Search results for: transfer learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9758

Search results for: transfer learning

8138 Aspects of Diglossia in Arabic Language Learning

Authors: Adil Ishag

Abstract:

Diglossia emerges in a situation where two distinctive varieties of a language are used alongside within a certain community. In this case, one is considered as a high or standard variety and the second one as a low or colloquial variety. Arabic is an extreme example of a highly diglossic language. This diglossity is due to the fact that Arabic is one of the most spoken languages and spread over 22 Countries in two continents as a mother tongue, and it is also widely spoken in many other Islamic countries as a second language or simply the language of Quran. The geographical variation between the countries where the language is spoken and the duality of the classical Arabic and daily spoken dialects in the Arab world on the other hand; makes the Arabic language one of the most diglossic languages. This paper tries to investigate this phenomena and its relation to learning Arabic as a first and second language.

Keywords: Arabic language, diglossia, first and second language, language learning

Procedia PDF Downloads 564
8137 Machine Learning Algorithms for Rocket Propulsion

Authors: Rômulo Eustáquio Martins de Souza, Paulo Alexandre Rodrigues de Vasconcelos Figueiredo

Abstract:

In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results.

Keywords: data analysis, modeling, machine learning, aerospace, rocket propulsion

Procedia PDF Downloads 115
8136 Empowering Learners: From Augmented Reality to Shared Leadership

Authors: Vilma Zydziunaite, Monika Kelpsiene

Abstract:

In early childhood and preschool education, play has an important role in learning and cognitive processes. In the context of a changing world, personal autonomy and the use of technology are becoming increasingly important for the development of a wide range of learner competencies. By integrating technology into learning environments, the educational reality is changed, promoting unusual learning experiences for children through play-based activities. Alongside this, teachers are challenged to develop encouragement and motivation strategies that empower children to act independently. The aim of the study was to reveal the changes in the roles and experiences of teachers in the application of AR technology for the enrichment of the learning process. A quantitative research approach was used to conduct the study. The data was collected through an electronic questionnaire. Participants: 319 teachers of 5-6-year-old children using AR technology tools in their educational process. Methods of data analysis: Cronbach alpha, descriptive statistical analysis, normal distribution analysis, correlation analysis, regression analysis (SPSS software). Results. The results of the study show a significant relationship between children's learning and the educational process modeled by the teacher. The strongest predictor of child learning was found to be related to the role of the educator. Other predictors, such as pedagogical strategies, the concept of AR technology, and areas of children's education, have no significant relationship with child learning. The role of the educator was found to be a strong determinant of the child's learning process. Conclusions. The greatest potential for integrating AR technology into the teaching-learning process is revealed in collaborative learning. Teachers identified that when integrating AR technology into the educational process, they encourage children to learn from each other, develop problem-solving skills, and create inclusive learning contexts. A significant relationship has emerged - how the changing role of the teacher relates to the child's learning style and the aspiration for personal leadership and responsibility for their learning. Teachers identified the following key roles: observer of the learning process, proactive moderator, and creator of the educational context. All these roles enable the learner to become an autonomous and active participant in the learning process. This provides a better understanding and explanation of why it becomes crucial to empower the learner to experiment, explore, discover, actively create, and foster collaborative learning in the design and implementation of the educational content, also for teachers to integrate AR technologies and the application of the principles of shared leadership. No statistically significant relationship was found between the understanding of the definition of AR technology and the teacher’s choice of role in the learning process. However, teachers reported that their understanding of the definition of AR technology influences their choice of role, which has an impact on children's learning.

Keywords: teacher, learner, augmented reality, collaboration, shared leadership, preschool education

Procedia PDF Downloads 40
8135 Investigation of Software Integration for Simulations of Buoyancy-Driven Heat Transfer in a Vehicle Underhood during Thermal Soak

Authors: R. Yuan, S. Sivasankaran, N. Dutta, K. Ebrahimi

Abstract:

