Search results for: surface water resources
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17637

Search results for: surface water resources

1107 Leadership Education for Law Enforcement Mid-Level Managers: The Mediating Role of Effectiveness of Training on Transformational and Authentic Leadership Traits

Authors: Kevin Baxter, Ron Grove, James Pitney, John Harrison, Ozlem Gumus

Abstract:

The purpose of this research is to determine the mediating effect of effectiveness of the training provided by Northwestern University’s School of Police Staff and Command (SPSC), on the ability of law enforcement mid-level managers to learn transformational and authentic leadership traits. This study will also evaluate the leadership styles, of course, graduates compared to non-attendees using a static group comparison design. The Louisiana State Police pay approximately $40,000 in salary, tuition, housing, and meals for each state police lieutenant attending the 10-week program of the SPSC. This school lists the development of transformational leaders as an increasing element. Additionally, the SPSC curriculum addresses all four components of authentic leadership - self-awareness, transparency, ethical/moral, and balanced processing. Upon return to law enforcement in roles of mid-level management, there are questions as to whether or not students revert to an “autocratic” leadership style. Insufficient evidence exists to support claims for the effectiveness of management training or leadership development. Though it is widely recognized that transformational styles are beneficial to law enforcement, there is little evidence that suggests police leadership styles are changing. Police organizations continue to hold to a more transactional style (i.e., most senior police leaders remain autocrats). Additionally, research in the application of transformational, transactional, and laissez-faire leadership related to police organizations is minimal. The population of the study is law enforcement mid-level managers from various states within the United States who completed leadership training presented by the SPSC. The sample will be composed of 66 active law enforcement mid-level managers (lieutenants and captains) who have graduated from SPSC and 65 active law enforcement mid-level managers (lieutenants and captains) who have not attended SPSC. Participants will answer demographics questions, Multifactor Leadership Questionnaire, Authentic Leadership Questionnaire, and the Kirkpatrick Hybrid Evaluation Survey. Analysis from descriptive statistics, group comparison, one-way MANCOVA, and the Kirkpatrick Evaluation Model survey will be used to determine training effectiveness in the four levels of reaction, learning, behavior, and results. Independent variables are SPSC graduates (two groups: upper and lower) and no-SPSC attendees, and dependent variables are transformational and authentic leadership scores. SPSC graduates are expected to have higher MLQ scores for transformational leadership traits and higher ALQ scores for authentic leadership traits than SPSC non-attendees. We also expect the graduates to rate the efficacy of SPSC leadership training as high. This study will validate (or invalidate) the benefits, costs, and resources required for leadership development from a nationally recognized police leadership program, and it will also help fill the gap in the literature that exists between law enforcement professional development and transformational and authentic leadership styles.

Keywords: training effectiveness, transformational leadership, authentic leadership, law enforcement mid-level manager

Procedia PDF Downloads 104
1106 A Proper Continuum-Based Reformulation of Current Problems in Finite Strain Plasticity

Authors: Ladislav Écsi, Roland Jančo

Abstract:

Contemporary multiplicative plasticity models assume that the body's intermediate configuration consists of an assembly of locally unloaded neighbourhoods of material particles that cannot be reassembled together to give the overall stress-free intermediate configuration since the neighbourhoods are not necessarily compatible with each other. As a result, the plastic deformation gradient, an inelastic component in the multiplicative split of the deformation gradient, cannot be integrated, and the material particle moves from the initial configuration to the intermediate configuration without a position vector and a plastic displacement field when plastic flow occurs. Such behaviour is incompatible with the continuum theory and the continuum physics of elastoplastic deformations, and the related material models can hardly be denoted as truly continuum-based. The paper presents a proper continuum-based reformulation of current problems in finite strain plasticity. It will be shown that the incompatible neighbourhoods in real material are modelled by the product of the plastic multiplier and the yield surface normal when the plastic flow is defined in the current configuration. The incompatible plastic factor can also model the neighbourhoods as the solution of the system of differential equations whose coefficient matrix is the above product when the plastic flow is defined in the intermediate configuration. The incompatible tensors replace the compatible spatial plastic velocity gradient in the former case or the compatible plastic deformation gradient in the latter case in the definition of the plastic flow rule. They act as local imperfections but have the same position vector as the compatible plastic velocity gradient or the compatible plastic deformation gradient in the definitions of the related plastic flow rules. The unstressed intermediate configuration, the unloaded configuration after the plastic flow, where the residual stresses have been removed, can always be calculated by integrating either the compatible plastic velocity gradient or the compatible plastic deformation gradient. However, the corresponding plastic displacement field becomes permanent with both elastic and plastic components. The residual strains and stresses originate from the difference between the compatible plastic/permanent displacement field gradient and the prescribed incompatible second-order tensor characterizing the plastic flow in the definition of the plastic flow rule, which becomes an assignment statement rather than an equilibrium equation. The above also means that the elastic and plastic factors in the multiplicative split of the deformation gradient are, in reality, gradients and that there is no problem with the continuum physics of elastoplastic deformations. The formulation is demonstrated in a numerical example using the regularized Mooney-Rivlin material model and modified equilibrium statements where the intermediate configuration is calculated, whose analysis results are compared with the identical material model using the current equilibrium statements. The advantages and disadvantages of each formulation, including their relationship with multiplicative plasticity, are also discussed.

Keywords: finite strain plasticity, continuum formulation, regularized Mooney-Rivlin material model, compatibility

Procedia PDF Downloads 123
1105 Additive Manufacturing – Application to Next Generation Structured Packing (SpiroPak)

Authors: Biao Sun, Tejas Bhatelia, Vishnu Pareek, Ranjeet Utikar, Moses Tadé

Abstract:

Additive manufacturing (AM), commonly known as 3D printing, with the continuing advances in parallel processing and computational modeling, has created a paradigm shift (with significant radical thinking) in the design and operation of chemical processing plants, especially LNG plants. With the rising energy demands, environmental pressures, and economic challenges, there is a continuing industrial need for disruptive technologies such as AM, which possess capabilities that can drastically reduce the cost of manufacturing and operations of chemical processing plants in the future. However, the continuing challenge for 3D printing is its lack of adaptability in re-designing the process plant equipment coupled with the non-existent theory or models that could assist in selecting the optimal candidates out of the countless potential fabrications that are possible using AM. One of the most common packings used in the LNG process is structured packing in the packed column (which is a unit operation) in the process. In this work, we present an example of an optimum strategy for the application of AM to this important unit operation. Packed columns use a packing material through which the gas phase passes and comes into contact with the liquid phase flowing over the packing, typically performing the necessary mass transfer to enrich the products, etc. Structured packing consists of stacks of corrugated sheets, typically inclined between 40-70° from the plane. Computational Fluid Dynamics (CFD) was used to test and model various geometries to study the governing hydrodynamic characteristics. The results demonstrate that the costly iterative experimental process can be minimized. Furthermore, they also improve the understanding of the fundamental physics of the system at the multiscale level. SpiroPak, patented by Curtin University, represents an innovative structured packing solution currently at a technology readiness level (TRL) of 5~6. This packing exhibits remarkable characteristics, offering a substantial increase in surface area while significantly enhancing hydrodynamic and mass transfer performance. Recent studies have revealed that SpiroPak can reduce pressure drop by 50~70% compared to commonly used commercial packings, and it can achieve 20~50% greater mass transfer efficiency (particularly in CO2 absorption applications). The implementation of SpiroPak has the potential to reduce the overall size of columns and decrease power consumption, resulting in cost savings for both capital expenditure (CAPEX) and operational expenditure (OPEX) when applied to retrofitting existing systems or incorporated into new processes. Furthermore, pilot to large-scale tests is currently underway to further advance and refine this technology.

