Search results for: medium entropy alloy matrix composite
5707 Conductometric Methanol Microsensor Based on Electrospun PVC-Nickel Phthalocyanine Composite Nanofiber Technology
Authors: Ibrahim Musa, Guy Raffin, Marie Hangouet, Nadia Zine, Nicole Jaffrezic-Renault, Abdelhamid Errachid
Abstract:
Due to its application in different domains, such as fuel cell configuration and adulteration of alcoholic beverages, a miniaturized sensor for methanol detection is urgently required. A conductometric microsensor for measuring volatile organic compounds (VOC) was conceived, based on electrospun composite nanofibers of polyvinyl chloride (PVC) doped with nickel phthalocyanine(NiPc) deposited on interdigitated electrodes (IDEs) used transducers. The nanofiber's shape, structure, percent atomic content and thermal properties were studied using analytical techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), respectively. The methanol sensor showed good sensitivity (505µS/cm(v/v) ⁻¹), low LOD (15 ppm), short response time (13 s), and short recovery time (15 s). The sensor was 4 times more sensitive to methanol than to ethanol and 19 times more sensitive to methanol than to acetone. Furthermore, the sensor response was unaffected by the interfering water vapor, making it more suitable for VOC sensing in the presence of humidity. The sensor was applied for conductometric detection of methanol in rubbing alcohol.Keywords: composite, methanol, conductometric sensor, electrospun, nanofiber, nickel phthalocyanine, PVC
Procedia PDF Downloads 235706 A Research on the Improvement of Small and Medium-Sized City in Early-Modern China (1895-1927): Taking Southern Jiangsu as an Example
Authors: Xiaoqiang Fu, Baihao Li
Abstract:
In 1895, the failure of Sino-Japanese prompted the trend of comprehensive and systematic study of western pattern in China. In urban planning and construction, urban reform movement sprang up slowly, which aimed at renovating and reconstructing the traditional cities into modern cities similar to the concessions. During the movement, Chinese traditional city initiated a process of modern urban planning for its modernization. Meanwhile, the traditional planning morphology and system started to disintegrate, on the contrary, western form and technology had become the paradigm. Therefore, the improvement of existing cities had become the prototype of urban planning of early modern China. Currently, researches of the movement mainly concentrate on large cities, concessions, railway hub cities and some special cities resembling those. However, the systematic research about the large number of traditional small and medium-sized cities is still blank, up to now. This paper takes the improvement constructions of small and medium-sized cities in Southern region of Jiangsu Province as the research object. First of all, the criteria of small and medium-sized cities are based on the administrative levels of general office and cities at the county level. Secondly, the suitability of taking the Southern Jiangsu as the research object. The southern area of Jiangsu province called Southern Jiangsu for short, was the most economically developed region in Jiangsu, and also one of the most economically developed and the highest urbanization regions in China. As the most developed agricultural areas in ancient China, Southern Jiangsu formed a large number of traditional small and medium-sized cities. In early modern times, with the help of the Shanghai economic radiation, geographical advantage and powerful economic foundation, Southern Jiangsu became an important birthplace of Chinese national industry. Furthermore, the strong business atmosphere promoted the widespread urban improvement practices, which were incomparable of other regions. Meanwhile, the demonstration of Shanghai, Zhenjiang, Suzhou and other port cities became the improvement pattern of small and medium-sized city in Southern Jiangsu. This paper analyzes the reform movement of the small and medium-sized cities in Southern Jiangsu (1895-1927), including the subjects, objects, laws, technologies and the influence factors of politic and society, etc. At last, this paper reveals the formation mechanism and characteristics of urban improvement movement in early modern China. According to the paper, the improvement of small-medium city was a kind of gestation of the local city planning culture in early modern China,with a fusion of introduction and endophytism.Keywords: early modern China, improvement of small-medium city, southern region of Jiangsu province, urban planning history of China
Procedia PDF Downloads 2605705 Contextual Factors of Innovation for Improving Commercial Banks' Performance in Nigeria
Authors: Tomola Obamuyi
Abstract:
The banking system in Nigeria adopted innovative banking, with the aim of enhancing financial inclusion, and making financial services readily and cheaply available to majority of the people, and to contribute to the efficiency of the financial system. Some of the innovative services include: Automatic Teller Machines (ATMs), National Electronic Fund Transfer (NEFT), Point of Sale (PoS), internet (Web) banking, Mobile Money payment (MMO), Real-Time Gross Settlement (RTGS), agent banking, among others. The introduction of these payment systems is expected to increase bank efficiency and customers' satisfaction, culminating in better performance for the commercial banks. However, opinions differ on the possible effects of the various innovative payment systems on the performance of commercial banks in the country. Thus, this study empirically determines how commercial banks use innovation to gain competitive advantage in the specific context of Nigeria's finance and business. The study also analyses the effects of financial innovation on the performance of commercial banks, when different periods of analysis are considered. The study employed secondary data from 2009 to 2018, the period that witnessed aggressive innovation in the financial sector of the country. The Vector Autoregression (VAR) estimation technique forecasts the relative variance of each random innovation to the variables in the VAR, examine the effect of standard deviation shock to one of the innovations on current and future values of the impulse response and determine the causal relationship between the variables (VAR granger causality test). The study also employed the Multi-Criteria Decision Making (MCDM) to rank the innovations and the performance criteria of Return on Assets (ROA) and Return on Equity (ROE). The entropy method of MCDM was used to determine which of the performance criteria better reflect the contributions of the various innovations in the banking sector. On the other hand, the Range of Values (ROV) method was used to rank the contributions of the seven innovations to performance. The analysis was done based on medium term (five years) and long run (ten years) of innovations in the sector. The impulse response function derived from the VAR system indicated that the response of ROA to the values of cheques transaction, values of NEFT transactions, values of POS transactions was positive and significant in the periods of analysis. The paper also confirmed with entropy and range of value that, in the long run, both the CHEQUE and MMO performed best while NEFT was next in performance. The paper concluded that commercial banks would enhance their performance by continuously improving on the services provided through Cheques, National Electronic Fund Transfer and Point of Sale since these instruments have long run effects on their performance. This will increase the confidence of the populace and encourage more usage/patronage of these services. The banking sector will in turn experience better performance which will improve the economy of the country. Keywords: Bank performance, financial innovation, multi-criteria decision making, vector autoregression,Keywords: Bank performance, financial innovation, multi-criteria decision making, vector autoregression
Procedia PDF Downloads 1215704 Recycling of Plastic Waste into Composites Using Kaolin as Reinforcement
Authors: Gloria P. Manu, Johnson K. Efavi, Abu Yaya, Grace K. Arkorful, Frank Godson
Abstract:
Plastics have been used extensively in both food and water packaging and other applications because of their inherent properties of low bulk densities and inertness as well as its low cost. Waste management of these plastics after usage is troubling in Ghana. One way of addressing the environmental problems associated with these plastic wastes is by recycling into useful products such as composites for energy and construction applications using natural or local materials as reinforcement. In this work, composites have been formed from waste low-density polyethylene (LDPE) and kaolin at temperatures as low as 70 ֯C using low-cost solvents like kerosene. Chemical surface modifications have been employed to improve the interfacial bonding resulting in the enhancement of properties of the composites. Kaolin particles of sizes ≤ 90µm were dispersed in the polyethylene matrix. The content of the LDPE was varied between 10, 20, 30, 40, 50, 60, and 70 %wt. Results obtained indicated that all the composites exhibited impressive compressive and flexural strengths with the 50%wt. composition having the highest strength. The hardness value of the composites increased as the polyethylene composition reduces and that of the kaolin increased. The average density and water of absorption of the composites were 530kg/m³ and 1.3% respectively.Keywords: polyethylene, recycling, waste, composite, kaolin
