Search results for: research domain criteria (rdoc)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27827

Search results for: research domain criteria (rdoc)

26207 Wideband Performance Analysis of C-FDTD Based Algorithms in the Discretization Impoverishment of a Curved Surface

Authors: Lucas L. L. Fortes, Sandro T. M. Gonçalves

Abstract:

In this work, it is analyzed the wideband performance with the mesh discretization impoverishment of the Conformal Finite Difference Time-Domain (C-FDTD) approaches developed by Raj Mittra, Supriyo Dey and Wenhua Yu for the Finite Difference Time-Domain (FDTD) method. These approaches are a simple and efficient way to optimize the scattering simulation of curved surfaces for Dielectric and Perfect Electric Conducting (PEC) structures in the FDTD method, since curved surfaces require dense meshes to reduce the error introduced due to the surface staircasing. Defined, on this work, as D-FDTD-Diel and D-FDTD-PEC, these approaches are well-known in the literature, but the improvement upon their application is not quantified broadly regarding wide frequency bands and poorly discretized meshes. Both approaches bring improvement of the accuracy of the simulation without requiring dense meshes, also making it possible to explore poorly discretized meshes which bring a reduction in simulation time and the computational expense while retaining a desired accuracy. However, their applications present limitations regarding the mesh impoverishment and the frequency range desired. Therefore, the goal of this work is to explore the approaches regarding both the wideband and mesh impoverishment performance to bring a wider insight over these aspects in FDTD applications. The D-FDTD-Diel approach consists in modifying the electric field update in the cells intersected by the dielectric surface, taking into account the amount of dielectric material within the mesh cells edges. By taking into account the intersections, the D-FDTD-Diel provides accuracy improvement at the cost of computational preprocessing, which is a fair trade-off, since the update modification is quite simple. Likewise, the D-FDTD-PEC approach consists in modifying the magnetic field update, taking into account the PEC curved surface intersections within the mesh cells and, considering a PEC structure in vacuum, the air portion that fills the intersected cells when updating the magnetic fields values. Also likewise to D-FDTD-Diel, the D-FDTD-PEC provides a better accuracy at the cost of computational preprocessing, although with a drawback of having to meet stability criterion requirements. The algorithms are formulated and applied to a PEC and a dielectric spherical scattering surface with meshes presenting different levels of discretization, with Polytetrafluoroethylene (PTFE) as the dielectric, being a very common material in coaxial cables and connectors for radiofrequency (RF) and wideband application. The accuracy of the algorithms is quantified, showing the approaches wideband performance drop along with the mesh impoverishment. The benefits in computational efficiency, simulation time and accuracy are also shown and discussed, according to the frequency range desired, showing that poorly discretized mesh FDTD simulations can be exploited more efficiently, retaining the desired accuracy. The results obtained provided a broader insight over the limitations in the application of the C-FDTD approaches in poorly discretized and wide frequency band simulations for Dielectric and PEC curved surfaces, which are not clearly defined or detailed in the literature and are, therefore, a novelty. These approaches are also expected to be applied in the modeling of curved RF components for wideband and high-speed communication devices in future works.

Keywords: accuracy, computational efficiency, finite difference time-domain, mesh impoverishment

Procedia PDF Downloads 134
26206 Socio-Economic Status and Quality of Life of Construction Workers in Bengaluru Sub-Urban Area in Pre and Post COVID-19

Authors: Priyanka R. Sagar

Abstract:

Social economic status (SES) is a variable that denotes the social standing of a person in society, and quality of life is a measure of health, happiness, and comfort of an individual. During early 2020, the world was stuck by the blow of the COVID-19 pandemic resulting in minimal or no economic activities to takes place. The present research paper is an attempt to analyze the socioeconomic status and quality of life of construction workers dwelling in the sub-urban areas of Hoskote located in the Bengaluru rural district pre and post-COVID-19. It also tries to analyze the difference in these variables pre and post-COVID-19. The study uses a retrospective design and data collected through a questionnaire survey from the respondents of Hoskote. A total of 100 samples were collected, out of which 73% were men and 27% were women. The mean age group of the participants is 41.04 ± 6.97 years. The overall analysis of the study shows that there is a significant difference in the socioeconomic status of construction workers pre and post-COVID-19. The study shows SES of the workers pre-pandemic is higher than post-pandemic. The other variable is quality of life which consists of physical health, psychological health, social relationships, and environmental domains. The study depicts that the psychological domain alone has been impacted by the pandemic; workers had better mental health pre-COVID-19. The other domains, i.e., physical health, social relationship, and environment, remain unaffected.

Keywords: socio-economic status, quality of life, construction workers, COVID-19

Procedia PDF Downloads 116
26205 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving

Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian

Abstract:

In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.

Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning

Procedia PDF Downloads 147
26204 Comparison of Deep Brain Stimulation Targets in Parkinson's Disease: A Systematic Review

Authors: Hushyar Azari

Abstract:

Aim and background: Deep brain stimulation (DBS) is regarded as an important therapeutic choice for Parkinson's disease (PD). The two most common targets for DBS are the subthalamic nucleus (STN) and globus pallidus (GPi). This review was conducted to compare the clinical effectiveness of these two targets. Methods: A systematic literature search in electronic databases: Embase, Cochrane Library and PubMed were restricted to English language publications 2010 to 2021. Specified MeSH terms were searched in all databases. Studies which evaluated the Unified Parkinson's Disease Rating Scale (UPDRS) III were selected by meeting the following criteria: (1) compared both GPi and STN DBS; (2) had at least three months follow-up period; (3)at least five participants in each group; (4)conducted after 2010. Study quality assessment was performed using the Modified Jadad Scale. Results: 3577 potentially relevant articles were identified, of these, 3569 were excluded based on title and abstract, duplicate and unsuitable article removal. Eight articles satisfied the inclusion criteria and were scrutinized (458 PD patients). According to Modified Jadad Scale, the majority of included studies had low evidence quality which was a limitation of this review. 5 studies reported no statistically significant between-group difference for improvements in UPDRS ш scores. At the same time, there were some results in terms of pain, action tremor, rigidity, and urinary symptoms, which indicated that STN DBS might be a better choice. Regarding the adverse effects, GPi was superior. Conclusion: It is clear that other larger randomized clinical trials with longer follow-up periods and control groups are needed to decide which target is more efficient for deep brain stimulation in Parkinson’s disease and imposes fewer adverse effects on the patients. Meanwhile, STN seems more reasonable according to the results of this systematic review.

