Search results for: testability modeling
2343 Assessment of High Frequency Solidly Mounted Resonator as Viscosity Sensor
Authors: Vinita Choudhary
Abstract:
Solidly Acoustic Resonators (SMR) based on ZnO piezoelectric material operating at a frequency of 3.96 GHz and 6.49% coupling factor are used to characterize liquids with different viscosities. This behavior of the sensor is analyzed using Finite Element Modeling. Device architectures encapsulate bulk acoustic wave resonators with MO/SiO₂ Bragg mirror reflector and the silicon substrate. The proposed SMR is based on the mass loading effect response of the sensor to the change in the resonant frequency of the resonator that is caused by the increased density due to the absorption of liquids (water, acetone, olive oil) used in theoretical calculation. The sensitivity of sensors ranges from 0.238 MHz/mPa.s to 83.33 MHz/mPa.s, supported by the Kanazawa model. Obtained results are also compared with previous works on BAW viscosity sensors.Keywords: solidly mounted resonator, bragg mirror, kanazawa model, finite element model
Procedia PDF Downloads 832342 The Effect of Non-Normality on CB-SEM and PLS-SEM Path Estimates
Authors: Z. Jannoo, B. W. Yap, N. Auchoybur, M. A. Lazim
Abstract:
The two common approaches to Structural Equation Modeling (SEM) are the Covariance-Based SEM (CB-SEM) and Partial Least Squares SEM (PLS-SEM). There is much debate on the performance of CB-SEM and PLS-SEM for small sample size and when distributions are non-normal. This study evaluates the performance of CB-SEM and PLS-SEM under normality and non-normality conditions via a simulation. Monte Carlo Simulation in R programming language was employed to generate data based on the theoretical model with one endogenous and four exogenous variables. Each latent variable has three indicators. For normal distributions, CB-SEM estimates were found to be inaccurate for small sample size while PLS-SEM could produce the path estimates. Meanwhile, for a larger sample size, CB-SEM estimates have lower variability compared to PLS-SEM. Under non-normality, CB-SEM path estimates were inaccurate for small sample size. However, CB-SEM estimates are more accurate than those of PLS-SEM for sample size of 50 and above. The PLS-SEM estimates are not accurate unless sample size is very large.Keywords: CB-SEM, Monte Carlo simulation, normality conditions, non-normality, PLS-SEM
Procedia PDF Downloads 4142341 Structural Performance Evaluation of Power Boiler for the Pressure Release Valve in Consideration of the Thermal Expansion
Authors: Young-Hun Lee, Tae-Gwan Kim, Jong-Kyu Kim, Young-Chul Park
Abstract:
In this study, Spring safety valve Heat - structure coupled analysis was carried out. Full analysis procedure and performing thermal analysis at a maximum temperature, them to the results obtained through to give an additional load and the pressure on the valve interior, and Disc holder Heat-Coupled structure Analysis was carried out. Modeled using a 3D design program Solidworks, For the modeling of the safety valve was used 3D finite element analysis program ANSYS. The final result to be obtained through the Analysis examined the stability of the maximum displacement and the maximum stress to the valve internal components occurring in the high-pressure conditions.Keywords: finite element method, spring safety valve, gap, stress, strain, deformation
Procedia PDF Downloads 3732340 3D Dynamic Modeling of Transition Zones
Authors: Edina Koch, Péter Hudacsek
Abstract:
In railways transition zone is present at the boundaries of zones with different stiffness. When a train rides from an embankment onto a stiff structure, such as a bridge, tunnel or culvert, an abrupt change in the support stiffness occurs possibly inducing differential settlements. This in long term can yield to the degradation of the tracks and foundations in the transition zones. A number of techniques have been proposed or implemented to provide gradual stiffness transition at the problem zones, such as methods to ensure gradually changing pad stiffness, application of long sleepers or installation of auxiliary rails in the transition zone. Aim of the research presented in this paper is to analyze the 3D and the dynamic effects induced by the passing train over an area where significant difference in the support stiffness exists. The effects were analyzed for different arrangements associated with certain differential settlement mitigation strategies of the transition zones.Keywords: culvert, dynamic load, HS small model, railway transition zone
Procedia PDF Downloads 2932339 Effect of Surface Quality of 3D Printed Impeller on the Performance of a Centrifugal Compressor
Authors: Nader Zirak, Mohammadali Shirinbayan, Abbas Tcharkhtchi
Abstract:
Additive manufacturing is referred to as a method for fabrication of parts with a mechanism of layer by layer. Suitable economic efficiency and the ability to fabrication complex parts have made this method the focus of studies and industry. In recent years many studies focused on the fabrication of impellers, which is referred to as a key component of turbomachinery, through this technique. This study considers the important effect of the final surface quality of the impeller on the performance of the system, investigates the fabricated printed rotors through the fused deposition modeling with different process parameters. In this regard, the surface of each impeller was analyzed through the 3D scanner. The results show the vital role of surface quality on the final performance of the centrifugal compressor.Keywords: additive manufacturing, impeller, centrifugal compressor, performance
Procedia PDF Downloads 1482338 The Influence of Noise on Aerial Image Semantic Segmentation
Authors: Pengchao Wei, Xiangzhong Fang
Abstract:
Noise is ubiquitous in this world. Denoising is an essential technology, especially in image semantic segmentation, where noises are generally categorized into two main types i.e. feature noise and label noise. The main focus of this paper is aiming at modeling label noise, investigating the behaviors of different types of label noise on image semantic segmentation tasks using K-Nearest-Neighbor and Convolutional Neural Network classifier. The performance without label noise and with is evaluated and illustrated in this paper. In addition to that, the influence of feature noise on the image semantic segmentation task is researched as well and a feature noise reduction method is applied to mitigate its influence in the learning procedure.Keywords: convolutional neural network, denoising, feature noise, image semantic segmentation, k-nearest-neighbor, label noise
Procedia PDF Downloads 2222337 Analysis and Design of Simultaneous Dual Band Harvesting System with Enhanced Efficiency
Authors: Zina Saheb, Ezz El-Masry, Jean-François Bousquet
Abstract:
This paper presents an enhanced efficiency simultaneous dual band energy harvesting system for wireless body area network. A bulk biasing is used to enhance the efficiency of the adapted rectifier design to reduce Vth of MOSFET. The presented circuit harvests the radio frequency (RF) energy from two frequency bands: 1 GHz and 2.4 GHz. It is designed with TSMC 65-nm CMOS technology and high quality factor dual matching network to boost the input voltage. Full circuit analysis and modeling is demonstrated. The simulation results demonstrate a harvester with an efficiency of 23% at 1 GHz and 46% at 2.4 GHz at an input power as low as -30 dBm.Keywords: energy harvester, simultaneous, dual band, CMOS, differential rectifier, voltage boosting, TSMC 65nm
Procedia PDF Downloads 4062336 Simulation Model of Induction Heating in COMSOL Multiphysics
Authors: K. Djellabi, M. E. H. Latreche
Abstract:
The induction heating phenomenon depends on various factors, making the problem highly nonlinear. The mathematical analysis of this problem in most cases is very difficult and it is reduced to simple cases. Another knowledge of induction heating systems is generated in production environments, but these trial-error procedures are long and expensive. The numerical models of induction heating problem are another approach to reduce abovementioned drawbacks. This paper deals with the simulation model of induction heating problem. The simulation model of induction heating system in COMSOL Multiphysics is created. In this work we present results of numerical simulations of induction heating process in pieces of cylindrical shapes, in an inductor with four coils. The modeling of the inducting heating process was made with the software COMSOL Multiphysics Version 4.2a, for the study we present the temperature charts.Keywords: induction heating, electromagnetic field, inductor, numerical simulation, finite element
Procedia PDF Downloads 3172335 Dynamic Fault Tree Analysis of Dynamic Positioning System through Monte Carlo Approach
Authors: A. S. Cheliyan, S. K. Bhattacharyya
Abstract:
Dynamic Positioning System (DPS) is employed in marine vessels of the offshore oil and gas industry. It is a computer controlled system to automatically maintain a ship’s position and heading by using its own thrusters. Reliability assessment of the same can be analyzed through conventional fault tree. However, the complex behaviour like sequence failure, redundancy management and priority of failing of events cannot be analyzed by the conventional fault trees. The Dynamic Fault Tree (DFT) addresses these shortcomings of conventional Fault Tree by defining additional gates called dynamic gates. Monte Carlo based simulation approach has been adopted for the dynamic gates. This method of realistic modeling of DPS gives meaningful insight into the system reliability and the ability to improve the same.Keywords: dynamic positioning system, dynamic fault tree, Monte Carlo simulation, reliability assessment
Procedia PDF Downloads 7772334 Establishing Multi-Leveled Computability as a Living-System Evolutionary Context
Authors: Ron Cottam, Nils Langloh, Willy Ranson, Roger Vounckx
Abstract:
We start by formally describing the requirements for environmental-reaction survival computation in a natural temporally-demanding medium, and develop this into a more general model of the evolutionary context as a computational machine. The effect of this development is to replace deterministic logic by a modified form which exhibits a continuous range of dimensional fractal diffuseness between the isolation of perfectly ordered localization and the extended communication associated with nonlocality as represented by pure causal chaos. We investigate the appearance of life and consciousness in the derived general model, and propose a representation of Nature within which all localizations have the character of quasi-quantal entities. We compare our conclusions with Heisenberg’s uncertainty principle and nonlocal teleportation, and maintain that computability is the principal influence on evolution in the model we propose.Keywords: computability, evolution, life, localization, modeling, nonlocality
Procedia PDF Downloads 3992333 Mathematical Modeling and Optimization of Burnishing Parameters for 15NiCr6 Steel
Authors: Tarek Litim, Ouahiba Taamallah
Abstract:
The present paper is an investigation of the effect of burnishing on the surface integrity of a component made of 15NiCr6 steel. This work shows a statistical study based on regression, and Taguchi's design has allowed the development of mathematical models to predict the output responses as a function of the technological parameters studied. The response surface methodology (RSM) showed a simultaneous influence of the burnishing parameters and observe the optimal processing parameters. ANOVA analysis of the results resulted in the validation of the prediction model with a determination coefficient R=90.60% and 92.41% for roughness and hardness, respectively. Furthermore, a multi-objective optimization allowed to identify a regime characterized by P=10kgf, i=3passes, and f=0.074mm/rev, which favours minimum roughness and maximum hardness. The result was validated by the desirability of D= (0.99 and 0.95) for roughness and hardness, respectively.Keywords: 15NiCr6 steel, burnishing, surface integrity, Taguchi, RSM, ANOVA
Procedia PDF Downloads 1952332 Forecasting Issues in Energy Markets within a Reg-ARIMA Framework
Authors: Ilaria Lucrezia Amerise
Abstract:
Electricity markets throughout the world have undergone substantial changes. Accurate, reliable, clear and comprehensible modeling and forecasting of different variables (loads and prices in the first instance) have achieved increasing importance. In this paper, we describe the actual state of the art focusing on reg-SARMA methods, which have proven to be flexible enough to accommodate the electricity price/load behavior satisfactory. More specifically, we will discuss: 1) The dichotomy between point and interval forecasts; 2) The difficult choice between stochastic (e.g. climatic variation) and non-deterministic predictors (e.g. calendar variables); 3) The confrontation between modelling a single aggregate time series or creating separated and potentially different models of sub-series. The noteworthy point that we would like to make it emerge is that prices and loads require different approaches that appear irreconcilable even though must be made reconcilable for the interests and activities of energy companies.Keywords: interval forecasts, time series, electricity prices, reg-SARIMA methods
Procedia PDF Downloads 1332331 Predictive Modeling of Flank Wear in Hard Turning Using the Taguchi Method
Authors: Suha K. Shihab, Zahid A. Khan, Aas Mohammad, Arshad Noor Siddiquee
Abstract:
This paper presents the influence of cutting parameters (cutting speed, feed and depth of cut) on flank wear (VB) in turning of 52100 hard alloy steel using multilayer coated carbide insert under dry condition. Nine experiments were performed based on Taguchi’s L9 orthogonal array. Analysis of variance (ANOVA) was used to determine the effects of the cutting parameters on flank wear. The results of the study revealed that the cutting speed (A) and feed rate (B) are the dominant factors affecting flank wear, while the depth of cut (C) has not a significant effect. The optimal combination of the cutting parameters for flank wear is found to be A1B1C1. The mathematical model for flank wear is found to be statistically significant. The predicted and measured values of flank wear are found to be very close to each other.Keywords: flank wear, hard turning, Taguchi approach, optimization
Procedia PDF Downloads 6652330 SMRF Seismic Response: Unequal Beam Depths
Authors: Babak H. Mamaqani, Alimohammad Entezarmahdi
Abstract:
There are many researches on parameters affecting seismic behavior of steel moment frames. Great deal of these researches considers cover plate connections with or without haunch and direct beam to column connection for exterior columns. Also there are experimental results for interior connections with equal beam depth on both sides but not much research has been performed on the seismic behavior of joints with unequal beam depth. Based on previous experimental results, a series of companion analyses have been set up considering different beam height and connection detailing configuration to investigate the seismic behavior of the connections. Results of this study indicate that when the differences between beams height on both side increases, use of haunch connection system leads to significant improvement in the seismic response whereas other configurations did not provide satisfying results.Keywords: analytical modeling, Haunch connection, seismic design, unequal beam depth