Procedia PDF Downloads 1735703 Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc
Authors: Minto Rattan, Tania Bose, Neeraj Chamoli
Abstract:
The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.Keywords: creep, isotropic, steady-state, thermal gradient
Procedia PDF Downloads 2695702 Performance Analysis of Routing Protocols for WLAN Based Wireless Sensor Networks (WSNs)
Authors: Noman Shabbir, Roheel Nawaz, Muhammad N. Iqbal, Junaid Zafar
Abstract:
This paper focuses on the performance evaluation of routing protocols in WLAN based Wireless Sensor Networks (WSNs). A comparative analysis of routing protocols such as Ad-hoc On-demand Distance Vector Routing System (AODV), Dynamic Source Routing (DSR) and Optimized Link State Routing (OLSR) is been made against different network parameters like network load, end to end delay and throughput in small, medium and large-scale sensor network scenarios to identify the best performing protocol. Simulation results indicate that OLSR gives minimum network load in all three scenarios while AODV gives the best throughput in small scale network but in medium and large scale networks, DSR is better. In terms of delay, OLSR is more efficient in small and medium scale network while AODV is slightly better in large networks.Keywords: WLAN, WSN, AODV, DSR, OLSR
Procedia PDF Downloads 4505701 Synthesis of Magnetic Plastic Waste-Reduced Graphene Oxide Composite and Its Application in Dye Adsorption from Aqueous Solution
Authors: Pamphile Ndagijimana, Xuejiao Liu, Zhiwei Li, Yin Wang
Abstract:
The valorization of plastic wastes, as a mitigation strategy, is attracting the researchers’ attention since these wastes have raised serious environmental concerns. Plastic wastes have been reported to adsorb the organic pollutants in the water environment and to be the main vector of those pollutants in the aquatic environment, especially dyes, as a serious water pollution concern. Recycling technologies of plastic wastes such as landfills, incineration, and energy recovery have been adopted to manage those wastes before getting exposed to the environment. However, they are far from being widely accepted due to their related environmental pollution, lack of space for the landfill as well as high cost. Therefore, modification is necessary for green plastic adsorbent in water applications. Current routes for plastic modification into adsorbents are based on the combustion method, but they have weaknesses of air pollution as well as high cost. Thus, the green strategy for plastic modification into adsorbents is highly required. Furthermore, recent researchers recommended that if plastic wastes are combined with other solid carbon materials, they could promote their application in water treatment. Herein, we present new insight into using plastic waste-based materials as future green adsorbents. Magnetic plastic-reduced graphene oxide (MPrGO) composite was synthesized by cross-linking method and applied in removing methylene blue (MB) from an aqueous solution. Furthermore, the following advantages have been achieved: (i) The density of plastic and reduced graphene oxide were enhanced, (ii) no second pollution of black color in solution, (iii) small amount of graphene oxide (1%) was linked on 10g of plastic waste, and the composite presented the high removal efficiency, (iv) easy recovery of adsorbent from water. The low concentration of MB (10-30mg/L) was all removed by 0.3g of MPrGO. Different characterization techniques such as XRD, SEM, FTIR, BET, XPS, and Raman spectroscopy were performed, and the results confirmed a conjugation between plastic waste and graphene oxide. This MPrGO composite presented a good prospect for the valorization of plastic waste, and it is a promising composite material in water treatment.Keywords: plastic waste, graphene oxide, dye, adsorption
Procedia PDF Downloads 915700 Uranium Adsorption Using a Composite Material Based on Platelet SBA-15 Supported Tin Salt Tungstomolybdophosphoric Acid
Authors: H. Aghayan, F. A. Hashemi, R. Yavari, S. Zolghadri
Abstract:
In this work, a new composite adsorbent based on a mesoporous silica SBA-15 with platelet morphology and tin salt of tungstomolybdophosphoric (TWMP) acid was synthesized and applied for uranium adsorption from aqueous solution. The sample was characterized by X-ray diffraction, Fourier transfer infra-red, and N2 adsorption-desorption analysis, and then, effect of various parameters such as concentration of metal ions and contact time on adsorption behavior was examined. The experimental result showed that the adsorption process was explained by the Langmuir isotherm model very well, and predominant reaction mechanism is physisorption. Kinetic data of adsorption suggest that the adsorption process can be described by the pseudo second-order reaction rate model.Keywords: platelet SBA-15, tungstomolybdophosphoric acid, adsorption, uranium ion