Keywords: brain stimulation, globus pallidus, Parkinson's disease, subthalamic nucleus

Procedia PDF Downloads 179
26203 A Study of Various Ontology Learning Systems from Text and a Look into Future

Authors: Fatima Al-Aswadi, Chan Yong

Abstract:

With the large volume of unstructured data that increases day by day on the web, the motivation of representing the knowledge in this data in the machine processable form is increased. Ontology is one of the major cornerstones of representing the information in a more meaningful way on the semantic Web. The goal of Ontology learning from text is to elicit and represent domain knowledge in the machine readable form. This paper aims to give a follow-up review on the ontology learning systems from text and some of their defects. Furthermore, it discusses how far the ontology learning process will enhance in the future.

Keywords: concept discovery, deep learning, ontology learning, semantic relation, semantic web

Procedia PDF Downloads 521
26202 Comparison of Reserve Strength Ratio and Capacity Curve Parameters of Offshore Platforms with Distinct Bracing Arrangements

Authors: Aran Dezhban, Hooshang Dolatshahi Pirooz

Abstract:

The phenomenon of corrosion, especially in the Persian Gulf region, is the main cause of the deterioration of offshore platforms, due to the high corrosion of its water. This phenomenon occurs mostly in the area of water spraying, threatening the members of the first floor of the jacket, legs, and piles in this area. In the current study, the effect of bracing arrangement on the Capacity Curve and Reserve Strength Ratio of Fixed-Type Offshore Platforms is investigated. In order to continue the operation of the platform, two modes of robust and damaged structures are considered, while checking the adequacy of the platform capacity based on the allowable values of API RP-2SIM regulations. The platform in question is located in the Persian Gulf, which is modeled on the OpenSEES software. In this research, the Nonlinear Pushover Analysis has been used. After validation, the Capacity Curve of the studied platforms is obtained and then their Reserve Strength Ratio is calculated. Results are compared with the criteria in the API-2SIM regulations.

Keywords: fixed-type jacket structure, structural integrity management, nonlinear pushover analysis, robust and damaged structure, reserve strength ration, capacity curve

Procedia PDF Downloads 115
26201 Mechanisms of Action in Mindfulness-Based Cognitive Therapy (MBCT) and Mindfulness-Based Stress Reduction (MBSR) in People with Physical and/or Psychological Conditions: A Systematic Review

Authors: Modi Alsubaie, Willem Kuyken, Rebecca Abbott, Barnaby Dunn, Chris Dickens, Tina Keil, William Henley

Abstract:

Background: Recently, there has been an increased interest in studying the effects of mindfulness-based interventions for people with psychological and physical problems. However, the mechanisms of action in these interventions that lead to beneficial physical and psychological outcomes have yet to be clearly identified. Purpose: The aim of this paper is to review, systematically, the evidence to date on the mechanisms of action in mindfulness interventions in populations with physical and/or psychological conditions. Method: Searches of seven databases (PsycINFO, Medline (Ovid), Cochrane Central Register of Controlled Trials, EMBASE, CINAHL, AMED, ClinicalTrials.gov) were undertaken in June 2014 and July 2015. We evaluated to what extent the studies we identified met the criteria suggested by Kazdin for establishing mechanisms of action within a psychological treatment (2007, 2009). Results: We identified four trials examining mechanisms of mindfulness interventions in those with comorbid psychological and physical health problems and 14 in those with psychological conditions. These studies examined a diverse range of potential mechanisms, including mindfulness and rumination. Of these candidate mechanisms, the most consistent finding was that greater self-reported change in mindfulness mediated superior clinical outcomes. However, very few studies fully met the Kazdin criteria for examining treatment mechanisms. Conclusion: There was evidence that global changes in mindfulness are linked to better outcomes. This evidence pertained more to interventions targeting psychological rather than physical health conditions. While there is promising evidence that MBCT/MBSR intervention effects are mediated by hypothesised mechanisms, there is a lack of methodological rigour in the field of testing mechanisms of action for both MBCT and MBSR, which precludes definitive conclusions.

Keywords: MBCT, MBSR, mechanisms, physical conditions, psychological conditions, systematic review

Procedia PDF Downloads 331
26200 GenAI Agents in Product Management: A Case Study from the Manufacturing Sector

Authors: Aron Witkowski, Andrzej Wodecki

Abstract:

Purpose: This study aims to explore the feasibility and effectiveness of utilizing Generative Artificial Intelligence (GenAI) agents as product managers within the manufacturing sector. It seeks to evaluate whether current GenAI capabilities can fulfill the complex requirements of product management and deliver comparable outcomes to human counterparts. Study Design/Methodology/Approach: This research involved the creation of a support application for product managers, utilizing high-quality sources on product management and generative AI technologies. The application was designed to assist in various aspects of product management tasks. To evaluate its effectiveness, a study was conducted involving 10 experienced product managers from the manufacturing sector. These professionals were tasked with using the application and providing feedback on the tool's responses to common questions and challenges they encounter in their daily work. The study employed a mixed-methods approach, combining quantitative assessments of the tool's performance with qualitative interviews to gather detailed insights into the user experience and perceived value of the application. Findings: The findings reveal that GenAI-based product management agents exhibit significant potential in handling routine tasks, data analysis, and predictive modeling. However, there are notable limitations in areas requiring nuanced decision-making, creativity, and complex stakeholder interactions. The case study demonstrates that while GenAI can augment human capabilities, it is not yet fully equipped to independently manage the holistic responsibilities of a product manager in the manufacturing sector. Originality/Value: This research provides an analysis of GenAI's role in product management within the manufacturing industry, contributing to the limited body of literature on the application of GenAI agents in this domain. It offers practical insights into the current capabilities and limitations of GenAI, helping organizations make informed decisions about integrating AI into their product management strategies. Implications for Academic and Practical Fields: For academia, the study suggests new avenues for research in AI-human collaboration and the development of advanced AI systems capable of higher-level managerial functions. Practically, it provides industry professionals with a nuanced understanding of how GenAI can be leveraged to enhance product management, guiding investments in AI technologies and training programs to bridge identified gaps.