This paper investigates the software capability and computer-aided engineering (CAE) method of modelling transient heat transfer process occurred in the vehicle underhood region during vehicle thermal soak phase. The heat retention from the soak period will be beneficial to the cold start with reduced friction loss for the second 14°C worldwide harmonized light-duty vehicle test procedure (WLTP) cycle, therefore provides benefits on both CO₂ emission reduction and fuel economy. When vehicle undergoes soak stage, the airflow and the associated convective heat transfer around and inside the engine bay is driven by the buoyancy effect. This effect along with thermal radiation and conduction are the key factors to the thermal simulation of the engine bay to obtain the accurate fluids and metal temperature cool-down trajectories and to predict the temperatures at the end of the soak period. Method development has been investigated in this study on a light-duty passenger vehicle using coupled aerodynamic-heat transfer thermal transient modelling method for the full vehicle under 9 hours of thermal soak. The 3D underhood flow dynamics were solved inherently transient by the Lattice-Boltzmann Method (LBM) method using the PowerFlow software. This was further coupled with heat transfer modelling using the PowerTHERM software provided by Exa Corporation. The particle-based LBM method was capable of accurately handling extremely complicated transient flow behavior on complex surface geometries. The detailed thermal modelling, including heat conduction, radiation, and buoyancy-driven heat convection, were integrated solved by PowerTHERM. The 9 hours cool-down period was simulated and compared with the vehicle testing data of the key fluid (coolant, oil) and metal temperatures. The developed CAE method was able to predict the cool-down behaviour of the key fluids and components in agreement with the experimental data and also visualised the air leakage paths and thermal retention around the engine bay. The cool-down trajectories of the key components obtained for the 9 hours thermal soak period provide vital information and a basis for the further development of reduced-order modelling studies in future work. This allows a fast-running model to be developed and be further imbedded with the holistic study of vehicle energy modelling and thermal management. It is also found that the buoyancy effect plays an important part at the first stage of the 9 hours soak and the flow development during this stage is vital to accurately predict the heat transfer coefficients for the heat retention modelling. The developed method has demonstrated the software integration for simulating buoyancy-driven heat transfer in a vehicle underhood region during thermal soak with satisfying accuracy and efficient computing time. The CAE method developed will allow integration of the design of engine encapsulations for improving fuel consumption and reducing CO₂ emissions in a timely and robust manner, aiding the development of low-carbon transport technologies.

Keywords: ATCT/WLTC driving cycle, buoyancy-driven heat transfer, CAE method, heat retention, underhood modeling, vehicle thermal soak

Procedia PDF Downloads 153
8134 Finite Volume Method for Flow Prediction Using Unstructured Meshes

Authors: Juhee Lee, Yongjun Lee

Abstract:

In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement.

Keywords: finite volume method, fluid flow, laminar flow, unstructured grid

Procedia PDF Downloads 286
8133 Concept Mapping of Teachers Regarding Conflict Management

Authors: Tahir Mehmood, Mumtaz Akhter

Abstract:

The global need for conflict management is greater now in the early 21st century than ever before. According to UNESCO, half of the world’s 195 countries will have to expand their stock of educationist significantly, some by tens of thousands, if the goal development targets are desired to achieve. Socioeconomic inequities, political instability, demographic changes and crises such as the HIV/AIDs epidemic have engendered huge shortfalls in teacher supply and low teacher quality in many developing countries. Education serves as back bone in development process. Open learning and distance education programs are serving as pivotal part of development process. It is now clear that ‘bricks and mortar’ approaches to expanding teacher education may not be adequate if the current and projected shortfalls in teacher supply and low teacher quality are to be properly addressed. The study is designed to measure the perceptions of teaching learning community about conflict management with special reference to open and distance learning. It was descriptive study which targeted teachers, students, community members and experts. Data analysis was carried out by using statistical techniques served by SPSS. Findings reflected that audience perceives open and distance learning as change agent and as development tool. It is noticed that target audience has driven prominent performance by using facility of open and distance learning.

Keywords: conflict management, open and distance learning, teachers, students

Procedia PDF Downloads 411
8132 Using Machine Learning as an Alternative for Predicting Exchange Rates

Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior

Abstract:

This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.

Keywords: exchage rate, prediction, machine learning, deep learning

Procedia PDF Downloads 31
8131 Lessons-Learned in a Post-Alliance Framework

Authors: Olubukola Olumuyiwa Tokede, Dominic D. Ahiaga-Dagbui, John Morrison

Abstract:

The project environment in construction has been widely criticised for its inability to learn from experience effectively. As each project is bespoke, learning is ephemeral, as it is often confined within its bounds and seldom assimilated with others that are being delivered in the project environment. To engender learning across construction projects, collaborative contractual arrangements, such as alliancing and partnering, have been embraced to aid the transferability of lessons across projects. These cooperative arrangements, however, tend to be costly, and hence construction organisations could revert to less expensive traditional procurement approaches after successful collaborative project delivery. This research, therefore, seeks to assess the lessons-learned in a post-alliance contractual framework. Using a case-study approach, we examine the experiences of a public sector authority who engaged a project facilitator to foster learning during the delivery of a significant piece of critical infrastructure. It was found that the facilitator enabled optimal learning outcomes in post-alliance contractual frameworks by attenuating the otherwise adversarial relationship between clients and contractors. Further research will seek to assess the effectiveness of different knowledge-brokering agencies in construction projects.

Keywords: facilitation, knowledge-brokering, learning, projects

Procedia PDF Downloads 136
8130 Numerical Investigation of Nanofluid Based Thermosyphon System

Authors: Kiran Kumar K., Ramesh Babu Bejjam, Atul Najan

Abstract:

A thermosyphon system is a heat transfer loop which operates on the basis of gravity and buoyancy forces. It guarantees a good reliability and low maintenance cost as it does not involve any mechanical pump. Therefore it can be used in many industrial applications such as refrigeration and air conditioning, electronic cooling, nuclear reactors, geothermal heat extraction, etc. But flow instabilities and loop configuration are the major problems in this system. Several previous researchers studied that stabilities can be suppressed by using nanofluids as loop fluid. In the present study a rectangular thermosyphon loop with end heat exchangers are considered for the study. This configuration is more appropriate for many practical applications such as solar water heater, geothermal heat extraction, etc. In the present work, steady-state analysis is carried out on thermosyphon loop with parallel flow coaxial heat exchangers at heat source and heat sink. In this loop nano fluid is considered as the loop fluid and water is considered as the external fluid in both hot and cold heat exchangers. For this analysis one-dimensional homogeneous model is developed. In this model, conservation equations like conservation of mass, momentum, energy are discretized using finite difference method. A computer code is written in MATLAB to simulate the flow in thermosyphon loop. A comparison in terms of heat transfer is made between water and nano fluid as working fluids in the loop.