Keywords: Additive Manufacturing (AM), 3D printing, Computational Fluid Dynamics (CFD, structured packing (SpiroPak)

Procedia PDF Downloads 84
1104 Averting a Financial Crisis through Regulation, Including Legislation

Authors: Maria Krambia-Kapardis, Andreas Kapardis

Abstract:

The paper discusses regulatory and legislative measures implemented by various nations in an effort to avert another financial crisis. More specifically, to address the financial crisis, the European Commission followed the practice of other developed countries and implemented a European Economic Recovery Plan in an attempt to overhaul the regulatory and supervisory framework of the financial sector. In 2010 the Commission introduced the European Systemic Risk Board and in 2011 the European System of Financial Supervision. Some experts advocated that the type and extent of financial regulation introduced in the European crisis in the wake of the 2008 crisis has been excessive and counterproductive. In considering how different countries responded to the financial crisis, global regulators have shown a more focused commitment to combat industry misconduct and to pre-empt abusive behavior. Regulators have also increased funding and resources at their disposal; have increased regulatory fines, with an increasing trend towards action against individuals; and, finally, have focused on market abuse and market conduct issues. Financial regulation can be effected, first of all, through legislation. However, neither ex ante or ex post regulation is by itself effective in reducing systemic risk. Consequently, to avert a financial crisis, in their endeavor to achieve both economic efficiency and financial stability, governments need to balance the two approaches to financial regulation. Fiduciary duty is another means by which the behavior of actors in the financial world is constrained and, thus, regulated. Furthermore, fiduciary duties extend over and above other existing requirements set out by statute and/or common law and cover allegations of breach of fiduciary duty, negligence or fraud. Careful analysis of the etiology of the 2008 financial crisis demonstrates the great importance of corporate governance as a way of regulating boardroom behavior. In addition, the regulation of professions including accountants and auditors plays a crucial role as far as the financial management of companies is concerned. In the US, the Sarbanes-Oxley Act of 2002 established the Public Company Accounting Oversight Board in order to protect investors from financial accounting fraud. In most countries around the world, however, accounting regulation consists of a legal framework, international standards, education, and licensure. Accounting regulation is necessary because of the information asymmetry and the conflict of interest that exists between managers and users of financial information. If a holistic approach is to be taken then one cannot ignore the regulation of legislators themselves which can take the form of hard or soft legislation. The science of averting a financial crisis is yet to be perfected and this, as shown by the preceding discussion, is unlikely to be achieved in the foreseeable future as ‘disaster myopia’ may be reduced but will not be eliminated. It is easier, of course, to be wise in hindsight and regulating unreasonably risky decisions and unethical or outright criminal behavior in the financial world remains major challenges for governments, corporations, and professions alike.

Keywords: financial crisis, legislation, regulation, financial regulation

Procedia PDF Downloads 398
1103 Assessment of Hypersaline Outfalls via Computational Fluid Dynamics Simulations: A Case Study of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser

Authors: Mitchell J. Baum, Badin Gibbes, Greg Collecutt

Abstract:

This study details a three-dimensional field-scale numerical investigation conducted for the Gold Coast Desalination Plant (GCDP) offshore multiport brine diffuser. Quantitative assessment of diffuser performance with regard to trajectory, dilution and mapping of seafloor concentration distributions was conducted for 100% plant operation. The quasi-steady Computational Fluid Dynamics (CFD) simulations were performed using the Reynolds averaged Navier-Stokes equations with a k-ω shear stress transport turbulence closure scheme. The study compliments a field investigation, which measured brine plume characteristics under similar conditions. CFD models used an iterative mesh in a domain with dimensions 400 m long, 200 m wide and an average depth of 24.2 m. Acoustic Doppler current profiler measurements conducted in the companion field study exhibited considerable variability over the water column. The effect of this vertical variability on simulated discharge outcomes was examined. Seafloor slope was also accommodated into the model. Ambient currents varied predominantly in the longshore direction – perpendicular to the diffuser structure. Under these conditions, the alternating port orientation of the GCDP diffuser resulted in simultaneous subjection to co-propagating and counter-propagating ambient regimes. Results from quiescent ambient simulations suggest broad agreement with empirical scaling arguments traditionally employed in design and regulatory assessments. Simulated dynamic ambient regimes showed the influence of ambient crossflow upon jet trajectory, dilution and seafloor concentration is significant. The effect of ambient flow structure and the subsequent influence on jet dynamics is discussed, along with the implications for using these different simulation approaches to inform regulatory decisions.

Keywords: computational fluid dynamics, desalination, field-scale simulation, multiport brine diffuser, negatively buoyant jet

Procedia PDF Downloads 212
1102 Methodological Approach to the Elaboration and Implementation of the Spatial-Urban Plan for the Special Purpose Area: Case-Study of Infrastructure Corridor of Highway E-80, Section Nis-Merdare, Serbia

Authors: Nebojsa Stefanovic, Sasa Milijic, Natasa Danilovic Hristic

Abstract:

Spatial plan of the special purpose area constitutes a basic tool in the planning of infrastructure corridor of a highway. The aim of the plan is to define the planning basis and provision of spatial conditions for the construction and operation of the highway, as well as for developing other infrastructure systems in the corridor. This paper presents a methodology and approach to the preparation of the Spatial Plan for the special purpose area for the infrastructure corridor of the highway E-80, Section Niš-Merdare in Serbia. The applied methodological approach is based on the combined application of the integrative and participatory method in the decision-making process on the sustainable development of the highway corridor. It was found that, for the planning and management of the infrastructure corridor, a key problem is coordination of spatial and urban planning, strategic environmental assessment and sectoral traffic planning and designing. Through the development of the plan, special attention is focused on increasing the accessibility of the local and regional surrounding, reducing the adverse impacts on the development of settlements and the economy, protection of natural resources, natural and cultural heritage, and the development of other infrastructure systems in the corridor of the highway. As a result of the applied methodology, this paper analyzes the basic features such as coverage, the concept, protected zones, service facilities and objects, the rules of development and construction, etc. Special emphasis is placed to methodology and results of the Strategic Environmental Assessment of the Spatial Plan, and to the importance of protection measures, with the special significance of air and noise protection measures. For evaluation in the Strategic Environmental Assessment, a multicriteria expert evaluation (semi-quantitative method) of planned solutions was used in relation to the set of goals and relevant indicators, based on the basic set of indicators of sustainable development. Evaluation of planned solutions encompassed the significance and size, spatial conditions and probability of the impact of planned solutions on the environment, and the defined goals of strategic assessment. The framework of the implementation of the Spatial Plan is presented, which is determined for the simultaneous elaboration of planning solutions at two levels: the strategic level of the spatial plan and detailed urban plan level. It is also analyzed the relationship of the Spatial Plan to other applicable planning documents for the planning area. The effects of this methodological approach relate to enabling integrated planning of the sustainable development of the infrastructure corridor of the highway and its surrounding area, through coordination of spatial, urban and sectoral traffic planning and design, as well as the participation of all key actors in the adoption and implementation of planned decisions. By the conclusions of the paper, it is pointed to the direction for further research, particularly in terms of harmonizing methodology of planning documentation and preparation of technical-design documentation.