Keywords: generative artificial intelligence, GenAI, NPD, new product development, product management, manufacturing

Procedia PDF Downloads 49
26199 A Fourier Method for Risk Quantification and Allocation of Credit Portfolios

Authors: Xiaoyu Shen, Fang Fang, Chujun Qiu

Abstract:

Herewith we present a Fourier method for credit risk quantification and allocation in the factor-copula model framework. The key insight is that, compared to directly computing the cumulative distribution function of the portfolio loss via Monte Carlo simulation, it is, in fact, more efficient to calculate the transformation of the distribution function in the Fourier domain instead and inverting back to the real domain can be done in just one step and semi-analytically, thanks to the popular COS method (with some adjustments). We also show that the Euler risk allocation problem can be solved in the same way since it can be transformed into the problem of evaluating a conditional cumulative distribution function. Once the conditional or unconditional cumulative distribution function is known, one can easily calculate various risk metrics. The proposed method not only fills the niche in literature, to the best of our knowledge, of accurate numerical methods for risk allocation but may also serve as a much faster alternative to the Monte Carlo simulation method for risk quantification in general. It can cope with various factor-copula model choices, which we demonstrate via examples of a two-factor Gaussian copula and a two-factor Gaussian-t hybrid copula. The fast error convergence is proved mathematically and then verified by numerical experiments, in which Value-at-Risk, Expected Shortfall, and conditional Expected Shortfall are taken as examples of commonly used risk metrics. The calculation speed and accuracy are tested to be significantly superior to the MC simulation for real-sized portfolios. The computational complexity is, by design, primarily driven by the number of factors instead of the number of obligors, as in the case of Monte Carlo simulation. The limitation of this method lies in the "curse of dimension" that is intrinsic to multi-dimensional numerical integration, which, however, can be relaxed with the help of dimension reduction techniques and/or parallel computing, as we will demonstrate in a separate paper. The potential application of this method has a wide range: from credit derivatives pricing to economic capital calculation of the banking book, default risk charge and incremental risk charge computation of the trading book, and even to other risk types than credit risk.

Keywords: credit portfolio, risk allocation, factor copula model, the COS method, Fourier method

Procedia PDF Downloads 166
26198 Digital Twins in the Built Environment: A Systematic Literature Review

Authors: Bagireanu Astrid, Bros-Williamson Julio, Duncheva Mila, Currie John

Abstract:

Digital Twins (DT) are an innovative concept of cyber-physical integration of data between an asset and its virtual replica. They have originated in established industries such as manufacturing and aviation and have garnered increasing attention as a potentially transformative technology within the built environment. With the potential to support decision-making, real-time simulations, forecasting abilities and managing operations, DT do not fall under a singular scope. This makes defining and leveraging the potential uses of DT a potential missed opportunity. Despite its recognised potential in established industries, literature on DT in the built environment remains limited. Inadequate attention has been given to the implementation of DT in construction projects, as opposed to its operational stage applications. Additionally, the absence of a standardised definition has resulted in inconsistent interpretations of DT in both industry and academia. There is a need to consolidate research to foster a unified understanding of the DT. Such consolidation is indispensable to ensure that future research is undertaken with a solid foundation. This paper aims to present a comprehensive systematic literature review on the role of DT in the built environment. To accomplish this objective, a review and thematic analysis was conducted, encompassing relevant papers from the last five years. The identified papers are categorised based on their specific areas of focus, and the content of these papers was translated into a through classification of DT. In characterising DT and the associated data processes identified, this systematic literature review has identified 6 DT opportunities specifically relevant to the built environment: Facilitating collaborative procurement methods, Supporting net-zero and decarbonization goals, Supporting Modern Methods of Construction (MMC) and off-site manufacturing (OSM), Providing increased transparency and stakeholders collaboration, Supporting complex decision making (real-time simulations and forecasting abilities) and Seamless integration with Internet of Things (IoT), data analytics and other DT. Finally, a discussion of each area of research is provided. A table of definitions of DT across the reviewed literature is provided, seeking to delineate the current state of DT implementation in the built environment context. Gaps in knowledge are identified, as well as research challenges and opportunities for further advancements in the implementation of DT within the built environment. This paper critically assesses the existing literature to identify the potential of DT applications, aiming to harness the transformative capabilities of data in the built environment. By fostering a unified comprehension of DT, this paper contributes to advancing the effective adoption and utilisation of this technology, accelerating progress towards the realisation of smart cities, decarbonisation, and other envisioned roles for DT in the construction domain.

Keywords: built environment, design, digital twins, literature review

Procedia PDF Downloads 81
26197 The Confounding Role of Graft-versus-Host Disease in Animal Models of Cancer Immunotherapy: A Systematic Review

Authors: Hami Ashraf, Mohammad Heydarnejad

Abstract:

Introduction: The landscape of cancer treatment has been revolutionized by immunotherapy, offering novel therapeutic avenues for diverse cancer types. Animal models play a pivotal role in the development and elucidation of these therapeutic modalities. Nevertheless, the manifestation of Graft-versus-Host Disease (GVHD) in such models poses significant challenges, muddling the interpretation of experimental data within the ambit of cancer immunotherapy. This study is dedicated to scrutinizing the role of GVHD as a confounding factor in animal models used for cancer immunotherapy, alongside proposing viable strategies to mitigate this complication. Method: Employing a systematic review framework, this study undertakes a comprehensive literature survey including academic journals in PubMed, Embase, and Web of Science databases and conference proceedings to collate pertinent research that delves into the impact of GVHD on animal models in cancer immunotherapy. The acquired studies undergo rigorous analysis and synthesis, aiming to assess the influence of GVHD on experimental results while identifying strategies to alleviate its confounding effects. Results: Findings indicate that GVHD incidence significantly skews the reliability and applicability of experimental outcomes, occasionally leading to erroneous interpretations. The literature surveyed also sheds light on various methodologies under exploration to counteract the GVHD dilemma, thereby bolstering the experimental integrity in this domain. Conclusion: GVHD's presence critically affects both the interpretation and validity of experimental findings, underscoring the imperative for strategies to curtail its confounding impacts. Current research endeavors are oriented towards devising solutions to this issue, aiming to augment the dependability and pertinence of experimental results. It is incumbent upon researchers to diligently consider and adjust for GVHD's effects, thereby enhancing the translational potential of animal model findings to clinical applications and propelling progress in the arena of cancer immunotherapy.