Keywords: heat exchanger, heat transfer, nanofluid, thermosyphon loop

Procedia PDF Downloads 477
8129 E-learning resources for radiology training: Is an ideal program available?

Authors: Eric Fang, Robert Chen, Ghim Song Chia, Bien Soo Tan

Abstract:

Objective and Rationale: Training of radiology residents hinges on practical, on-the-job training in all facets and modalities of diagnostic radiology. Although residency is structured to be comprehensive, clinical exposure depends on the case mix available locally and during the posting period. To supplement clinical training, there are several e-learning resources available to allow for greater exposure to radiological cases. The objective of this study was to survey residents and faculty on the usefulness of these e-learning resources. Methods: E-learning resources were shortlisted with input from radiology residents, Google search and online discussion groups, and screened by their purported focus. Twelve e-learning resources were found to meet the criteria. Both radiology residents and experienced radiology faculty were then surveyed electronically. The e-survey asked for ratings on breadth, depth, testing capability and user-friendliness for each resource, as well as for rankings for the top 3 resources. Statistical analysis was performed using SAS 9.4. Results: Seventeen residents and fifteen faculties completed an e-survey. Mean response rate was 54% ± 8% (Range: 14- 96%). Ratings and rankings were statistically identical between residents and faculty. On a 5-point rating scale, breadth was 3.68 ± 0.18, depth was 3.95 ± 0.14, testing capability was 2.64 ± 0.16 and user-friendliness was 3.39 ± 0.13. Top-ranked resources were STATdx (first), Radiopaedia (second) and Radiology Assistant (third). 9% of responders singled out R-ITI as potentially good but ‘prohibitively costly’. Statistically significant predictive factors for higher rankings are familiarity with the resource (p = 0.001) and user-friendliness (p = 0.006). Conclusion: A good e-learning system will complement on-the-job training with a broad case base, deep discussion and quality trainee evaluation. Based on our study on twelve e-learning resources, no single program fulfilled all requirements. The perception and use of radiology e-learning resources depended more on familiarity and user-friendliness than on content differences and testing capability.

Keywords: e-learning, medicine, radiology, survey

Procedia PDF Downloads 333
8128 The Impact of Project-Based Learning under Representative Minorities Students

Authors: Shwadhin Sharma

Abstract:

As there has been increasing focus on the shorter attention span of the millennials students, there is a relative absence of instructional tools on behavioral assessments in learning information technology skills within the information systems field and textbooks. This study uses project-based learning in which students gain knowledge and skills related to information technology by working on an extended project that allows students to find a real business problem design information systems based on information collected from the company and develop an information system that solves the problem of the company. Eighty students from two sections of the same course engage in the project from the first week of the class till the sixteenth week of the class to deliver a small business information system that allows them to employ all the skills and knowledge that they learned in the class into the systems they are creating. Computer Information Systems related courses are often difficult to understand and process especially for the Under Representative Minorities students who have limited computer or information systems related (academic) experiences. Project-based learning demands constant attention of the students and forces them to apply knowledge learned in the class to a project that helps retaining knowledge. To make sure our assumption is correct, we started with a pre-test and post-test to test the students learning (of skills) based on the project. Our test showed that almost 90% of the students from the two sections scored higher in post-test as compared to pre-test. Based on this premise, we conducted a further survey that measured student’s job-search preparation, knowledge of data analysis, involved with the course, satisfaction with the course, student’s overall reaction the course and students' ability to meet the traditional learning goals related to the course.

Keywords: project-based learning, job-search preparation, satisfaction with course, traditional learning goals

Procedia PDF Downloads 206
8127 Math Rally Proposal for the Teaching-Learning of Algebra

Authors: Liliana O. Martínez, Juan E. González, Manuel Ramírez-Aranda, Ana Cervantes-Herrera

Abstract:

In this work, the use of a collection of mathematical challenges and puzzles aimed at students who are starting in algebra is proposed. The selected challenges and puzzles are intended to arouse students' interest in this area of mathematics, in addition to facilitating the teaching-learning process through challenges such as riddles, crossword puzzles, and board games, all in everyday situations that allow them to build themselves the learning. For this, it is proposed to carry out a "Math Rally: algebra" divided into four sections: mathematical reasoning, a hierarchy of operations, fractions, and algebraic equations.