Keywords: corridor, environment, highway, impact, methodology, spatial plan, urban

Procedia PDF Downloads 210
1101 Socio-Economic Transformation of Barpak Post-Earthquake Reconstruction

Authors: Sudikshya Bhandari, Jonathan K. London

Abstract:

The earthquake of April 2015 was one of the biggest disasters in the history of Nepal. The epicenter was located near Barpak, north of the Gorkha district. Before the disaster, this settlement was a compact and homogeneous settlement manifesting its uniqueness through the social and cultural activities, and a distinct vernacular architecture. Narrow alleys with stone paved streets, buildings with slate roofs, and common spaces between the houses made this settlement socially, culturally, and environmentally cohesive. With the presence of micro hydro power plants, local economic activities enabled the local community to exist and thrive. Agriculture and animal rearing are the sources of livelihood for the majority of families, along with the booming homestays (where local people welcome guests to their home, as a business) and local shops. Most of these activities are difficult to find as the houses have been destroyed with the earthquake and the process of reconstruction has been transforming the outlook of the settlement. This study characterized the drastic transformation in Barpak post-earthquake, and analyzed the consequences of the reconstruction process. In addition, it contributes to comprehending a broader representation about unsustainability created by the lack of contextual post-disaster development. Since the research is based in a specific area, a case study approach was used. Sample houses were selected on the basis of ethnicity and house typology. Mixed methods such as key informant and semi structured interviews, focus groups, observations and photographs are used for the collection of data. The research focus is predominantly on the physical change of the house typology from vernacular to externally adopted designs. This transformation of the house entails socio-cultural changes such as social fragmentation with differences among the rich and the poor and decreases in the social connectivity within families and neighborhood. Families have found that new houses require more maintenance and resources that have increased their economic expenses. The study also found that the reconstructed houses are not thermally comfortable in the cold climate of Barpak, leading to the increased use of different sources of heating like electric heaters and more firewood. Lack of storage spaces for crops and livestock have discouraged them to pursue traditional means of livelihood and depend more on buying food from stores, ultimately making it less economical for most of the families. The transformation of space leading to the economic, social and cultural changes demonstrates the unsustainability of Barpak. Conclusions from the study suggest place based and inclusive planning and policy formations that include locals as partners, identifying the possible ways to minimize the impact and implement these recommendations into the future policy and planning scenarios.

Keywords: earthquake, Nepal, reconstruction, settlement, transformation

Procedia PDF Downloads 117
1100 The Solid-Phase Sensor Systems for Fluorescent and SERS-Recognition of Neurotransmitters for Their Visualization and Determination in Biomaterials

Authors: Irina Veselova, Maria Makedonskaya, Olga Eremina, Alexandr Sidorov, Eugene Goodilin, Tatyana Shekhovtsova

Abstract:

Such catecholamines as dopamine, norepinephrine, and epinephrine are the principal neurotransmitters in the sympathetic nervous system. Catecholamines and their metabolites are considered to be important markers of socially significant diseases such as atherosclerosis, diabetes, coronary heart disease, carcinogenesis, Alzheimer's and Parkinson's diseases. Currently, neurotransmitters can be studied via electrochemical and chromatographic techniques that allow their characterizing and quantification, although these techniques can only provide crude spatial information. Besides, the difficulty of catecholamine determination in biological materials is associated with their low normal concentrations (~ 1 nM) in biomaterials, which may become even one more order lower because of some disorders. In addition, in blood they are rapidly oxidized by monoaminooxidases from thrombocytes and, for this reason, the determination of neurotransmitter metabolism indicators in an organism should be very rapid (15—30 min), especially in critical states. Unfortunately, modern instrumental analysis does not offer a complex solution of this problem: despite its high sensitivity and selectivity, HPLC-MS cannot provide sufficiently rapid analysis, while enzymatic biosensors and immunoassays for the determination of the considered analytes lack sufficient sensitivity and reproducibility. Fluorescent and SERS-sensors remain a compelling technology for approaching the general problem of selective neurotransmitter detection. In recent years, a number of catecholamine sensors have been reported including RNA aptamers, fluorescent ribonucleopeptide (RNP) complexes, and boronic acid based synthetic receptors and the sensor operated in a turn-off mode. In this work we present the fluorescent and SERS turn-on sensor systems based on the bio- or chemorecognizing nanostructured films {chitosan/collagen-Tb/Eu/Cu-nanoparticles-indicator reagents} that provide the selective recognition, visualization, and sensing of the above mentioned catecholamines on the level of nanomolar concentrations in biomaterials (cell cultures, tissue etc.). We have (1) developed optically transparent porous films and gels of chitosan/collagen; (2) ensured functionalization of the surface by molecules-'recognizers' (by impregnation and immobilization of components of the indicator systems: biorecognizing and auxiliary reagents); (3) performed computer simulation for theoretical prediction and interpretation of some properties of the developed materials and obtained analytical signals in biomaterials. We are grateful for the financial support of this research from Russian Foundation for Basic Research (grants no. 15-03-05064 a, and 15-29-01330 ofi_m).

Keywords: biomaterials, fluorescent and SERS-recognition, neurotransmitters, solid-phase turn-on sensor system

Procedia PDF Downloads 406
1099 A Sustainable Training and Feedback Model for Developing the Teaching Capabilities of Sessional Academic Staff

Authors: Nirmani Wijenayake, Louise Lutze-Mann, Lucy Jo, John Wilson, Vivian Yeung, Dean Lovett, Kim Snepvangers

Abstract:

Sessional academic staff at universities have the most influence and impact on student learning, engagement, and experience as they have the most direct contact with undergraduate students. A blended technology-enhanced program was created for the development and support of sessional staff to ensure adequate training is provided to deliver quality educational outcomes for the students. This program combines innovative mixed media educational modules, a peer-driven support forum, and face-to-face workshops to provide a comprehensive training and support package for staff. Additionally, the program encourages the development of learning communities and peer mentoring among the sessional staff to enhance their support system. In 2018, the program was piloted on 100 sessional staff in the School of Biotechnology and Biomolecular Sciences to evaluate the effectiveness of this model. As part of the program, rotoscope animations were developed to showcase ‘typical’ interactions between staff and students. These were designed around communication, confidence building, consistency in grading, feedback, diversity awareness, and mental health and wellbeing. When surveyed, 86% of sessional staff found these animations to be helpful in their teaching. An online platform (Moodle) was set up to disseminate educational resources and teaching tips, to host a discussion forum for peer-to-peer communication and to increase critical thinking and problem-solving skills through scenario-based lessons. The learning analytics from these lessons were essential in identifying difficulties faced by sessional staff to further develop supporting workshops to improve outcomes related to teaching. The face-to-face professional development workshops were run by expert guest speakers on topics such as cultural diversity, stress and anxiety, LGBTIQ and student engagement. All the attendees of the workshops found them to be useful and 88% said they felt these workshops increase interaction with their peers and built a sense of community. The final component of the program was to use an adaptive e-learning platform to gather feedback from the students on sessional staff teaching twice during the semester. The initial feedback provides sessional staff with enough time to reflect on their teaching and adjust their performance if necessary, to improve the student experience. The feedback from students and the sessional staff on this model has been extremely positive. The training equips the sessional staff with knowledge and insights which can provide students with an exceptional learning environment. This program is designed in a flexible and scalable manner so that other faculties or institutions could adapt components for their own training. It is anticipated that the training and support would help to build the next generation of educators who will directly impact the educational experience of students.

Keywords: designing effective instruction, enhancing student learning, implementing effective strategies, professional development

Procedia PDF Downloads 126
1098 Redefining Lesbian Representation: The Evolution of Queer Female Desire in the Films of Céline Sciamma

Authors: Athira Sanjeev

Abstract:

The portrayal of lesbianism in cinema has undergone significant transformations. This study explores the evolving portrayal of lesbianism in the films of French director Céline Sciamma, focusing on how her works have redefined the representation of queer women in contemporary cinema. Through an analysis of Water Lilies (2007), Tomboy (2011), and Portrait of a Lady on Fire (2019), the study investigates the ways in which Sciamma’s films diverge from traditional depictions of lesbianism in film, which often relied on either fetishization or tragedy. Instead, Sciamma adopts a quiet, minimalist style that foregrounds emotional intimacy, offering a more nuanced and authentic portrayal of lesbian relationships. Through a comparative analysis of these films, this research explores the thematic and stylistic progression of Sciamma’s portrayal of lesbianism, highlighting her commitment to centering queer female experiences. The research highlights Sciamma's commitment to focusing on the complexities of desire, identity formation, and the female gaze, particularly through her use of visual storytelling, character development, and narrative silence. Her films emphasize the fluidity of gender and sexuality, portraying lesbianism not as a fixed identity but as part of a broader spectrum of human desire. Sciamma’s nuanced approach resists the traditional marginalization of lesbian characters, allowing them to exist as individuals rather than as plot devices or objects of spectacle. This study draws from queer theory and feminist film criticism to examine how Sciamma challenges conventional heteronormative narratives, prioritizes the female gaze, and subverts traditional cinematic representations of lesbian desire. It also explores how her work contributes to a broader conversation on the representation of queerness in contemporary French cinema, challenging heteronormative paradigms and offering new possibilities for depicting female relationships on screen. By tracing the evolution of her films, this research contributes to broader discussions on LGBTQ+ visibility in cinema and the cultural significance of lesbian representation in contemporary cinema.