Keywords: graft-versus-host disease, cancer immunotherapy, animal models, preclinical model

Procedia PDF Downloads 51
26196 A Survey of Feature-Based Steganalysis for JPEG Images

Authors: Syeda Mainaaz Unnisa, Deepa Suresh

Abstract:

Due to the increase in usage of public domain channels, such as the internet, and communication technology, there is a concern about the protection of intellectual property and security threats. This interest has led to growth in researching and implementing techniques for information hiding. Steganography is the art and science of hiding information in a private manner such that its existence cannot be recognized. Communication using steganographic techniques makes not only the secret message but also the presence of hidden communication, invisible. Steganalysis is the art of detecting the presence of this hidden communication. Parallel to steganography, steganalysis is also gaining prominence, since the detection of hidden messages can prevent catastrophic security incidents from occurring. Steganalysis can also be incredibly helpful in identifying and revealing holes with the current steganographic techniques, which makes them vulnerable to attacks. Through the formulation of new effective steganalysis methods, further research to improve the resistance of tested steganography techniques can be developed. Feature-based steganalysis method for JPEG images calculates the features of an image using the L1 norm of the difference between a stego image and the calibrated version of the image. This calibration can help retrieve some of the parameters of the cover image, revealing the variations between the cover and stego image and enabling a more accurate detection. Applying this method to various steganographic schemes, experimental results were compared and evaluated to derive conclusions and principles for more protected JPEG steganography.

Keywords: cover image, feature-based steganalysis, information hiding, steganalysis, steganography

Procedia PDF Downloads 216
26195 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem

Authors: Feng Yang

Abstract:

Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.

Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics

Procedia PDF Downloads 150
26194 Spatial Deictics in Face-to-Face Communication: Findings in Baltic Languages

Authors: Gintare Judzentyte

Abstract:

The present research is aimed to discuss semantics and pragmatics of spatial deictics (deictic adverbs of place and demonstrative pronouns) in the Baltic languages: in spoken Lithuanian and in spoken Latvian. The following objectives have been identified to achieve the aim: 1) to determine the usage of adverbs of place in spoken Lithuanian and Latvian and to verify their meanings in face-to-face communication; 2) to determine the usage of demonstrative pronouns in spoken Lithuanian and Latvian and to verify their meanings in face-to-face communication; 3) to compare the systems between the two spoken languages and to identify the main tendencies. As meanings of demonstratives (adverbs of place and demonstrative pronouns) are context-bound, it is necessary to verify their usage in spontaneous interaction. Besides, deictic gestures play a very important role in face-to-face communication. Therefore, an experimental method is necessary to collect the data. Video material representing spoken Lithuanian and spoken Latvian was recorded by means of the method of a qualitative interview (a semi-structured interview: an empirical research is all about asking right questions). The collected material was transcribed and evaluated taking into account several approaches: 1) physical distance (location of the referent, visual accessibility of the referent); 2) deictic gestures (the combination of language and gesture is especially characteristic of the exophoric use); 3) representation of mental spaces in physical space (a speaker sometimes wishes to mark something that is psychically close as psychologically distant and vice versa). The research of the collected data revealed that in face-to-face communication the participants choose deictic adverbs of place instead of demonstrative pronouns to locate/identify entities in situations where the demonstrative pronouns would be expected in spoken Lithuanian and in spoken Latvian. The analysis showed that visual accessibility of the referent is very important in face-to-face communication, but the main criterion while localizing objects and entities is the need for contrast: lith. čia ‘here’, šis ‘this’, latv. šeit ‘here’, šis ‘this’ usually identify distant entities and are used instead of distal demonstratives (lith. ten ‘there’, tas ‘that’, latv. tur ‘there’, tas ‘that’), because the referred objects/subjects contrast to further entities. Furthermore, the interlocutors in examples from a spontaneously situated interaction usually extend their space and can refer to a ‘distal’ object/subject with a ‘proximal’ demonstrative based on the psychological choice. As the research of the spoken Baltic languages confirmed, the choice of spatial deictics in face-to-face communication is strongly effected by a complex of criteria. Although there are some main tendencies, the exact meaning of spatial deictics in the spoken Baltic languages is revealed and is relevant only in a certain context.

Keywords: Baltic languages, face-to-face communication, pragmatics, semantics, spatial deictics

Procedia PDF Downloads 289
26193 Investigation of the Flow in Impeller Sidewall Gap of a Centrifugal Pump Using CFD

Authors: Mohammadreza DaqiqShirazi, Rouhollah Torabi, Alireza Riasi, Ahmad Nourbakhsh

Abstract:

In this paper, the flow in a sidewall gap of an impeller which belongs to a centrifugal pump is studied using numerical method. The flow in sidewall gap forms internal leakage and is the source of “disk friction loss” which is the most important cause of reduced efficiency in low specific speed centrifugal pumps. Simulation is done using CFX software and a high quality mesh, therefore the modeling error has been reduced. Navier-Stokes equations have been solved for this domain. In order to predict the turbulence effects the SST model has been employed.