Keywords: algebra, algebraic challenge, algebraic puzzle, math rally

Procedia PDF Downloads 169
8126 Machine Learning Application in Shovel Maintenance

Authors: Amir Taghizadeh Vahed, Adithya Thaduri

Abstract:

Shovels are the main components in the mining transportation system. The productivity of the mines depends on the availability of shovels due to its high capital and operating costs. The unplanned failure/shutdowns of a shovel results in higher repair costs, increase in downtime, as well as increasing indirect cost (i.e. loss of production and company’s reputation). In order to mitigate these failures, predictive maintenance can be useful approach using failure prediction. The modern mining machinery or shovels collect huge datasets automatically; it consists of reliability and maintenance data. However, the gathered datasets are useless until the information and knowledge of data are extracted. Machine learning as well as data mining, which has a major role in recent studies, has been used for the knowledge discovery process. In this study, data mining and machine learning approaches are implemented to detect not only anomalies but also patterns from a dataset and further detection of failures.

Keywords: maintenance, machine learning, shovel, conditional based monitoring

Procedia PDF Downloads 218
8125 Open Innovation Laboratory for Rapid Realization of Sensing, Smart and Sustainable Products (S3 Products) for Higher Education

Authors: J. Miranda, D. Chavarría-Barrientos, M. Ramírez-Cadena, M. E. Macías, P. Ponce, J. Noguez, R. Pérez-Rodríguez, P. K. Wright, A. Molina

Abstract:

Higher education methods need to evolve because the new generations of students are learning in different ways. One way is by adopting emergent technologies, new learning methods and promoting the maker movement. As a result, Tecnologico de Monterrey is developing Open Innovation Laboratories as an immediate response to educational challenges of the world. This paper presents an Open Innovation Laboratory for Rapid Realization of Sensing, Smart and Sustainable Products (S3 Products). The Open Innovation Laboratory is composed of a set of specific resources where students and teachers use them to provide solutions to current problems of priority sectors through the development of a new generation of products. This new generation of products considers the concepts Sensing, Smart, and Sustainable. The Open Innovation Laboratory has been implemented in different courses in the context of New Product Development (NPD) and Integrated Manufacturing Systems (IMS) at Tecnologico de Monterrey. The implementation consists of adapting this Open Innovation Laboratory within the course’s syllabus in combination with the implementation of specific methodologies for product development, learning methods (Active Learning and Blended Learning using Massive Open Online Courses MOOCs) and rapid product realization platforms. Using the concepts proposed it is possible to demonstrate that students can propose innovative and sustainable products, and demonstrate how the learning process could be improved using technological resources applied in the higher educational sector. Finally, examples of innovative S3 products developed at Tecnologico de Monterrey are presented.

Keywords: active learning, blended learning, maker movement, new product development, open innovation laboratory

Procedia PDF Downloads 395
8124 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation

Authors: Zhidong Zhang

Abstract:

This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.

Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis

Procedia PDF Downloads 178
8123 Using Personalized Spiking Neural Networks, Distinct Techniques for Self-Governing

Authors: Brwa Abdulrahman Abubaker

Abstract:

Recently, there has been a lot of interest in the difficult task of applying reinforcement learning to autonomous mobile robots. Conventional reinforcement learning (TRL) techniques have many drawbacks, such as lengthy computation times, intricate control frameworks, a great deal of trial and error searching, and sluggish convergence. In this paper, a modified Spiking Neural Network (SNN) is used to offer a distinct method for autonomous mobile robot learning and control in unexpected surroundings. As a learning algorithm, the suggested model combines dopamine modulation with spike-timing-dependent plasticity (STDP). In order to create more computationally efficient, biologically inspired control systems that are adaptable to changing settings, this work uses the effective and physiologically credible Izhikevich neuron model. This study is primarily focused on creating an algorithm for target tracking in the presence of obstacles. Results show that the SNN trained with three obstacles yielded an impressive 96% success rate for our proposal, with collisions happening in about 4% of the 214 simulated seconds.

Keywords: spiking neural network, spike-timing-dependent plasticity, dopamine modulation, reinforcement learning

Procedia PDF Downloads 21
8122 Deep Learning for Recommender System: Principles, Methods and Evaluation

Authors: Basiliyos Tilahun Betru, Charles Awono Onana, Bernabe Batchakui

Abstract:

Recommender systems have become increasingly popular in recent years, and are utilized in numerous areas. Nowadays many web services provide several information for users and recommender systems have been developed as critical element of these web applications to predict choice of preference and provide significant recommendations. With the help of the advantage of deep learning in modeling different types of data and due to the dynamic change of user preference, building a deep model can better understand users demand and further improve quality of recommendation. In this paper, deep neural network models for recommender system are evaluated. Most of deep neural network models in recommender system focus on the classical collaborative filtering user-item setting. Deep learning models demonstrated high level features of complex data can be learned instead of using metadata which can significantly improve accuracy of recommendation. Even though deep learning poses a great impact in various areas, applying the model to a recommender system have not been fully exploited and still a lot of improvements can be done both in collaborative and content-based approach while considering different contextual factors.

