for evaluation of renal function.

Keywords: cardiovascular risk, homocysteine, malondialdehyde, metformin, minerals, type 2 diabetes, vitamin B12

Procedia PDF Downloads 305
5781 Development of a Solar Energy Based Prototype, CyanoClean, for Arsenic Removal from Water with the Use of a Cyanobacterial Consortium in Field Conditions of India

Authors: Anurakti Shukla, Sudhakar Srivastava

Abstract:

Cyanobacteria are known for rapid growth rates, high biomass, and the ability to accumulate potentially toxic elements and contaminants. The present work was planned to develop a low-cost, feasible prototype, CyanoClean, for the growth of a cyanobacterial consortium for the removal of arsenic (As) from water. The cyanobacterial consortium consisting of Oscillatoria, Phormidiumand Gloeotrichiawas used, and the conditions for optimal growth of the consortium were standardized. A pH of 7.6, initial cyanobacterial biomass of 10 g/L, and arsenite [As(III)] and arsenate [As(V)] concentration of 400 μΜand 600 μM, respectively, were found to be suitable. The CyanoClean prototype was designed with acrylic sheet and had arrangements for optimal cyanobacterial growth in natural sunlight and also in artificial light. The As removal experiments in concentration- and duration-dependent manner demonstrated removal of up to 39-69% and 9-33% As respectively from As(III) and As(V)-contaminated water. In field testing of CyanoClean, natural As-contaminated groundwater was used, and As reduction was monitored when a flow rate of 3 L/h was maintained. In a field experiment, As concentration in groundwater was found to reduce from 102.43 μg L⁻¹ to <10 μg L⁻¹ after 6 h in natural sunlight. However, in shaded conditions under artificial light, the same result was achieved after 9 h. The CyanoClean prototype is of simple design and can be easily up-scaled for application at a small- to medium-size land and shall be affordable even for a low- to middle-income group farmer.

Keywords: cyanoclean, gloeotrichia, oscillatoria, phormidium, phycoremediation

Procedia PDF Downloads 124