Keywords: numerical study, centrifugal pumps, disk friction loss, sidewall gap

Procedia PDF Downloads 529
26192 Determination of Burnout Levels and Associated Factors of Teachers Working During the COVID-19 Pandemic Period

Authors: Kemal Kehan, Emine Aktas Bajalan

Abstract:

This study was carried out to determine the burnout levels and related factors of teachers working in primary schools affiliated to the Turkish Republic of Northern Cyprus (TRNC) Ministry of National Education during the COVID-19 pandemic period. The research was conducted in descriptive cross-sectional design. The population of the research consists of 1071 teachers working in 93 primary schools in 6 central districts affiliated to the TRNC Ministry of National Education in the 2021-2022 academic year. When the sample size of the study was calculated by power analysis, it was determined that 202 teachers should be reached with 95% confidence (1-α), 95% test power (1-β) and d=0.5 effect size. Within the scope of the inclusion criteria of the research, the main sample of the study consisted of 300 teachers and the baist random sampling method was used. The data were collected using the Sociodemographic Data Form consisting of 34 questions, including the sociodemographic characteristics of the teachers and the 22-item Maslach Burnout Scale (MBS). The analysis of the data was carried out using descriptive and correlational analyzes in the SPSS 22 package program. In the study, it was determined that 65% of the teachers were women, 68% were married, 84% had a bachelor's degree, 70.33% had children, and 67.67% were dependents. Regarding how teachers evaluate the COVID-19 pandemic period; 90% of them said, “I am worried about my family's health and the risk of infection”, 80% of them, “I feel that my profession does not get the value it deserves”, 75.67% of them mentioned “My hopes for the future have started to wane”, 75.33% of them say “I am worried about my own health”. It was determined that they gave the answer of, “I am worried about the issue”. It was found that the teachers' MBS total score average was 48.63±8.01, the burnout level was moderate, and the average score they got from the sub-dimensions of the scale was also moderate. It has been found that there are negative correlations between the professional satisfaction scores of the teachers during and before the COVID-19 pandemic and the scores they received from the general and sub-dimensions of MBS. It was determined that there was a statistically significant difference (p<0.05) between the scores of teachers diagnosed with COVID-19 from the scale and its sub-dimensions. As a result, it is suggested that social activities should be increased and professional development and promotion opportunities should be offered in order to ensure that teachers are satisfied with their work areas, to reduce their burnout levels or to prevent them completely.

Keywords: teachers, burnout, maslach burnout scale, pandemic, online education

Procedia PDF Downloads 65
26191 An Educational Electronic Health Record with a Configurable User Interface

Authors: Floriane Shala, Evangeline Wagner, Yichun Zhao

Abstract:

Background: Proper educational training and support are proven to be major components of EHR (Electronic Health Record) implementation and use. However, the majority of health providers are not sufficiently trained in EHR use, leading to adverse events, errors, and decreased quality of care. In response to this, students studying Health Information Science, Public Health, Nursing, and Medicine should all gain a thorough understanding of EHR use at different levels for different purposes. The design of a usable and safe EHR system that accommodates the needs and workflows of different users, user groups, and disciplines is required for EHR learning to be efficient and effective. Objectives: This project builds several artifacts which seek to address both the educational and usability aspects of an educational EHR. The artifacts proposed are models for and examples of such an EHR with a configurable UI to be learned by students who need a background in EHR use during their degrees. Methods: Review literature and gather professional opinions from domain experts on usability, the use of workflow patterns, UI configurability and design, and the educational aspect of EHR use. Conduct interviews in a semi-casual virtual setting with open discussion in order to gain a deeper understanding of the principal aspects of EHR use in educational settings. Select a specific task and user group to illustrate how the proposed solution will function based on the current research. Develop three artifacts based on the available research, professional opinions, and prior knowledge of the topic. The artifacts capture the user task and user’s interactions with the EHR for learning. The first generic model provides a general understanding of the EHR system process. The second model is a specific example of performing the task of MRI ordering with a configurable UI. The third artifact includes UI mock-ups showcasing the models in a practical and visual way. Significance: Due to the lack of educational EHRs, medical professionals do not receive sufficient EHR training. Implementing an educational EHR with a usable and configurable interface to suit the needs of different user groups and disciplines will help facilitate EHR learning and training and ultimately improve the quality of patient care.

Keywords: education, EHR, usability, configurable

Procedia PDF Downloads 157
26190 Statistical Approach to Identify Stress and Biases Impairing Decision-Making in High-Risk Industry

Authors: Ph. Fauquet-Alekhine

Abstract:

Decision-making occurs several times an hour when working in high risk industry and an erroneous choice might have undesirable outcomes for people and the environment surrounding the industrial plant. Industrial decisions are very often made in a context of acute stress. Time pressure is a crucial stressor leading decision makers sometimes to boost up the decision-making process and if it is not possible then shift to the simplest strategy. We thus found it interesting to update the characterization of the stress factors impairing decision-making at Chinon Nuclear Power Plant (France) in order to optimize decision making contexts and/or associated processes. The investigation was based on the analysis of reports addressing safety events over the last 3 years. Among 93 reports, those explicitly addressing decision-making issues were identified. Characterization of each event was undertaken in terms of three criteria: stressors, biases impairing decision making and weaknesses of the decision-making process. The statistical analysis showed that biases were distributed over 10 possibilities among which the hypothesis confirmation bias was clearly salient. No significant correlation was found between criteria. The analysis indicated that the main stressor was time pressure and highlights an unexpected form of stressor: the trust asymmetry principle of the expert. The analysis led to the conclusion that this stressor impaired decision-making from a psychological angle rather than from a physiological angle: it induces defensive bias of self-esteem, self-protection associated with a bias of confirmation. This leads to the hypothesis that this stressor can intervene in some cases without being detected, and to the hypothesis that other stressors of the same kind might occur without being detected too. Further investigations addressing these hypotheses are considered. The analysis also led to the conclusion that dealing with these issues implied i) decision-making methods being well known to the workers and automated and ii) the decision-making tools being well known and strictly applied. Training was thus adjusted.

Keywords: bias, expert, high risk industry, stress.