Keywords: big data, decision making, deep learning, recommender system

Procedia PDF Downloads 478
8121 Applying Augmented Reality Technology for an E-Learning System

Authors: Fetoon K. Algarawi, Wejdan A. Alslamah, Ahlam A. Alhabib, Afnan S. Alfehaid, Dina M. Ibrahim

Abstract:

Over the past 20 years, technology was rapidly developed and no one expected what will come next. Advancements in technology open new opportunities for immersive learning environments. There is a need to transmit education to a level that makes it more effective for the student. Augmented reality is one of the most popular technologies these days. This paper is an experience of applying Augmented Reality (AR) technology using a marker-based approach in E-learning system to transmitting virtual objects into the real-world scenes. We present a marker-based approach for transmitting virtual objects into real-world scenes to explain information in a better way after we developed a mobile phone application. The mobile phone application was then tested on students to determine the extent to which it encouraged them to learn and understand the subjects. In this paper, we talk about how the beginnings of AR, the fields using AR, how AR is effective in education, the spread of AR these days and the architecture of our work. Therefore, the aim of this paper is to prove how creating an interactive e-learning system using AR technology will encourage students to learn more.

Keywords: augmented reality, e-learning, marker-based, monitor-based

Procedia PDF Downloads 223
8120 Learning Resources as Determinants for Improving Teaching and Learning Process in Nigerian Universities

Authors: Abdulmutallib U. Baraya, Aishatu M. Chadi, Zainab A. Aliyu, Agatha Samson

Abstract:

Learning Resources is the field of study that investigates the process of analyzing, designing, developing, implementing, and evaluating learning materials, learners, and the learning process in order to improve teaching and learning in university-level education essential for empowering students and various sectors of Nigeria’s economy to succeed in a fast-changing global economy. Innovation in the information age of the 21st century is the use of educational technologies in the classroom for instructional delivery, it involves the use of appropriate educational technologies like smart boards, computers, projectors and other projected materials to facilitate learning and improve performance. The study examined learning resources as determinants for improving the teaching and learning process in Abubakar Tafawa Balewa University (ATBU), Bauchi, Bauchi state of Nigeria. Three objectives, three research questions and three null hypotheses guided the study. The study adopted a Survey research design. The population of the study was 880 lecturers. A sample of 260 was obtained using the research advisor table for determining sampling, and 250 from the sample was proportionately selected from the seven faculties. The instrument used for data collection was a structured questionnaire. The instrument was subjected to validation by two experts. The reliability of the instrument stood at 0.81, which is reliable. The researchers, assisted by six research assistants, distributed and collected the questionnaire with a 75% return rate. Data were analyzed using mean and standard deviation to answer the research questions, whereas simple linear regression was used to test the null hypotheses at a 0.05 level of significance. The findings revealed that physical facilities and digital technology tools significantly improved the teaching and learning process. Also, consumables, supplies and equipment do not significantly improve the teaching and learning process in the faculties. It was recommended that lecturers in the various faculties should strengthen and sustain the use of digital technology tools, and there is a need to strive and continue to properly maintain the available physical facilities. Also, the university management should, as a matter of priority, continue to adequately fund and upgrade equipment, consumables and supplies frequently to enhance the effectiveness of the teaching and learning process.

Keywords: education, facilities, learning-resources, technology-tools

Procedia PDF Downloads 23
8119 Impact of Social Distancing on the Correlation Between Adults’ Participation in Learning and Acceptance of Technology

Authors: Liu Yi Hui

Abstract:

The COVID-19 pandemic in 2020 has globally affected all aspects of life, with social distancing and quarantine orders causing turmoil and learning in community colleges being temporarily paused. In fact, this is the first time that adult education has faced such a severe challenge. It forces researchers to reflect on the impact of pandemics on adult education and ways to respond. Distance learning appears to be one of the pedagogical tools capable of dealing with interpersonal isolation and social distancing caused by the pandemic. This research aims to examine whether the impact of social distancing during COVID-19 will lead to increased acceptance of technology and, subsequently, an increase in adults ’ willingness to participate in distance learning. The hypothesis that social distancing and the desire to participate in distance learning affects learners’ tendency to accept technology is investigated. Teachers ’ participation in distance education and acceptance of technology are used as adjustment variables with the relationship to “social distancing,” “participation in distance learning,” and “acceptance of technology” of learners. A questionnaire survey was conducted over a period of twelve months for teachers and learners at all community colleges in Taiwan who enrolled in a basic unit course. Community colleges were separated using multi-stage cluster sampling, with their locations being metropolitan, non-urban, south, and east as criteria. Using the G*power software, 660 samples were selected and analyzed. The results show that through appropriate pedagogical strategies or teachers ’ own acceptance of technology, adult learners’ willingness to participate in distance learning could be influenced. A diverse model of participation can be developed, improving adult education institutions’ ability to plan curricula to be flexible to avoid the risk associated with epidemic diseases.