Procedia PDF Downloads 4202329 Secure Optical Communication System Using Quantum Cryptography
Authors: Ehab AbdulRazzaq Hussein
Abstract:
Quantum cryptography (QC) is an emerging technology for secure key distribution with single-photon transmissions. In contrast to classical cryptographic schemes, the security of QC schemes is guaranteed by the fundamental laws of nature. Their security stems from the impossibility to distinguish non-orthogonal quantum states with certainty. A potential eavesdropper introduces errors in the transmissions, which can later be discovered by the legitimate participants of the communication. In this paper, the modeling approach is proposed for QC protocol BB84 using polarization coding. The single-photon system is assumed to be used in the designed models. Thus, Eve cannot use beam-splitting strategy to eavesdrop on the quantum channel transmission. The only eavesdropping strategy possible to Eve is the intercept/resend strategy. After quantum transmission of the QC protocol, the quantum bit error rate (QBER) is estimated and compared with a threshold value. If it is above this value the procedure must be stopped and performed later again.Keywords: security, key distribution, cryptography, quantum protocols, Quantum Cryptography (QC), Quantum Key Distribution (QKD).
Procedia PDF Downloads 4092328 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes
Authors: Frank Kuebler, Rolf Steinhilper
Abstract:
Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.Keywords: artificial neural network, design of experiments, regression analysis, resource efficiency, manufacturing process
Procedia PDF Downloads 5262327 Agent-Base Modeling of IoT Applications by Using Software Product Line
Authors: Asad Abbas, Muhammad Fezan Afzal, Muhammad Latif Anjum, Muhammad Azmat
Abstract:
The Internet of Things (IoT) is used to link up real objects that use the internet to interact. IoT applications allow handling and operating the equipment in accordance with environmental needs, such as transportation and healthcare. IoT devices are linked together via a number of agents that act as a middleman for communications. The operation of a heat sensor differs indoors and outside because agent applications work with environmental variables. In this article, we suggest using Software Product Line (SPL) to model IoT agents and applications' features on an XML-based basis. The contextual diversity within the same domain of application can be handled, and the reusability of features is increased by XML-based feature modelling. For the purpose of managing contextual variability, we have embraced XML for modelling IoT applications, agents, and internet-connected devices.Keywords: IoT agents, IoT applications, software product line, feature model, XML
Procedia PDF Downloads 982326 Influence of Bragg Reflectors Pairs on Resonance Characteristics of Solidly Mounted Resonators
Authors: Vinita Choudhary
Abstract:
The solidly mounted resonator (SMR) is a bulk acoustic wave-based device consisting of a piezoelectric layer sandwiched between two electrodes upon Bragg reflectors, which then are attached to a substrate. To transform the effective acoustic impedance of the substrate to a near zero value, the Bragg reflectors are composed of alternating high and low acoustic impedance layers of quarter-wavelength thickness. In this work presents the design and investigation of acoustic Bragg reflectors (ABRs) for solidly mounted bulk acoustic wave resonators through analysis and simulation. This performance of the resonator is analyzed using 1D Mason modeling. The performance parameters are the effect of Bragg pairs number on transmissivity, reflectivity, insertion loss, the electromechanical and quality factor of the 5GHz operating resonator.Keywords: bragg reflectors, SMR, insertion loss, quality factor
Procedia PDF Downloads 1002325 Investigating the Effect of Groundwater Level on Nailing Arrangement in Excavation Stability
Authors: G. Khamooshian, A. Abbasimoshaei
Abstract:
Different methods are used to stabilize the sticks, among which the method of knitting is commonly used. In recent years, the use of nailing for the stability of excavation has been considered much, which is providing sufficient stability and controlling the structural defects of the guardian, also reduces the cost of the operation. In addition, this method is more prominent in deep excavations than other methods. The purpose of this paper is to investigate the effect of groundwater level and soil type on the length and designing of nails. In this paper, analysis and modeling for vertical arena with constant depth and different levels of groundwater have been done. Also, by changing the soil resistance parameters and design of the nails, an optimum arrangement was made and the effect of changes in groundwater level and soil's type on the design of the nails, the maximum axial force mobilized in the nails and the confidence coefficient for the stability of the groove was examined.Keywords: excavation, soil effects, nailing, hole analyzing