Procedia PDF Downloads 112
26189 Artificial Intelligence-Based Thermal Management of Battery System for Electric Vehicles

Authors: Raghunandan Gurumurthy, Aricson Pereira, Sandeep Patil

Abstract:

The escalating adoption of electric vehicles (EVs) across the globe has underscored the critical importance of advancing battery system technologies. This has catalyzed a shift towards the design and development of battery systems that not only exhibit higher energy efficiency but also boast enhanced thermal performance and sophisticated multi-material enclosures. A significant leap in this domain has been the incorporation of simulation-based design optimization for battery packs and Battery Management Systems (BMS), a move further enriched by integrating artificial intelligence/machine learning (AI/ML) approaches. These strategies are pivotal in refining the design, manufacturing, and operational processes for electric vehicles and energy storage systems. By leveraging AI/ML, stakeholders can now predict battery performance metrics—such as State of Health, State of Charge, and State of Power—with unprecedented accuracy. Furthermore, as Li-ion batteries (LIBs) become more prevalent in urban settings, the imperative for bolstering thermal and fire resilience has intensified. This has propelled Battery Thermal Management Systems (BTMs) to the forefront of energy storage research, highlighting the role of machine learning and AI not just as tools for enhanced safety management through accurate temperature forecasts and diagnostics but also as indispensable allies in the early detection and warning of potential battery fires.

Keywords: electric vehicles, battery thermal management, industrial engineering, machine learning, artificial intelligence, manufacturing

Procedia PDF Downloads 97
26188 Sliding Mode Control of a Bus Suspension System

Authors: Mujde Turkkan, Nurkan Yagiz

Abstract:

The vibrations, caused by the irregularities of the road surface, are to be suppressed via suspension systems. In this paper, sliding mode control for a half bus model with air suspension system is presented. The bus is modelled as five degrees of freedom (DoF) system. The mathematical model of the half bus is developed using Lagrange Equations. For time domain analysis, the bus model is assumed to travel at certain speed over the bump road. The numerical results of the analysis indicate that the sliding mode controllers can be effectively used to suppress the vibrations and to improve the ride comfort of the busses.

Keywords: active suspension system, air suspension, bus model, sliding mode control

Procedia PDF Downloads 388
26187 Mediating Effect of Hopefulness on the Effect of Underdog Narratives to Subjective Well-Being among Local State University of Cavite

Authors: Quiza Pearl Senilla, Hannah Mercado, Francis Angelo Erosa

Abstract:

Underdog narratives not only provides viewers with models of determination and hard work but that inducing hope may increase the likelihood that viewers will pursue their own goals in life. Although it has been proven that underdog narratives not only create a positive motivational state to the viewers but can also induce hope, little attention has been given to know if this underdog narrative affect the health outcomes or the subjective well-being of the viewers and if their hopefulness mediates on it. To address this gap, using underdog narratives as a predictor and hope as mediator, this study determined the effect of underdog narratives to the subjective well-being of the respondents, the relationship of hope and subjective well-being and last is the mediating effect of hopefulness. This study is an experimental research that uses a between subject design. Purposeful random sampling was used wherein the respondents must meet the following criteria to be part of the study. One hundred and twenty (N=120) Local State University students were assigned to different treatment conditions— underdog narrative, comedy, nature scenes—and a no exposure control group. Results show that there is a minimal difference on the subjective well-being of the respondents when exposed to different treatment condition although it is not significant. A moderate positive correlation between hope and subjective well-being also reveals in this study. And last the result also shows that there is no mediating effect of hopefulness to the subjective well-being of the subjects through exposure to underdog narrative.

Keywords: hope, hope theory, subjective well-being, underdog narratives

Procedia PDF Downloads 310
26186 Evidence-Based Practices in Education: A General Review of the Literature on Elementary Classroom Setting

Authors: Carolina S. Correia, Thalita V. Thomé, Andersen Boniolo, Dhayana I. Veiga

Abstract:

Evidence-based practices (EBP) in education is a set of principles and practices used to raise educational policy, it involves the integration of professional expertise in education with the best empirical evidence in making decisions about how to deliver instruction. The purpose of this presentation is to describe and characterize studies about EBP in education in elementary classroom setting. Data here presented is part of an ongoing systematic review research. Articles were searched and selected from four academic databases: ProQuest, Scielo, Science Direct and Capes. The search terms were evidence-based practices or program effectiveness, and education or teaching or teaching practices or teaching methods. Articles were included according to the following criteria: The studies were explicitly described as evidence-based or discussed the most effective practices in education, they discussed teaching practices in classroom context in elementary school level. Document excerpts were extracted and recorded in Excel, organized by reference, descriptors, abstract, purpose, setting, participants, type of teaching practice, study design and main results. The total amount of articles selected were 1.185, 569 articles from Proquest Research Library; 216 from CAPES; 251 from ScienceDirect and 149 from Scielo Library. The potentially relevant references were 178, from which duplicates were removed. The final number of articles analyzed was 140. From 140 articles, are 47 theoretical studies and 93 empirical articles. The following research design methods were identified: longitudinal intervention study, cluster-randomized trial, meta-analysis and pretest-posttest studies. From 140 articles, 103 studies were about regular school teaching and 37 were on special education teaching practices. In several studies, used as teaching method: active learning, content acquisition podcast (CAP), precision teaching (PT), mediated reading practice, speech therapist programs and peer-assisted learning strategies (PALS). The countries of origin of the studies were United States of America, United Kingdom, Panama, Sweden, Scotland, South Korea, Argentina, Chile, New Zealand and Brunei. The present study in is an ongoing project, so some representative findings will be discussed, providing further acknowledgment on the best teaching practices in elementary classroom setting.