Keywords: social distancing, adult learning, community colleges, technology acceptance model

Procedia PDF Downloads 140
8118 Shifted Window Based Self-Attention via Swin Transformer for Zero-Shot Learning

Authors: Yasaswi Palagummi, Sareh Rowlands

Abstract:

Generalised Zero-Shot Learning, often known as GZSL, is an advanced variant of zero-shot learning in which the samples in the unseen category may be either seen or unseen. GZSL methods typically have a bias towards the seen classes because they learn a model to perform recognition for both the seen and unseen classes using data samples from the seen classes. This frequently leads to the misclassification of data from the unseen classes into the seen classes, making the task of GZSL more challenging. In this work of ours, to solve the GZSL problem, we propose an approach leveraging the Shifted Window based Self-Attention in the Swin Transformer (Swin-GZSL) to work in the inductive GSZL problem setting. We run experiments on three popular benchmark datasets: CUB, SUN, and AWA2, which are specifically used for ZSL and its other variants. The results show that our model based on Swin Transformer has achieved state-of-the-art harmonic mean for two datasets -AWA2 and SUN and near-state-of-the-art for the other dataset - CUB. More importantly, this technique has a linear computational complexity, which reduces training time significantly. We have also observed less bias than most of the existing GZSL models.

Keywords: generalised, zero-shot learning, inductive learning, shifted-window attention, Swin transformer, vision transformer

Procedia PDF Downloads 71
8117 Influence of Instructors in Engaging Online Graduate Students in Active Learning in the United States

Authors: Ehi E. Aimiuwu

Abstract:

As of 2017, many online learning professionals, institutions, and journals are still wondering how instructors can keep student engaged in the online learning environment to facilitate active learning effectively. The purpose of this qualitative single-case and narrative research is to explore whether online professors understand their role as mentors and facilitators of students’ academic success by keeping students engaged in active learning based on personalized experience in the field. Data collection tools that were used in the study included an NVivo 12 Plus qualitative software, an interview protocol, a digital audiotape, an observation sheet, and a transcription. Seven online professors in the United States from LinkedIn and residencies were interviewed for this study. Eleven online teaching techniques from previous research were used as the study framework. Data analysis process, member checking, and key themes were used to achieve saturation. About 85.7% of professors agreed on rubric as the preferred online grading technique. About 57.1% agreed on professors logging in daily, students logging in about 2-5 times weekly, knowing students to increase accountability, email as preferred communication tool, and computer access for adequate online learning. About 42.9% agreed on syllabus for clear class expectations, participation to show what has been learned, and energizing students for creativity.

Keywords: class facilitation, class management, online teaching, online education, pedagogy

Procedia PDF Downloads 116
8116 A Computational Study of Very High Turbulent Flow and Heat Transfer Characteristics in Circular Duct with Hemispherical Inline Baffles

Authors: Dipak Sen, Rajdeep Ghosh

Abstract:

This paper presents a computational study of steady state three dimensional very high turbulent flow and heat transfer characteristics in a constant temperature-surfaced circular duct fitted with 900 hemispherical inline baffles. The computations are based on realizable k-ɛ model with standard wall function considering the finite volume method, and the SIMPLE algorithm has been implemented. Computational Study are carried out for Reynolds number, Re ranging from 80000 to 120000, Prandtl Number, Pr of 0.73, Pitch Ratios, PR of 1,2,3,4,5 based on the hydraulic diameter of the channel, hydrodynamic entry length, thermal entry length and the test section. Ansys Fluent 15.0 software has been used to solve the flow field. Study reveals that circular pipe having baffles has a higher Nusselt number and friction factor compared to the smooth circular pipe without baffles. Maximum Nusselt number and friction factor are obtained for the PR=5 and PR=1 respectively. Nusselt number increases while pitch ratio increases in the range of study; however, friction factor also decreases up to PR 3 and after which it becomes almost constant up to PR 5. Thermal enhancement factor increases with increasing pitch ratio but with slightly decreasing Reynolds number in the range of study and becomes almost constant at higher Reynolds number. The computational results reveal that optimum thermal enhancement factor of 900 inline hemispherical baffle is about 1.23 for pitch ratio 5 at Reynolds number 120000.It also shows that the optimum pitch ratio for which the baffles can be installed in such very high turbulent flows should be 5. Results show that pitch ratio and Reynolds number play an important role on both fluid flow and heat transfer characteristics.