Keywords: female gaze, feminist film criticism, lesbianism in cinema, queer theory

Procedia PDF Downloads 17
1097 An Introspective look into Hotel Employees Career Satisfaction

Authors: Anastasios Zopiatis, Antonis L. Theocharous

Abstract:

In the midst of a fierce war for talent, the hospitality industry is seeking new and innovative ways to enrich its image as an employer of choice and not a necessity. Historically, the industry’s professions are portrayed as ‘unattractive’ due to their repetitious nature, long and unsocial working schedules, below average remunerations, and the mental and physical demands of the job. Aligning with the industry, hospitality and tourism scholars embarked on a journey to investigate pertinent topics with the aim of enhancing our conceptual understanding of the elements that influence employees at the hospitality world of work. Topics such as job involvement, commitment, job and career satisfaction, and turnover intentions became the focal points in a multitude of relevant empirical and conceptual investigations. Nevertheless, gaps or inconsistencies in existing theories, as a result of both the volatile complexity of the relationships governing human behavior in the hospitality workplace, and the academic community’s unopposed acceptance of theoretical frameworks mainly propounded in the United States and United Kingdom years ago, necessitate our continuous vigilance. Thus, in an effort to enhance and enrich the discourse, we set out to investigate the relationship between intrinsic and extrinsic job satisfaction traits and the individual’s career satisfaction, and subsequent intention to remain in the hospitality industry. Reflecting on existing literature, a quantitative survey was developed and administered, face-to-face, to 650 individuals working as full-time employees in 4- and 5- star hotel establishments in Cyprus, whereas a multivariate statistical analysis method, namely Structural Equation Modeling (SEM), was utilized to determine whether relationships existed between constructs as a means to either accept or reject the hypothesized theory. Findings, of interest to both industry stakeholders and academic scholars, suggest that the individual’s future intention to remain within the industry is primarily associated with extrinsic job traits. Our findings revealed that positive associations exist between extrinsic job traits, and both career satisfaction and future intention. In contrast, when investigating the relationship of intrinsic traits, a positive association was revealed only with career satisfaction. Apparently, the local industry’s environmental factors of seasonality, excessive turnover, overdependence on seasonal, and part-time migrant workers, prohibit industry stakeholders in effectively investing the time and resources in the development and professional growth of their employees. Consequently intrinsic job satisfaction factors such as advancement, growth, and achievement, take backstage to the more materialistic extrinsic factors. Findings from the subsequent mediation analysis support the notion that intrinsic traits can positively influence future intentions indirectly only through career satisfaction, whereas extrinsic traits can positively impact both career satisfaction and future intention both directly and indirectly.

Keywords: career satisfaction, Cyprus, hotel employees, structural equation modeling, SEM

Procedia PDF Downloads 286
1096 Creative Mathematically Modelling Videos Developed by Engineering Students

Authors: Esther Cabezas-Rivas

Abstract:

Ordinary differential equations (ODE) are a fundamental part of the curriculum for most engineering degrees, and students typically have difficulties in the subsequent abstract mathematical calculations. To enhance their motivation and profit that they are digital natives, we propose a teamwork project that includes the creation of a video. It should explain how to model mathematically a real-world problem transforming it into an ODE, which should then be solved using the tools learned in the lectures. This idea was indeed implemented with first-year students of a BSc in Engineering and Management during the period of online learning caused by the outbreak of COVID-19 in Spain. Each group of 4 students was assigned a different topic: model a hot water heater, search for the shortest path, design the quickest route for delivery, cooling a computer chip, the shape of the hanging cables of the Golden Gate, detecting land mines, rocket trajectories, etc. These topics should be worked out through two complementary channels: a written report describing the problem and a 10-15 min video on the subject. The report includes the following items: description of the problem to be modeled, detailed obtention of the ODE that models the problem, its complete solution, and interpretation in the context of the original problem. We report the outcomes of this teaching in context and active learning experience, including the feedback received by the students. They highlighted the encouragement of creativity and originality, which are skills that they do not typically relate to mathematics. Additionally, the video format (unlike a common presentation) has the advantage of allowing them to critically review and self-assess the recording, repeating some parts until the result is satisfactory. As a side effect, they felt more confident about their oral abilities. In short, students agreed that they had fun preparing the video. They recognized that it was tricky to combine deep mathematical contents with entertainment since, without the latter, it is impossible to engage people to view the video till the end. Despite this difficulty, after the activity, they claimed to understand better the material, and they enjoyed showing the videos to family and friends during and after the project.

Keywords: active learning, contextual teaching, models in differential equations, student-produced videos

Procedia PDF Downloads 144
1095 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 103
1094 Analysis of Interparticle interactions in High Waxy-Heavy Clay Fine Sands for Sand Control Optimization

Authors: Gerald Gwamba

Abstract:

Formation and oil well sand production is one of the greatest and oldest concerns for the Oil and gas industry. The production of sand particles may vary from very small and limited amounts to far elevated levels which has the potential to block or plug the pore spaces near the perforated points to blocking production from surface facilities. Therefore, the timely and reliable investigation of conditions leading to the onset or quantifying sanding while producing is imperative. The challenges of sand production are even more elevated while producing in Waxy and Heavy wells with Clay Fine sands (WHFC). Existing research argues that both waxy and heavy hydrocarbons exhibit far differing characteristics with waxy more paraffinic while heavy crude oils exhibit more asphaltenic properties. Moreover, the combined effect of WHFC conditions presents more complexity in production as opposed to individual effects that could be attributed to a consolidation of a surmountable opposing force. However, research on a combined high WHFC system could depict a better representation of the surmountable effect which in essence is more comparable to field conditions where a one-sided view of either individual effects on sanding has been argued to some extent misrepresentative of actual field conditions since all factors act surmountably. In recognition of the limited customized research on sand production studies with the combined effect of WHFC however, our research seeks to apply the Design of Experiments (DOE) methodology based on latest literature to analyze the relationship between various interparticle factors in relation to selected sand control methods. Our research aims to unearth a better understanding of how the combined effect of interparticle factors including: strength, cementation, particle size and production rate among others could better assist in the design of an optimal sand control system for the WHFC well conditions. In this regard, we seek to answer the following research question: How does the combined effect of interparticle factors affect the optimization of sand control systems for WHFC wells? Results from experimental data collection will inform a better justification for a sand control design for WHFC. In doing so, we hope to contribute to earlier contrasts arguing that sand production could potentially enable well self-permeability enhancement caused by the establishment of new flow channels created by loosening and detachment of sand grains. We hope that our research will contribute to future sand control designs capable of adapting to flexible production adjustments in controlled sand management. This paper presents results which are part of an ongoing research towards the authors' PhD project in the optimization of sand control systems for WHFC wells.