Keywords: best practices, children, evidence-based education, elementary school, teaching methods

Procedia PDF Downloads 334
26185 The Employment Experiences of Qualified Refugees in the UK and the Impact on Identity, Integration, and Wellbeing: A Qualitative Enquiry

Authors: Amina El-Warari, Agata Vitale, Laura Caulfield, Jennifer Kinloch

Abstract:

Background: Unemployment levels among refugees in the UK are much higher than voluntary migrants and UK-born citizens. The lack of employment and/or of suitable employment has detrimental consequences on refugees’ ability to integrate and become active citizens in the host country. Research indicates that, when individuals are forced to migrate, one of the most significant aspects to building their identity is their previous profession; this particularly applies to qualified refugees. Despite this, there is little support available to them. The current study is set in this context and aims to explore highly qualified refugees’ employment-related experiences in the UK as well as their suggestions on how to develop specific interventions that can support them in finding suitable employment. Methods: A qualitative study design was employed. Qualitative methods are in fact well suited to research with refugees, as they allow them to give their direct opinion, rather than this being filtered by stakeholders. Listening to ‘the refugee’s voice’ means developing ‘a refugee centered perspective’ where the diverse narratives told by participants are organized to tell their direct collective story. A total of 12 refugees, attending a non-profit refugee organization in the south-west of England, took part in the study. The selection criteria were being over 18, having a level of English that allows them to sustain a conversation, and having a University degree and/or professional qualification. All participants were interviewed individually; the data were transcribed and analyzed thematically. Findings: Participants had very little support in finding suitable employment; this often only consisted of a few sessions in their local job centers and English tutorials. They indicated that being unemployed/underemployed negatively affected their sense of identity, their acculturative stress, and their in-group/ out-group relations. They suggested that specific employment interventions for qualified refugees should be delivered to them individually in order to address their specific needs. Furthermore, most participants suggested that these interventions should support them in volunteering in organizations that match their skills/ qualifications. They also indicated that the employment interventions should support them in having their qualifications recognized in the UK as well as building links with universities/ centers where they can receive adequate training on how to understand and adapt to the employments needs in the UK. Conclusions: These findings will provide the basis for the second stage of the research where specific employment interventions will be designed and tested with highly qualified refugees. In addition, these findings shed light refugee integration policy.

Keywords: employment interventions, identity, integration, qualified refugees

Procedia PDF Downloads 264
26184 Optical Design and Modeling of Micro Light-Emitting Diodes for Display Applications

Authors: Chaya B. M., C. Dhanush, Inti Sai Srikar, Akula Pavan Parvatalu, Chirag Gowda R

Abstract:

Recently, there has been a lot of interest in µ-LED technology because of its exceptional qualities, including auto emission, high visibility, low consumption of power, rapid response and longevity. Light-emitting diodes (LED) using III-nitride, such as lighting sources, visible light communication (VLC) devices, and high-power devices, are finding increasing use as miniaturization technology advances. The use of micro-LED displays in place of traditional display technologies like liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) is one of the most prominent recent advances, which may even represent the next generation of displays. The development of fully integrated, multifunctional devices and the incorporation of extra capabilities into micro-LED displays, such as sensing, light detection, and solar cells, are the pillars of advanced technology. Due to the wide range of applications for micro-LED technology, the effectiveness and dependability of these devices in numerous harsh conditions are becoming increasingly important. Enough research has been conducted to overcome the under-effectiveness of micro-LED devices. In this paper, different Micro LED design structures are proposed in order to achieve optimized optical properties. In order to attain improved external quantum efficiency (EQE), devices' light extraction efficiency (LEE) has also been boosted.

Keywords: finite difference time domain, light out coupling efficiency, far field intensity, power density, quantum efficiency, flat panel displays

Procedia PDF Downloads 79
26183 Understanding the Top Questions Asked about Hong Kong by Travellers Worldwide through a Corpus-Based Discourse Analytic Approach

Authors: Phoenix W. Y. Lam

Abstract:

As one of the most important service-oriented industries in contemporary society, tourism has increasingly seen the influence of the Internet on all aspects of travelling. Travellers nowadays habitually research online before making travel-related decisions. One platform on which such research is conducted is destination forums. The emergence of such online destination forums in the last decade has allowed tourists to share their travel experiences quickly and easily with a large number of online users around the world. As such, these destination forums also provide invaluable data for tourism bodies to better understand travellers’ views on their destinations. Collecting posts from the Hong Kong travel forum on the world’s largest travel website TripAdvisor®, the present study identifies the top questions asked by TripAdvisor users about Hong Kong through a corpus-based discourse analytic approach. Based on questions posted on the forum and their associated meta-data gathered in a one-year period, the study examines the top questions asked by travellers around the world to identify the key geographical locations in which users have shown the greatest interest in the city. Questions raised by travellers from different geographical locations are also compared to see if traveller communities by location vary in terms of their areas of interest. This analysis involves the study of key words and concordance of frequently-occurring items and a close reading of representative examples in context. Findings from the present study show that travellers who asked the most questions about Hong Kong are from North America and Asia, and that travellers from different locations have different concerns and interests, which are clearly reflected in the language of the questions asked on the travel forum. These findings can therefore provide tourism organisations with useful information about the key markets that should be targeted for promotional purposes, and can also allow such organisations to design advertising campaigns which better address the specific needs of such markets. The present study thus demonstrates the value of applying linguistic knowledge and methodologies to the domain of tourism to address practical issues.

Keywords: corpus, hong kong, online travel forum, tourism, TripAdvisor

Procedia PDF Downloads 177
26182 Parallel Version of Reinhard’s Color Transfer Algorithm

Authors: Abhishek Bhardwaj, Manish Kumar Bajpai

Abstract:

An image with its content and schema of colors presents an effective mode of information sharing and processing. By changing its color schema different visions and prospect are discovered by the users. This phenomenon of color transfer is being used by Social media and other channel of entertainment. Reinhard et al’s algorithm was the first one to solve this problem of color transfer. In this paper, we make this algorithm efficient by introducing domain parallelism among different processors. We also comment on the factors that affect the speedup of this problem. In the end by analyzing the experimental data we claim to propose a novel and efficient parallel Reinhard’s algorithm.