Procedia PDF Downloads 1862324 Some Discrepancies between Experimentally-Based Theory of Toxic Metals Combined Action and Actual Approaches to Occupational and Environmental Health Risk Assessment and Management
Authors: Ilzira A. Minigalieva
Abstract:
Assessment of cumulative health risks associated with the widely observed combined exposures to two or more metals and their compounds on the organism in industrial or general environment, as well as respective regulatory and technical risk management decision-making have presumably the theoretical and experimental toxicology of mixtures as their reliable scientific basis. Analysis of relevant literature and our own experience proves, however, that there is no full match between these different practices. Moreover, some of the contradictions between them are of a fundamental nature. This unsatisfactory state of things may be explained not only by unavoidable simplifications characteristic of the methodologies of risk assessment and permissible exposure standards setting but also by the extreme intrinsic complexity of the combined toxicity theory, the most essential issues of which are considered and briefly discussed in this paper.Keywords: toxic metals, nanoparticles, typology of combined toxicity, mathematical modeling, health risk assessment and management
Procedia PDF Downloads 3262323 Micromechanical Modeling of Fiber-Matrix Debonding in Unidirectional Composites
Authors: M. Palizvan, M. T. Abadi, M. H. Sadr
Abstract:
Due to variations in damage mechanisms in the microscale, the behavior of fiber-reinforced composites is nonlinear and difficult to model. To make use of computational advantages, homogenization method is applied to the micro-scale model in order to minimize the cost at the expense of detail of local microscale phenomena. In this paper, the effective stiffness is calculated using the homogenization of nonlinear behavior of a composite representative volume element (RVE) containing fiber-matrix debonding. The damage modes for the RVE are considered by using cohesive elements and contacts for the cohesive behavior of the interface between fiber and matrix. To predict more realistic responses of composite materials, different random distributions of fibers are proposed besides square and hexagonal arrays. It was shown that in some cases, there is quite different damage behavior in different fiber distributions. A comprehensive comparison has been made between different graphs.Keywords: homogenization, cohesive zone model, fiber-matrix debonding, RVE
Procedia PDF Downloads 1682322 Using Discrete Event Simulation Approach to Reduce Waiting Times in Computed Tomography Radiology Department
Authors: Mwafak Shakoor
Abstract:
The purpose of this study was to reduce patient waiting times, improve system throughput and improve resources utilization in radiology department. A discrete event simulation model was developed using Arena simulation software to investigate different alternatives to improve the overall system delivery based on adding resource scenarios due to the linkage between patient waiting times and resource availability. The study revealed that there is no addition investment need to procure additional scanner but hospital management deploy managerial tactics to enhance machine utilization and reduce the long waiting time in the department.Keywords: discrete event simulation, radiology department, arena, waiting time, healthcare modeling, computed tomography
Procedia PDF Downloads 5932321 Statistical Comparison of Ensemble Based Storm Surge Forecasting Models
Authors: Amin Salighehdar, Ziwen Ye, Mingzhe Liu, Ionut Florescu, Alan F. Blumberg
Abstract:
Storm surge is an abnormal water level caused by a storm. Accurate prediction of a storm surge is a challenging problem. Researchers developed various ensemble modeling techniques to combine several individual forecasts to produce an overall presumably better forecast. There exist some simple ensemble modeling techniques in literature. For instance, Model Output Statistics (MOS), and running mean-bias removal are widely used techniques in storm surge prediction domain. However, these methods have some drawbacks. For instance, MOS is based on multiple linear regression and it needs a long period of training data. To overcome the shortcomings of these simple methods, researchers propose some advanced methods. For instance, ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast. This application creates a better forecast of sea level using a combination of several instances of the Bayesian Model Averaging (BMA). An ensemble dressing method is based on identifying best member forecast