Keywords: waxy-heavy oils, clay-fine sands, sand control optimization, interparticle factors, design of experiments

Procedia PDF Downloads 130
1093 Variation of Litter Chemistry under Intensified Drought: Consequences on Flammability

Authors: E. Ormeno, C. Gutigny, J. Ruffault, J. Madrigal, M. Guijarro, C. Lecareux, C. Ballini

Abstract:

Mediterranean plant species feature numerous metabolic and morpho-physiological responses crucial to survive under both, typical Mediterranean drought conditions and future aggravated drought expected by climate change. Whether these adaptive responses will, in turn, increase the ecosystem perturbation in terms of fire hazard, is an issue that needs to be addressed. The aim of this study was to test whether recurrent and aggravated drought in the Mediterranean area favors the accumulation of waxes in leaf litter, with an eventual increase of litter flammability. The study was conducted in 2017 in a garrigue in Southern France dominated by Quercus coccifera, where two drought treatments were used: a treatment with recurrent aggravated drought consisting of ten rain exclusion structures which withdraw part of the annual precipitation since January 2012, and a natural drought treatment where Q. coccifera stands are free of such structures and thus grow under natural precipitation. Waxes were extracted with organic solvent and analyzed by GC-MS and litter flammability was assessed through measurements of the ignition delay, flame residence time and flame intensity (flame height) using an epiradiator as well as the heat of combustion using an oxygen bomb calorimeter. Results show that after 5 years of rain restriction, wax content in the cuticle of leaf litter increases significantly compared to shrubs growing under natural precipitation, in accordance with the theoretical knowledge which expects increases of cuticle waxes in green leaves in order to limit water evapotranspiration. Wax concentrations were also linearly and positively correlated to litter flammability, a correlation that lies on the high flammability own to the long-chain alkanes (C25-C31) found in leaf litter waxes. This innovative investigation shows that climate change is likely to favor ecosystem fire hazard through accumulation of highly flammable waxes in litter. It also adds valuable information about the types of metabolites that are associated with increasing litter flammability, since so far, within the leaf metabolic profile, only terpene-like compounds had been related to plant flammability.

Keywords: cuticular waxes, drought, flammability, litter

Procedia PDF Downloads 171
1092 Anti-Angiogenic and Anti-Metastatic Effect of Aqueous Fraction from Euchelus Asper Methanolic Extract

Authors: Sweta Agrawal, Sachin Chaugule, Gargi Rane, Shashank More, Madhavi Indap

Abstract:

Angiogenesis and metastasis are two of the most important hallmarks of cancer. Hence, most of the cancer therapies nowadays are multi-targeted so as to reduce resistance and have better efficacy. As synthetic molecules arise with a burden of their toxicities and side-effects, more and more research is being focussed on exploiting the vast natural resources of drugs, in the form of plants and animals. Although, the idea of using marine organisms as a source of pharmaceuticals is not new, the pace at which marine drugs are being discovered, has definitely up surged! In the present study, we have assessed the anti-angiogenic and in vitro anti-metastatic activity of aqueous fraction from the extract of marine gastropod Euchelus asper. The soft body of Euchelus Asper was extracted with methanol and named EAME. Partition chromatography of EAME gave three fractions EAME I, II and III. Biochemical analysis revealed the presence of proteins in EAME III. Preliminary analysis had revealed the anti-angiogenic activity was exhibited by EAME III out of the three fractions. Hereafter, EAME III (concentration 25µg/ml-400µg/ml) was tested on chick chorioallantoic membrane (CAM) model for the detailed analysis of its potential anti-angiogenic effect. In vitro testing of the fraction (concentration 0.25µg/ml - 1µg/ml), involved cytotoxicity by SRB assay, cell cycle analysis by flow cytometry and anti-proliferative effect by scratch wound healing assay on A549 lung carcinoma cells. Apart from this, a portion of treated CAM as well as conditioned medium from treated A549 were subjected to gelatin zymography for assessment of matrix metalloproteinases MMP-2 and MMP-9 levels. Our results revealed that EAME III exhibited significant anti-angiogenic activity on CAM which was also supported by histological observations. During histological studies of CAM, it was found that EAME III caused reduction in angiogenesis by altering the extracellular matrix of the CAM membrane. In vitro analysis disclosed that EAME III exhibited moderate cytotoxic effect on A549 cells and its effect was not dose-dependent. The results of flow cytometry confirmed that EAME III caused cell cycle arrest in A549 cell line as almost all of the treated cells were found in G1 phase. Further, the migration and proliferation of A549 was significantly reduced by EAME III as observed from the scratch wound assay. Moreover, Gelatin zymography analysis revealed that EAME III caused suppression of MMP-2 in CAM membrane and reduced MMP-9 and MMP-2 expression in A549 cells. This verified that the anti-angiogenic and anti-metastatic effects of EAME III were correlated with the suppression of MMP-2 and -9. To conclude, EAME III shows dual anti-tumour action by reducing angiogenesis and exerting anti-metastatic effect on lung cancer cells, thus it has the potential to be used as an anti-cancer agent against lung carcinoma.

Keywords: angiogenesis, anti-cancer, marine drugs, matrix metalloproteinases

Procedia PDF Downloads 230
1091 Using Biofunctool® Index to Assess Soil Quality after Eight Years of Conservation Agriculture in New Caledonia

Authors: Remy Kulagowski, Tobias Sturm, Audrey Leopold, Aurelie Metay, Josephine Peigne, Alexis Thoumazeau, Alain Brauman, Bruno Fogliani, Florent Tivet

Abstract:

A major challenge for agriculture is to enhance productivity while limiting the impact on the environment. Conservation agriculture (CA) is one strategy whereby both sustainability and productivity can be achieved by preserving and improving the soil quality. Soils provide and regulate a large number of ecosystem services (ES) such as agricultural productivity and climate change adaptation and mitigation. The aim of this study is to assess the impacts of contrasted CA crop management on soil functions for maize (Zea mays L.) cultivation in an eight years field experiment (2010-2018). The study included two CA practices: direct seeding in dead mulch (DM) and living mulch (LM), and conventional plough-based tillage (CT) practices on a fluvisol in New Caledonia (French Archipelago in the South Pacific). In 2018, soil quality of the cropping systems were evaluated with the Biofunctool® set of indicators, that consists in twelve integrative, in-field, and low-tech indicators assessing the biological, physical and chemical properties of soils. Main soil functions were evaluated including (i) carbon transformation, (ii) structure maintenance, and (iii) nutrient cycling in the ten first soil centimeters. The results showed significant higher score for soil structure maintenance (e.g., aggregate stability, water infiltration) and carbon transformation function (e.g., soil respiration, labile carbon) under CA in DM and LM when compared with CT. Score of carbon transformation index was higher in DM compared with LM. However, no significant effect of cropping systems was observed on nutrient cycling (i.e., nitrogen and phosphorus). In conclusion, the aggregated synthetic scores of soil multi-functions evaluated with Biofunctool® demonstrate that CA cropping systems lead to a better soil functioning. Further analysis of the results with agronomic performance of the soil-crop systems would allow to better understand the links between soil functioning and production ES of CA.

Keywords: conservation agriculture, cropping systems, ecosystem services, soil functions

Procedia PDF Downloads 156
1090 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band

Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman

Abstract:

In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.

Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite

Procedia PDF Downloads 234
1089 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots

Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha

Abstract:

Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.

Keywords: biosensor, dopamine, fluorescence, quantum dots

Procedia PDF Downloads 362
1088 Adsorption of Congo Red from Aqueous Solution by Raw Clay: A Fixed Bed Column Study

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removals of such compounds at such low levels are a difficult problem. Physicochemical technique such as coagulation, flocculation, ozonation, reverse osmosis and adsorption on activated carbon, manganese oxide, silica gel and clay are among the methods employed. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. Dye molecules also have very high affinity for clay surfaces and are readily adsorbed when added to clay suspension. The elimination of the organic dye by clay was studied by serval researchers. The focus of this research was to evaluate the adsorption potential of the raw clay in removing congo red from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 7.Experiments were carried out at different bed heights (5-20 cm), influent flow rates (1.6- 8 mL/min) and influent congo red concentrations (10-50 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of congo red from aqueous solution. Uptake of congo red through a fixed-bed column was dependent on the bed depth, influent congo red concentration and flow rate.