Keywords: Reinhard et al’s algorithm, color transferring, parallelism, speedup

Procedia PDF Downloads 614
26181 Particle Size Distribution Estimation of a Mixture of Regular and Irregular Sized Particles Using Acoustic Emissions

Authors: Ejay Nsugbe, Andrew Starr, Ian Jennions, Cristobal Ruiz-Carcel

Abstract:

This works investigates the possibility of using Acoustic Emissions (AE) to estimate the Particle Size Distribution (PSD) of a mixture of particles that comprise of particles of different densities and geometry. The experiments carried out involved the mixture of a set of glass and polyethylene particles that ranged from 150-212 microns and 150-250 microns respectively and an experimental rig that allowed the free fall of a continuous stream of particles on a target plate which the AE sensor was placed. By using a time domain based multiple threshold method, it was observed that the PSD of the particles in the mixture could be estimated.

Keywords: acoustic emissions, particle sizing, process monitoring, signal processing

Procedia PDF Downloads 352
26180 Investigating the Role of Supplier Involvement in the Design Process as an Approach for Enhancing Building Maintainability

Authors: Kamal Ahmed, Othman Ayman, Refat Mostafa

Abstract:

The post-construction phase represents a critical milestone in the project lifecycle. This is because design errors and omissions, as well as construction defects, are examined during this phase. The traditional procurement approaches that are commonly adopted in construction projects separate design from construction, which ultimately inhibits contractors, suppliers and other parties from providing the design team with constructive comments and feedback to improve the project design. As a result, a lack of considering maintainability aspects during the design process results in increasing maintenance and operation costs as well as reducing building performance. This research aims to investigate the role of Early Supplier Involvement (ESI) in the design process as an approach to enhancing building maintainability. In order to achieve this aim, a research methodology consisting of a literature review, case studies and a survey questionnaire was designed to accomplish four objectives. Firstly, a literature review was used to examine the concepts of building maintenance, maintainability, the design process and ESI. Secondly, three case studies were presented and analyzed to investigate the role of ESI in enhancing building maintainability during the design process. Thirdly, a survey questionnaire was conducted with a representative sample of Architectural Design Firms (ADFs) in Egypt to investigate their perception and application of ESI towards enhancing building maintainability during the design process. Finally, the research developed a framework to facilitate ESI in the design process in ADFs in Egypt. Data analysis showed that the ‘Difficulty of trusting external parties and sharing information with transparency’ was ranked the highest challenge of ESI in ADFs in Egypt, followed by ‘Legal competitive advantage restrictions’. Moreover, ‘Better estimation for operation and maintenance costs’ was ranked the highest contribution of ESI towards enhancing building maintainability, followed by ‘Reduce the number of operation and maintenance problems or reworks’. Finally, ‘Innovation, technical expertise, and competence’ was ranked the highest supplier’s selection criteria, while ‘paying consultation fees for offering advice and recommendations to the design team’ was ranked the highest form of supplier’s remuneration. The proposed framework represents a synthesis that is creative in thought and adds value to the knowledge in a manner that has not previously occurred.

Keywords: maintenance, building maintainability, building life cycle cost (ICC), material supplier

Procedia PDF Downloads 47
26179 Detection of Flood Prone Areas Using Multi Criteria Evaluation, Geographical Information Systems and Fuzzy Logic. The Ardas Basin Case

Authors: Vasileiou Apostolos, Theodosiou Chrysa, Tsitroulis Ioannis, Maris Fotios

Abstract:

The severity of extreme phenomena is due to their ability to cause severe damage in a small amount of time. It has been observed that floods affect the greatest number of people and induce the biggest damage when compared to the total of annual natural disasters. The detection of potential flood-prone areas constitutes one of the fundamental components of the European Natural Disaster Management Policy, directly connected to the European Directive 2007/60. The aim of the present paper is to develop a new methodology that combines geographical information, fuzzy logic and multi-criteria evaluation methods so that the most vulnerable areas are defined. Therefore, ten factors related to geophysical, morphological, climatological/meteorological and hydrological characteristics of the basin were selected. Afterwards, two models were created to detect the areas pronest to flooding. The first model defined the gravitas of each factor using Analytical Hierarchy Process (AHP) and the final map of possible flood spots were created using GIS and Boolean Algebra. The second model made use of the fuzzy logic and GIS combination and a respective map was created. The application area of the aforementioned methodologies was in Ardas basin due to the frequent and important floods that have taken place these last years. Then, the results were compared to the already observed floods. The result analysis shows that both models can detect with great precision possible flood spots. As the fuzzy logic model is less time-consuming, it is considered the ideal model to apply to other areas. The said results are capable of contributing to the delineation of high risk areas and to the creation of successful management plans dealing with floods.

Keywords: analytical hierarchy process, flood prone areas, fuzzy logic, geographic information system

Procedia PDF Downloads 379
26178 Developing a Research Culture in the Faculty of Engineering and Information Technology at the Central University of Technology, Free State: Implications for Knowledge Management

Authors: Mpho Agnes Mbeo, Patient Rambe

Abstract:

The thirteenth year of the Central University of Technology, Free State’s (CUT) transition from a vocational and professional training orientation institution (i.e. a technikon) into a university with a strong research focus has neither been a smooth nor an easy one. At the heart of this transition was the need to transform the psychological faculties of academic and research staffs compliment who were accustomed to training graduates for industrial placement. The lack of a culture of research that fully embraces a strong ethos of conducting world-class research needed to be addressed. The induction and socialisation of academic staff into the development and execution of cutting-edge research also required the provision of research support and the creation of a conducive academic environment for research, both for emerging and non-research active academics. Drawing on ten cases, comprising four heads of departments, three prolific established researchers, and three emerging researchers, this study explores the challenges faced in establishing a strong research culture at the university. Furthermore, it gives an account of the extent to which the current research interventions have addressed the perceivably “missing research culture”, and the implications of these interventions for knowledge management. Evidence suggests that the endowment of an ideal institutional research environment (comprising strong internet networks, persistent connectivity on and off campus), research peer mentorship, and growing publication outputs should be matched by a coherent research incentive culture and strong research leadership. This is critical to building new knowledge and entrenching knowledge management founded on communities of practice and scholarly networking through the documentation and communication of research findings. The study concludes that the multiple policy documents set for the different domains of research may be creating pressure on researchers to engage research activities and increase output at the expense of research quality.

Keywords: Central University of Technology, performance, publication, research culture, university

Procedia PDF Downloads 173