Keywords: friction factor, heat transfer, turbulent flow, circular duct, baffle, pitch ratio

Procedia PDF Downloads 372
8115 Adopt and Apply Research-Supported Standards and Practices to Ensure Quality for Online Education and Digital Learning at Course, Program, and Institutional Levels

Authors: Yaping Gao

Abstract:

With the increasing globalization of education and the continued momentum and wider adoption of online education and digital learning all over the world, post pandemic, it is crucial that best practices and extensive experience and knowledge gained from the higher education community over the past few decades be adopted and adapted to benefit the broader international communities, which can be vastly different culturally and pedagogically. Schools and institutions worldwide should consider to adopt, adapt and apply these proven practices to develop strategic plans for digital transformation at institutional levels, and to improve or develop quality online or digital learning environments at course and program levels to help all students succeed. The presenter will introduce the primary components of the US-based quality assurance process, including: 1) five sets of research-supported standards to guide the design, development and review of online and hybrid courses; 2) professional development offerings and pathways for administrators, faculty and instructional support staff; 3) a peer-review process for course/program reviews resulting in constructive recommendations for continuous improvement, certification of quality and international recognition; and 4) implementation of the quality assurance process on a continuum to program excellence, achievement of institutional goals, and facilitation of accreditation process and success. Regardless language, culture, pedagogical practices, or technological infrastructure, the core elements of quality teaching and learning remain the same across all delivery formats. What is unique is how to ensure quality of teaching and learning in online education and digital learning. No one knows all the answers to everything but no one needs to reinvent the wheel either. Together the international education community can support and learn from each other to achieve institutional goals and ensure all students succeed in the digital learning environments.

Keywords: online education, digital learning, quality standards, best practices, online teaching and learning

Procedia PDF Downloads 27
8114 MHD Chemically Reacting Viscous Fluid Flow towards a Vertical Surface with Slip and Convective Boundary Conditions

Authors: Ibrahim Yakubu Seini, Oluwole Daniel Makinde

Abstract:

MHD chemically reacting viscous fluid flow towards a vertical surface with slip and convective boundary conditions has been conducted. The temperature and the chemical species concentration of the surface and the velocity of the external flow are assumed to vary linearly with the distance from the vertical surface. The governing differential equations are modeled and transformed into systems of ordinary differential equations, which are then solved numerically by a shooting method. The effects of various parameters on the heat and mass transfer characteristics are discussed. Graphical results are presented for the velocity, temperature, and concentration profiles whilst the skin-friction coefficient and the rate of heat and mass transfers near the surface are presented in tables and discussed. The results revealed that increasing the strength of the magnetic field increases the skin-friction coefficient and the rate of heat and mass transfers toward the surface. The velocity profiles are increased towards the surface due to the presence of the Lorenz force, which attracts the fluid particles near the surface. The rate of chemical reaction is seen to decrease the concentration boundary layer near the surface due to the destructive chemical reaction occurring near the surface.

Keywords: boundary layer, surface slip, MHD flow, chemical reaction, heat transfer, mass transfer

Procedia PDF Downloads 539
8113 Optimizing Data Transfer and Processing in Multi-Cloud Environments for Big Data Workloads

Authors: Gaurav Kumar Sinha

Abstract:

In an era defined by the proliferation of data and the utilization of cloud computing environments, the efficient transfer and processing of big data workloads across multi-cloud platforms have emerged as critical challenges. This research paper embarks on a comprehensive exploration of the complexities associated with managing and optimizing big data in a multi-cloud ecosystem.The foundation of this study is rooted in the recognition that modern enterprises increasingly rely on multiple cloud providers to meet diverse business needs, enhance redundancy, and reduce vendor lock-in. As a consequence, managing data across these heterogeneous cloud environments has become intricate, necessitating innovative approaches to ensure data integrity, security, and performance.The primary objective of this research is to investigate strategies and techniques for enhancing the efficiency of data transfer and processing in multi-cloud scenarios. It recognizes that big data workloads are characterized by their sheer volume, variety, velocity, and complexity, making traditional data management solutions insufficient for harnessing the full potential of multi-cloud architectures.The study commences by elucidating the challenges posed by multi-cloud environments in the context of big data. These challenges encompass data fragmentation, latency, security concerns, and cost optimization. To address these challenges, the research explores a range of methodologies and solutions. One of the key areas of focus is data transfer optimization. The paper delves into techniques for minimizing data movement latency, optimizing bandwidth utilization, and ensuring secure data transmission between different cloud providers. It evaluates the applicability of dedicated data transfer protocols, intelligent data routing algorithms, and edge computing approaches in reducing transfer times.Furthermore, the study examines strategies for efficient data processing across multi-cloud environments. It acknowledges that big data processing requires distributed and parallel computing capabilities that span across cloud boundaries. The research investigates containerization and orchestration technologies, serverless computing models, and interoperability standards that facilitate seamless data processing workflows.Security and data governance are paramount concerns in multi-cloud environments. The paper explores methods for ensuring data security, access control, and compliance with regulatory frameworks. It considers encryption techniques, identity and access management, and auditing mechanisms as essential components of a robust multi-cloud data security strategy.The research also evaluates cost optimization strategies, recognizing that the dynamic nature of multi-cloud pricing models can impact the overall cost of data transfer and processing. It examines approaches for workload placement, resource allocation, and predictive cost modeling to minimize operational expenses while maximizing performance.Moreover, this study provides insights into real-world case studies and best practices adopted by organizations that have successfully navigated the challenges of multi-cloud big data management. It presents a comparative analysis of various multi-cloud management platforms and tools available in the market.