Keywords: adsorption, breakthrough curve, clay, congo red, fixed bed column, regeneration

Procedia PDF Downloads 332
1087 Analyzing the Impacts of Sustainable Tourism Development on Residents’ Well-Being Based on Stakeholder Perception: Evidence from a Coastal-Hinterland Region

Authors: Elham Falatoonitoosi, Vikki Schaffer, Don Kerr

Abstract:

Over-development for tourism and its consequences on residents’ well-being turn into a critical issue in tourism destinations. Learning about undesirable impacts of tourism has led many people to seek more sustainable and responsible tourism. The main objective of this research is to understand how and to what extent sustainable tourism development enhances locals’ well-being regarding stakeholder perception. The research was conducted in a coastal-hinterland tourism region through two sequential phases. At the first phase, a unique set of 19 sustainable tourism indicators resulted from a triplex model was used to examine the sustainability effects on the main factors of residents’ well-being including equity and living condition, life satisfaction, health condition, and education quality. The triplex model including i) systematic literature search, ii) convergent interviewing, and iii) DEMATEL aimed to develop sustainability indicators, specify them for a particular destination, and identify the dominant sustainability issues acting as key predictors in sustainable development. At the second phase, a hierarchical multiple regression was used to examine the relationship between sustainable development and local residents’ well-being. A number of 167 participants from five different groups of stakeholders perceived the importance level of each sustainability indicators regarding well-being factors on 5-point Likert scale. Results from the first phase indicated that sustainability training, government support, tourism sociocultural effects, tourism revenue, and climate change are the top dominant sustainability issues in the regional sustainable development. Results from the second phase showed that sustainable development considerably improves the overall residents’ well-being and has positive relationships with all well-being factors except life satisfaction. It explains that it was difficult for stakeholders to recognize a link between sustainable development and their overall life satisfaction and happiness. Among well-being’s factors, health condition was influenced the most by sustainability indicators that indicate stakeholders believed sustainability development can promote public health, health sector performance, quality of drinking water, and sanitation. For the future research, it is highly recommended to analysis the effects of sustainable tourism development on the other features of a tourism destination’s well-being including residents sociocultural empowerment, local economic growth, and attractiveness of the destination.

Keywords: residents' well-being, stakeholder perception, sustainability indicators, sustainable tourism

Procedia PDF Downloads 264
1086 Isolation and Identification of Salmonella spp and Salmonella enteritidis, from Distributed Chicken Samples in the Tehran Province using Culture and PCR Techniques

Authors: Seyedeh Banafsheh Bagheri Marzouni, Sona Rostampour Yasouri

Abstract:

Salmonella is one of the most important common pathogens between humans and animals worldwide. Globally, the prevalence of the disease in humans is due to the consumption of food contaminated with animal-derived Salmonella. These foods include eggs, red meat, chicken, and milk. Contamination of chicken and its products with Salmonella may occur at any stage of the chicken processing chain. Salmonella infection is usually not fatal. However, its occurrence is considered dangerous in some individuals, such as infants, children, the elderly, pregnant women, or individuals with weakened immune systems. If Salmonella infection enters the bloodstream, the possibility of contamination of tissues throughout the body will arise. Therefore, determining the potential risk of Salmonella at various stages is essential from the perspective of consumers and public health. The aim of this study is to isolate and identify Salmonella from chicken samples distributed in the Tehran market using the Gold standard culture method and PCR techniques based on specific genes, invA and ent. During the years 2022-2023, sampling was performed using swabs from the liver and intestinal contents of distributed chickens in the Tehran province, with a total of 120 samples taken under aseptic conditions. The samples were initially enriched in buffered peptone water (BPW) for pre-enrichment overnight. Then, the samples were incubated in selective enrichment media, including TT broth and RVS medium, at temperatures of 37°C and 42°C, respectively, for 18 to 24 hours. Organisms that grew in the liquid medium and produced turbidity were transferred to selective media (XLD and BGA) and incubated overnight at 37°C for isolation. Suspicious Salmonella colonies were selected for DNA extraction, and PCR technique was performed using specific primers that targeted the invA and ent genes in Salmonella. The results indicated that 94 samples were Salmonella using the PCR technique. Of these, 71 samples were positive based on the invA gene, and 23 samples were positive based on the ent gene. Although the culture technique is the Gold standard, PCR is a faster and more accurate method. Rapid detection through PCR can enable the identification of Salmonella contamination in food items and the implementation of necessary measures for disease control and prevention.

Keywords: culture, PCR, salmonella spp, salmonella enteritidis

Procedia PDF Downloads 70
1085 Nanoemulsion Formulation of Ethanolic Extracts of Propolis and Its Antioxidant Activity

Authors: Rachmat Mauludin, Dita Sasri Primaviri, Irda Fidrianny

Abstract:

Propolis contains several antioxidant compounds which can be used in topical application to protect skin against free radical, prevent skin cancer and skin aging. Previous study showed that 70% ethanolic extract of propolis (EEP) provided the greatest antioxidant activity. Since EEP has very small solubility in water, the extract was prepared in nanoemulsion (NE). Nanoemulsion is chosen as cosmetic dosage forms according to its properties namely to decrease the risk of skin’s irritation, increase penetration, prolong its time to remain in our skin, and improve stability. Propolis was extracted using reflux methods and concentrated using rotavapor. EEP was characterized with several tests such as phytochemical screening, density, and antioxidant activity using DPPH method. Optimation of total surfactant, co-surfactant, oil, and amount of EEP that can be included in NE were required to get the best NE formulation. The evaluations included to organoleptic observation, globul size, polydispersity index, morphology using TEM, viscosity, pH, centrifuge, stability, Freeze and Thaw test, radical scavenging activity using DPPH method, and primary irritation test. The yield extracts was 11.12% from raw propolis contained of steroid/triterpenoid, flavonoid, and saponin based on phytochemical screening. EEP had the value of DPPH scavenging activity 61.14% and IC50 0.41629 ppm. The best NE formulation consisted of 26.25% Kolliphor RH40; 8.75% glycerine; 5% rice bran oil; and 3% EEP. NE was transparant, had globul size of 21.9 nm; polydispersity index of 0.338; and pH of 5.67. Based on TEM morphology, NE was almost spherical and has particle size below 50 nm. NE propolis revealed to be physically stable after stability test within 63 days at 25oC, centrifuged for 30 mins at 13.000 rpm, and passed 6 cycles of Freeze and Thaw test without separated. NE propolis reduced 58% of free radical DPPH similar to antioxidant activity of the original extracts. Antioxidant activity of NE propolis is relatively stable after stored for 6 weeks. NE Propolis was proven to be safe by primary irritation test with the value of primary irritation index (OECD) was 0. The best formulation for NE propolis contained of 26.25% Kolliphor RH40; 8.75% glycerine; 5% rice bran oil; and 3% EEP with globul size of 21.9 nm and polydispersity index of 0.338. NE propolis was stable and had antioxidant activity similar to EEP.