and using it for prediction. Our contribution in this paper can be summarized as follows. First, we investigate whether the ensemble models perform better than any single forecast. Therefore, we need to identify the single best forecast. We present a methodology based on a simple Bayesian selection method to select the best single forecast. Second, we present several new and simple ways to construct ensemble models. We use correlation and standard deviation as weights in combining different forecast models. Third, we use these ensembles and compare with several existing models in literature to forecast storm surge level. We then investigate whether developing a complex ensemble model is indeed needed. To achieve this goal, we use a simple average (one of the simplest and widely used ensemble model) as benchmark. Predicting the peak level of Surge during a storm as well as the precise time at which this peak level takes place is crucial, thus we develop a statistical platform to compare the performance of various ensemble methods. This statistical analysis is based on root mean square error of the ensemble forecast during the testing period and on the magnitude and timing of the forecasted peak surge compared to the actual time and peak. In this work, we analyze four hurricanes: hurricanes Irene and Lee in 2011, hurricane Sandy in 2012, and hurricane Joaquin in 2015. Since hurricane Irene developed at the end of August 2011 and hurricane Lee started just after Irene at the beginning of September 2011, in this study we consider them as a single contiguous hurricane event. The data set used for this study is generated by the New York Harbor Observing and Prediction System (NYHOPS). We find that even the simplest possible way of creating an ensemble produces results superior to any single forecast. We also show that the ensemble models we propose generally have better performance compared to the simple average ensemble technique.Keywords: Bayesian learning, ensemble model, statistical analysis, storm surge prediction
Procedia PDF Downloads 3092320 Behaviour of Reinforced Concrete Infilled Frames under Seismic Loads
Authors: W. Badla
Abstract:
A significant portion of the buildings constructed in Algeria is structural frames with infill panels which are usually considered as non structural components and are neglected in the analysis. However, these masonry panels tend to influence the structural response. Thus, these structures can be regarded as seismic risk buildings, although in the Algerian seismic code there is little guidance on the seismic evaluation of infilled frame buildings. In this study, three RC frames with 2, 4, and 8 story and subjected to three recorded Algerian accelerograms are studied. The diagonal strut approach is adopted for modeling the infill panels and a fiber model is used to model RC members. This paper reports on the seismic evaluation of RC frames with brick infill panels. The results obtained show that the masonry panels enhance the load lateral capacity of the buildings and the infill panel configuration influences the response of the structures.Keywords: seismic design, RC frames, infill panels, non linear dynamic analysis
Procedia PDF Downloads 5472319 A Meso Macro Model Prediction of Laminated Composite Damage Elastic Behaviour
Authors: A. Hocine, A. Ghouaoula, S. M. Medjdoub, M. Cherifi
Abstract:
The present paper proposed a meso–macro model describing the mechanical behaviour composite laminates of staking sequence [+θ/-θ]s under tensil loading. The behaviour of a layer is ex-pressed through elasticity coupled to damage. The elastic strain is due to the elasticity of the layer and can be modeled by using the classical laminate theory, and the laminate is considered as an orthotropic material. This means that no coupling effect between strain and curvature is considered. In the present work, the damage is associated to cracking of the matrix and parallel to the fibers and it being taken into account by the changes in the stiffness of the layers. The anisotropic damage is completely described by a single scalar variable and its evolution law is specified from the principle of maximum dissipation. The stress/strain relationship is investigated in plane stress loading.Keywords: damage, behavior modeling, meso-macro model, composite laminate, membrane loading
Procedia PDF Downloads 4782318 Aliasing Free and Additive Error in Spectra for Alpha Stable Signals
Authors: R. Sabre
Abstract:
This work focuses on the symmetric alpha stable process with continuous time frequently used in modeling the signal with indefinitely growing variance, often observed with an unknown additive error. The objective of this paper is to estimate this error from discrete observations of the signal. For that, we propose a method based on the smoothing of the observations via Jackson polynomial kernel and taking into account the width of the interval where the spectral density is non-zero. This technique allows avoiding the “Aliasing phenomenon” encountered when the estimation is made from the discrete observations of a process with continuous time. We have studied the convergence rate of the estimator and have shown that the convergence rate improves in the case where the spectral density is zero at the origin. Thus, we set up an estimator of the additive error that can be subtracted for approaching the original signal without error.Keywords: spectral density, stable processes, aliasing, non parametric