Keywords: multi-cloud environments, big data workloads, data transfer optimization, data processing strategies

Procedia PDF Downloads 67
8112 The Role of Psychology in Language Teaching

Authors: Elahesadat Emrani

Abstract:

The role of psychology in language teaching has gained significant recognition and importance in recent years. This article explores the intersection of psychology and language teaching and highlights the profound impact that psychological principles and theories have on language learning and instruction. It discusses how an understanding of learners' cognitive processes, motivations, and affective factors can inform instructional strategies, curriculum design, and assessment practices. Additionally, the article sheds light on the importance of considering individual differences and diverse learning styles within the psychological framework of language teaching. This article emphasizes the significance of incorporating psychological insights into language classrooms to create a supportive and effective learning environment. Furthermore, it acknowledges the role of psychology in fostering learner autonomy, enhancing learner motivation, promoting effective communication, and facilitating language acquisition. Overall, this article underscores the necessity of integrating psychology into language teaching practices to optimize learning outcomes and nurture learners' linguistic and socio-emotional development. So far, no complete research has been done in this regard, and this article deals with this important issue for the first time. The research method is based on qualitative method and case studies, and the role of psychological principles in strengthening the learner's independence, increasing motivation, and facilitating language learning. Also, the optimization of learning results and fostering language and social development are among the findings of the research.

Keywords: language, teaching, psychology, methods

Procedia PDF Downloads 67
8111 Democratisation of Teaching and Learning in Higher Education

Authors: Jane Ebele Iloanya

Abstract:

The introduction of the learning outcome approach in contemporary curriculum design and instruction, has brought student–centered education to the fore. In teacher –centered teaching and learning, the teacher transfers knowledge to the students, who are always at the receiving end. The teacher is assumed to know it all and hardly trusts the knowledge of the students. Teacher-centered education places emphasis on the supremacy of the teacher over the students who should ideally, be able to dialogue with the teacher. The paper seeks to examine the issue of democratisation of the teaching and learning process in Institutions of Higher Learning in Botswana. Botswana is a landlocked country in Southern Africa, with a total population of about two million people. In 1977, Botswana’s First National Policy on Education was unveiled. This came eleven years after the country gained independence from Great Britain. The philosophy which informed the 1977 Education Policy was “Social Harmony”. The philosophy of social harmony has four main principles: Unity, Development, Democracy and Self- Reliance. These principles were meant to permeate all aspects of lives of the people of Botswana, including, the issue of how teaching and learning is conducted in Botswana’s institutions of higher learning. This paper will examine the practicalisation of the principle of democracy in teaching and learning at higher education level in Botswana. It will in particular, discuss the issue of students’ participation and engagement in the teaching and learning process. The following questions will be addressed: 1.Are students involved in planning the curriculum? 2.How engaged are the students in the teaching and learning process? 3.How democratic are the teachers in terms of students’ rights and privileges? A mixed–method approach will be adopted in this study. Questionnaires will be distributed to the students to elicit their views on the practicalisation of the principle of democracy at the higher education level. Semi-structured interview questions will be administered in order to collect information from the lecturers on the issue of democratisation of teaching and learning at the higher education level in Botswana. In addition, relevant and related literature will be reviewed to augment collected data. The study will focus on three tertiary institutions in Gaborone, the capital city of Botswana. Currently, there are ten tertiary institutions in Gaborone; both privately and government owned. The outcome of this study will add to the existing body of knowledge on the issue of the practicalisation of democracy at the higher education level in Botswana. This research is therefore relevant in helping to find out if democratisation of teaching and learning has been realised in Botswana’s Institutions of higher learning. It is important to examine Botswana’s national policy on education in this way to ascertain if it has been effective in giving the country’s education system that democratic element, which is essential for a student-centered approach to the teaching and learning process.

Keywords: democratisation, higher education, learning, teaching

Procedia PDF Downloads 306
8110 Modelling and Investigation of Phase Change Phenomena of Multiple Water Droplets

Authors: K. R. Sultana, K. Pope, Y. S. Muzychka

Abstract:

In recent years, the research of heat transfer or phase change phenomena of liquid water droplets experiences a growing interest in aircraft icing, power transmission line icing, marine icing and wind turbine icing applications. This growing interest speeding up the research from single to multiple droplet phenomena. Impingements of multiple droplets and the resulting solidification phenomena after impact on a very cold surface is computationally studied in this paper. The model used in the current study solves the flow equation, composed of energy balance and the volume fraction equations. The main aim of the study is to investigate the effects of several thermo-physical properties (density, thermal conductivity and specific heat) on droplets freezing. The outcome is examined by various important factors, for instance, liquid fraction, total freezing time, droplet temperature and total heat transfer rate in the interface region. The liquid fraction helps to understand the complete phase change phenomena during solidification. Temperature distribution and heat transfer rate help to demonstrate the overall thermal exchange behaviors between the droplets and substrate surface. Findings of this research provide an important technical achievement for ice modeling and prediction studies.

Keywords: droplets, CFD, thermos-physical properties, solidification

Procedia PDF Downloads 243
8109 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals

Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor

Abstract:

This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.

Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers

Procedia PDF Downloads 75