Keywords: propolis, antioxidant, nanoemulsion, irritation test

Procedia PDF Downloads 303
1084 Self-Energy Sufficiency Assessment of the Biorefinery Annexed to a Typical South African Sugar Mill

Authors: M. Ali Mandegari, S. Farzad, , J. F. Görgens

Abstract:

Sugar is one of the main agricultural industries in South Africa and approximately livelihoods of one million South Africans are indirectly dependent on sugar industry which is economically struggling with some problems and should re-invent in order to ensure a long-term sustainability. Second generation biorefinery is defined as a process to use waste fibrous for the production of biofuel, chemicals animal food, and electricity. Bioethanol is by far the most widely used biofuel for transportation worldwide and many challenges in front of bioethanol production were solved. Biorefinery annexed to the existing sugar mill for production of bioethanol and electricity is proposed to sugar industry and is addressed in this study. Since flowsheet development is the key element of the bioethanol process, in this work, a biorefinery (bioethanol and electricity production) annexed to a typical South African sugar mill considering 65ton/h dry sugarcane bagasse and tops/trash as feedstock was simulated. Aspen PlusTM V8.6 was applied as simulator and realistic simulation development approach was followed to reflect the practical behaviour of the plant. Latest results of other researches considering pretreatment, hydrolysis, fermentation, enzyme production, bioethanol production and other supplementary units such as evaporation, water treatment, boiler, and steam/electricity generation units were adopted to establish a comprehensive biorefinery simulation. Steam explosion with SO2 was selected for pretreatment due to minimum inhibitor production and simultaneous saccharification and fermentation (SSF) configuration was adopted for enzymatic hydrolysis and fermentation of cellulose and hydrolyze. Bioethanol purification was simulated by two distillation columns with side stream and fuel grade bioethanol (99.5%) was achieved using molecular sieve in order to minimize the capital and operating costs. Also boiler and steam/power generation were completed using industrial design data. Results indicates that the annexed biorefinery can be self-energy sufficient when 35% of feedstock (tops/trash) bypass the biorefinery process and directly be loaded to the boiler to produce sufficient steam and power for sugar mill and biorefinery plant.

Keywords: biorefinery, self-energy sufficiency, tops/trash, bioethanol, electricity

Procedia PDF Downloads 537
1083 Evaluating the Effect of Climate Change and Land Use/Cover Change on Catchment Hydrology of Gumara Watershed, Upper Blue Nile Basin, Ethiopia

Authors: Gashaw Gismu Chakilu

Abstract:

Climate and land cover change are very important issues in terms of global context and their responses to environmental and socio-economic drivers. The dynamic of these two factors is currently affecting the environment in unbalanced way including watershed hydrology. In this paper individual and combined impacts of climate change and land use land cover change on hydrological processes were evaluated through applying the model Soil and Water Assessment Tool (SWAT) in Gumara watershed, Upper Blue Nile basin Ethiopia. The regional climate; temperature and rainfall data of the past 40 years in the study area were prepared and changes were detected by using trend analysis applying Mann-Kendall trend test. The land use land cover data were obtained from land sat image and processed by ERDAS IMAGIN 2010 software. Three land use land cover data; 1973, 1986, and 2013 were prepared and these data were used for base line, model calibration and change study respectively. The effects of these changes on high flow and low flow of the catchment have also been evaluated separately. The high flow of the catchment for these two decades was analyzed by using Annual Maximum (AM) model and the low flow was evaluated by seven day sustained low flow model. Both temperature and rainfall showed increasing trend; and then the extent of changes were evaluated in terms of monthly bases by using two decadal time periods; 1973-1982 was taken as baseline and 2004-2013 was used as change study. The efficiency of the model was determined by Nash-Sutcliffe (NS) and Relative Volume error (RVe) and their values were 0.65 and 0.032 for calibration and 0.62 and 0.0051 for validation respectively. The impact of climate change was higher than that of land use land cover change on stream flow of the catchment; the flow has been increasing by 16.86% and 7.25% due to climate and LULC change respectively, and the combined change effect accounted 22.13% flow increment. The overall results of the study indicated that Climate change is more responsible for high flow than low flow; and reversely the land use land cover change showed more significant effect on low flow than high flow of the catchment. From the result we conclude that the hydrology of the catchment has been altered because of changes of climate and land cover of the study area.

Keywords: climate, LULC, SWAT, Ethiopia

Procedia PDF Downloads 373
1082 Evaluation of Phytochemical and Antidiarrhoeal Activity of Butanol Fraction of Terminalia avicennioides Leaf in Swiss Albino Rats

Authors: Fatima Mohammed Musa, J. B. Ameh, S. A. Ado, O. S. Olonitola

Abstract:

The study was undertaken to evaluate the phytochemical constituents of extracts of Terminalia avicennioides leaf and the antidiarrhoeal effect of n-butanol fraction of the leaf extract in Swiss albino rats infected with Salmonella Typhimurium and Escherichia coli. Ethanol crude extract of Terminalia avicennioides leaf was dissolved in 1.5 liters of sterile distilled water. The extract solution was partitioned with 250 ml each of chloroform, ethyl acetate and n-butanol solvents (1:1v/v) to obtain soluble fractions from the extract. The leaf extract and its fractions were screened for the presence of phytocompounds using standard analytical methods. The antidirrhoeal activity of n-butanol fraction was evaluated in Swiss albino rats using standard methods. The results of phytochemical screening of extract of Terminalia avicennioides leaf and its fractions, revealed the presence of carbohydrates, alkaloids, tannins, flavonoids, saponins, steroids, triterpens, glycosides and phenols. The results of in vivo activity showed that 60 % of each group of rats infected with 2.0 x 108 cfu/ml viable cells of S. Typhimurium and 2.0 x109 cfu/ml viable cells of E. coli manifested the symptoms of diarrhoea, 72 hours after the rats were challenged with bacteria. Other symptoms observed among the infected animals included, loss of appetite, loss of weight, general body weakness and 40 % mortality in S. Typhimurium infected non treated group of rats. Similarly, 60 %, and 20 % mortality was observed among E. coli infected none treated and E. coli infected antibiotic (metronidazole) treated groups of rats respectively. However, there was a reduction in the number of infected rats defecating watery stools over time among all the infected rats that were treated with n-butanol fraction of the leaf extract and mortality was also not observed in the group, indicating high efficacy of n-butanol fraction of T. avicennioides leaf. The results also indicated that n-butanol can be used as alternative source of antidiarrhoeal agent in the treatment of diarrhoea caused by Salmonella Typhimurium and Escherichia coli. In the light of this, there is a need for further research on the mechanism of action of the candidate fraction of T. avicennioides leaf which could be responsible for the observed in vivo antibacterial activity.

Keywords: antidirrhoeal effect, phytochemical constituents, swiss albino rats, terminalia avicennioides

Procedia PDF Downloads 381
1081 The Use of Flipped Classroom as a Teaching Method in a Professional Master's Program in Network, in Brazil

Authors: Carla Teixeira, Diana Azevedo, Jonatas Bessa, Maria Guilam

Abstract:

The flipped classroom is a blended learning modality that combines face-to-face and virtual activities of self-learning, mediated by digital information and communication technologies, which reverses traditional teaching approaches and presents, as a presupposition, the previous study of contents by students. In the following face-to-face activities, the contents are discussed, producing active learning. This work aims to describe the systematization process of the use of flipped classrooms as a method to develop complementary national activities in PROFSAÚDE, a professional master's program in the area of public health, offered as a distance learning course, in the network, in Brazil. The complementary national activities were organized with the objective of strengthening and qualifying students´ learning process. The network gathers twenty-two public institutions of higher education in the country. Its national coordination conducted a survey to detect complementary educational needs, supposed to improve the formative process and align important content sums for the program nationally. The activities were organized both asynchronously, making study materials available in Google classrooms, and synchronously in a tele presential way, organized on virtual platforms to reach the largest number of students in the country. The asynchronous activities allowed each student to study at their own pace and the synchronous activities were intended for deepening and reflecting on the themes. The national team identified some professors' areas of expertise, who were contacted for the production of audiovisual content such as video classes and podcasts, guidance for supporting bibliographic materials and also to conduct synchronous activities together with the technical team. The contents posted in the virtual classroom were organized by modules and made available before the synchronous meeting; these modules, in turn, contain “pills of experience” that correspond to reports of teachers' experiences in relation to the different themes. In addition, activity was proposed, with questions aimed to expose doubts about the contents and a learning challenge, as a practical exercise. Synchronous activities are built with different invited teachers, based on the participants 'discussions, and are the forum where teachers can answer students' questions, providing feedback on the learning process. At the end of each complementary activity, an evaluation questionnaire is available. The responses analyses show that this institutional network experience, as pedagogical innovation, provides important tools to support teaching and research due to its potential in the participatory construction of learning, optimization of resources, the democratization of knowledge and sharing and strengthening of practical experiences on the network. One of its relevant aspects was the thematic diversity addressed through this method.