Procedia PDF Downloads 1312317 A Comparative Study of Approaches in User-Centred Health Information Retrieval
Authors: Harsh Thakkar, Ganesh Iyer
Abstract:
In this paper, we survey various user-centered or context-based biomedical health information retrieval systems. We present and discuss the performance of systems submitted in CLEF eHealth 2014 Task 3 for this purpose. We classify and focus on comparing the two most prevalent retrieval models in biomedical information retrieval namely: Language Model (LM) and Vector Space Model (VSM). We also report on the effectiveness of using external medical resources and ontologies like MeSH, Metamap, UMLS, etc. We observed that the LM based retrieval systems outperform VSM based systems on various fronts. From the results we conclude that the state-of-art system scores for MAP was 0.4146, P@10 was 0.7560 and NDCG@10 was 0.7445, respectively. All of these score were reported by systems built on language modeling approaches.Keywords: clinical document retrieval, concept-based information retrieval, query expansion, language models, vector space models
Procedia PDF Downloads 3222316 Selecting the Best Software Product Using Analytic Hierarchy Process and Fuzzy-Analytic Hierarchy Process Modules
Authors: Anas Hourani, Batool Ahmad
Abstract:
Software applications play an important role inside any institute. They are employed to manage all processes and store entities-related data in the computer. Therefore, choosing the right software product that meets institute requirements is not an easy decision in view of considering multiple criteria, different points of views, and many standards. As a case study, Mutah University, located in Jordan, is in essential need of customized software, and several companies presented their software products which are very similar in quality. In this regard, an analytic hierarchy process (AHP) and a fuzzy analytic hierarchy process (Fuzzy-AHP) models are proposed in this research to identify the most suitable and best-fit software product that meets the institute requirements. The results indicate that both modules are able to help the decision-makers to make a decision, especially in complex decision problems.Keywords: analytic hierarchy process, decision modeling, fuzzy analytic hierarchy process, software product
Procedia PDF Downloads 3942315 Cryptocurrencies: Business Students’ Awareness and Universities’ Adoption Readiness and Compatibility of Use Considering the Mediation of Attitudes
Authors: Eric S. Parilla, Marc Edward Abadilla
Abstract:
The study aims to determine the effect of awareness of business students towards cryptocurrencies and the readiness of universities and colleges to accept cryptocurrencies as a medium of exchange, considering the mediation of business students’ attitudes. The research used partial least squares structural equation modeling (PLS-SEM) and deployed a questionnaire attuned to the awareness and attitudes of business students towards cryptocurrencies and readiness and compatibility of use in universities and colleges in Ilocos Norte. The output of the investigation revealed that awareness of business students is not correlated to the readiness of universities and colleges, which means that even though students understand cryptocurrencies, it is not an assurance that universities and colleges are ready to accept them as the medium of exchange. The study proposes that training and seminars for business students and professionals should be conducted to expand understanding and acceptance of cryptocurrencies.Keywords: cryptocurrencies, awareness, readiness, attitudes
Procedia PDF Downloads 2282314 Simulation for the Magnetized Plasma Compression Study
Authors: Victor V. Kuzenov, Sergei V. Ryzhkov
Abstract:
Ongoing experimental and theoretical studies on magneto-inertial confinement fusion (Angara, C-2, CJS-100, General Fusion, MagLIF, MAGPIE, MC-1, YG-1, Omega) and new constructing facilities (Baikal, C-2W, Z300 and Z800) require adequate modeling and description of the physical processes occurring in high-temperature dense plasma in a strong magnetic field. This paper presents a mathematical model, numerical method, and results of the computer analysis of the compression process and the energy transfer in the target plasma, used in magneto-inertial fusion (MIF). The computer simulation of the compression process of the magnetized target by the high-power laser pulse and the high-speed plasma jets is presented. The characteristic patterns of the two methods of the target compression are being analysed.Keywords: magnetized target, magneto-inertial fusion, mathematical model, plasma and laser beams
Procedia PDF Downloads 298