Keywords: active learning, flipped classroom, network education experience, pedagogic innovation

Procedia PDF Downloads 159
1080 Partially Aminated Polyacrylamide Hydrogel: A Novel Approach for Temporary Oil and Gas Well Abandonment

Authors: Hamed Movahedi, Nicolas Bovet, Henning Friis Poulsen

Abstract:

Following the advent of the Industrial Revolution, there has been a significant increase in the extraction and utilization of hydrocarbon and fossil fuel resources. However, a new era has emerged, characterized by a shift towards sustainable practices, namely the reduction of carbon emissions and the promotion of renewable energy generation. Given the substantial number of mature oil and gas wells that have been developed inside the petroleum reservoir domain, it is imperative to establish an environmental strategy and adopt appropriate measures to effectively seal and decommission these wells. In general, the cement plug serves as a material for plugging purposes. Nevertheless, there exist some scenarios in which the durability of such a plug is compromised, leading to the potential escape of hydrocarbons via fissures and fractures within cement plugs. Furthermore, cement is often not considered a practical solution for temporary plugging, particularly in the case of well sites that have the potential for future gas storage or CO2 injection. The Danish oil and gas industry has promising potential as a prospective candidate for future carbon dioxide (CO2) injection, hence contributing to the implementation of carbon capture strategies within Europe. The primary reservoir component consists of chalk, a rock characterized by limited permeability. This work focuses on the development and characterization of a novel hydrogel variant. The hydrogel is designed to be injected via a low-permeability reservoir and afterward undergoes a transformation into a high-viscosity gel. The primary objective of this research is to explore the potential of this hydrogel as a new solution for effectively plugging well flow. Initially, the synthesis of polyacrylamide was carried out using radical polymerization inside the confines of the reaction flask. Subsequently, with the application of the Hoffman rearrangement, the polymer chain undergoes partial amination, facilitating its subsequent reaction with the crosslinker and enabling the formation of a hydrogel in the subsequent stage. The organic crosslinker, glutaraldehyde, was employed in the experiment to facilitate the formation of a gel. This gel formation occurred when the polymeric solution was subjected to heat within a specified range of reservoir temperatures. Additionally, a rheological survey and gel time measurements were conducted on several polymeric solutions to determine the optimal concentration. The findings indicate that the gel duration is contingent upon the starting concentration and exhibits a range of 4 to 20 hours, hence allowing for manipulation to accommodate diverse injection strategies. Moreover, the findings indicate that the gel may be generated in environments characterized by acidity and high salinity. This property ensures the suitability of this substance for application in challenging reservoir conditions. The rheological investigation indicates that the polymeric solution exhibits the characteristics of a Herschel-Bulkley fluid with somewhat elevated yield stress prior to solidification.

Keywords: polyacrylamide, hofmann rearrangement, rheology, gel time

Procedia PDF Downloads 75
1079 The Liminal Performances of Female-Led (Sufi) Rituals: An Anthropological in Pakistan

Authors: Sana Iqbal

Abstract:

The female voice in Sufi poetry has been studied as a symbol of humility and devotion. Throughout the centuries, the Sufi shrines have also sheltered women and have served as a source of emotional strength in times of difficulty. Although women have been central to Sufi Islam, female-led rituals and performances (of veneration) are rarely studied as acts of empowerment and symbols of healing. This is especially true for rituals performed in informal spaces, which require going beyond the shrine practices. The rituals and meanings associated with Khizr Khwaja (or Sindhi Hindu god Jhelelal) among women in Punjab can serve as a useful case study to unpack some of these meanings. The paper aims to shed light on female-led rituals among women from Punjab associated with the folkloric traditions associated with Khizar Khwaja, Zinda Pir, Jhulelal or river god in the South Asian region to protect mariners from possible risks (since trade was primarily dependent on water channels) or for inducing timely rain date back to the 10th century in Sindh. However, these meanings and associations have evolved and the paper thus aims to establish a relationship between this figure and the women in Punjab by analysing the findings from an ethnographic study. It traces the historical meanings and significance attached to the divine figure and the wells (informal spaces) associated with him since the rituals performed by women is now infused solely with seeking fertility or to be blessed with a successful pregnancy, as opposed to him being celebrated for other reasons in older times. These associations beg the question of what women gain out of these rituals and making offerings to the mysterious figure of Khizr. Anecdotal evidence in the form of interviews conducted in Bhakar and Talwandi (Punjab) during the summer of 2015 helped to explore the stories related to this legend while also allowing us to witness some of the female-led ritual practices. It can be said that the symbols adopted in the ritual practices invoke liminality for women, which is a blend of opposites. The paper argues that this liminality/journey has been used as a vehicle to transcend all worldly structures of power and it symbolically emphasises the richness of feminine love/devotion and grants healing to female devotees.

Keywords: transgression, gender, liminality, ritual

Procedia PDF Downloads 124
1078 Preliminary Evaluation of Decommissioning Wastes for the First Commercial Nuclear Power Reactor in South Korea

Authors: Kyomin Lee, Joohee Kim, Sangho Kang

Abstract:

The commercial nuclear power reactor in South Korea, Kori Unit 1, which was a 587 MWe pressurized water reactor that started operation since 1978, was permanently shut down in June 2017 without an additional operating license extension. The Kori 1 Unit is scheduled to become the nuclear power unit to enter the decommissioning phase. In this study, the preliminary evaluation of the decommissioning wastes for the Kori Unit 1 was performed based on the following series of process: firstly, the plant inventory is investigated based on various documents (i.e., equipment/ component list, construction records, general arrangement drawings). Secondly, the radiological conditions of systems, structures and components (SSCs) are established to estimate the amount of radioactive waste by waste classification. Third, the waste management strategies for Kori Unit 1 including waste packaging are established. Forth, selection of the proper decontamination and dismantling (D&D) technologies is made considering the various factors. Finally, the amount of decommissioning waste by classification for Kori 1 is estimated using the DeCAT program, which was developed by KEPCO-E&C for a decommissioning cost estimation. The preliminary evaluation results have shown that the expected amounts of decommissioning wastes were less than about 2% and 8% of the total wastes generated (i.e., sum of clean wastes and radwastes) before/after waste processing, respectively, and it was found that the majority of contaminated material was carbon or alloy steel and stainless steel. In addition, within the range of availability of information, the results of the evaluation were compared with the results from the various decommissioning experiences data or international/national decommissioning study. The comparison results have shown that the radioactive waste amount from Kori Unit 1 decommissioning were much less than those from the plants decommissioned in U.S. and were comparable to those from the plants in Europe. This result comes from the difference of disposal cost and clearance criteria (i.e., free release level) between U.S. and non-U.S. The preliminary evaluation performed using the methodology established in this study will be useful as a important information in establishing the decommissioning planning for the decommissioning schedule and waste management strategy establishment including the transportation, packaging, handling, and disposal of radioactive wastes.

Keywords: characterization, classification, decommissioning, decontamination and dismantling, Kori 1, radioactive waste

Procedia PDF Downloads 208