Procedia PDF Downloads 1885699 Validity of Universe Structure Conception as Nested Vortexes
Authors: Khaled M. Nabil
Abstract:
This paper introduces the Nested Vortexes conception of the universe structure and interprets all the physical phenomena according this conception. The paper first reviews recent physics theories, either in microscopic scale or macroscopic scale, to collect evidence that the space is not empty. But, these theories describe the property of the space medium without determining its structure. Determining the structure of space medium is essential to understand the mechanism that leads to its properties. Without determining the space medium structure, many phenomena; such as electric and magnetic fields, gravity, or wave-particle duality remain uninterpreted. Thus, this paper introduces a conception about the structure of the universe. It assumes that the universe is a medium of ultra-tiny homogeneous particles which are still undiscovered. Like any medium with certain movements, possibly because of a great asymmetric explosion, vortexes have occurred. A vortex condenses the ultra-tiny particles in its center forming a bigger particle, the bigger particles, in turn, could be trapped in a bigger vortex and condense in its center forming a much bigger particle and so on. This conception describes galaxies, stars, protons as particles at different levels. Existing of the particle’s vortexes make the consistency of the speed of light postulate is not true. This conception shows that the vortex motion dynamic agrees with the motion of all the universe particles at any level. An experiment has been carried out to detect the orbiting effect of aggregated vortexes of aligned atoms of a permanent magnet. Based on the described particle’s structure, the gravity force of a particle and attraction between particles as well as charge, electric and magnetic fields and quantum mechanics characteristics are interpreted. All augmented physics phenomena are solved.Keywords: astrophysics, cosmology, particles’ structure model, particles’ forces
Procedia PDF Downloads 1205698 TiO2 Formation after Nanotubes Growth on Ti-15Mo Alloy Surface for Different Annealing Temperatures
Authors: A. L. R. Rangel, J. A. M. Chaves, A. P. R. Alves Claro
Abstract:
Surface modification of titanium and its alloys using TiO2 nanotube growth has been widely studied for biomedical field due to excellent interaction between implant and biological environment. The success of this treatment is directly related to anatase phase formation (TiO2 phase) which affects the cells growth. The aim of this study was to evaluate the phases formed in the nanotubes growth on the Ti-15Mo surface. Nanotubes were grown by electrochemical anodization of the alloy in ammonium fluoride based glycerol electrolyte for 24 hours at 20V. Then, the samples were annealed at 200°,400°, 450°, 500°, 600°, and 800° C for 1 hour. Contact angles measurements, scanning electron microscopy images and X rays diffraction analysis (XRD) were carried out for all samples. Raman Spectroscopy was used to evaluate TiO2 phases transformation in nanotubes samples as well. The results of XRD showed anatase formation for lower temperatures, while at 800 ° C the rutile phase was observed all over the surface. Raman spectra indicate that this phase transition occurs between 500 and 600 °C. The different phases formed have influenced the nanotubes morphologies, since higher annealing temperatures induced agglutination of the TiO2 layer, disrupting the tubular structure. On the other hand, the nanotubes drastically reduced the contact angle, regardless the annealing temperature.Keywords: nanotubes, TiO2, titanium alloys, Ti-15Mo
Procedia PDF Downloads 3845697 Improving the Performance of Proton Exchange Membrane Using Fuzzy Logic
Authors: Sadık Ata, Kevser Dincer
Abstract:
In this study, the performance of proton exchange membrane (PEM) fuel cell was experimentally investigated and modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using Yttria-stabilized zirconia (YSZ). Input-output parameters were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6),High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of performance PEM fuel cell.Keywords: proton exchange membrane (PEM), fuel cell, rule-based mamdani-type fuzzy (RMBTF) modelling, Yttria-stabilized zirconia (YSZ)
Procedia PDF Downloads 2415696 Derivation of Bathymetry Data Using Worldview-2 Multispectral Images in Shallow, Turbid and Saline Lake Acıgöl
Authors: Muhittin Karaman, Murat Budakoglu
Abstract:
In this study, derivation of lake bathymetry was evaluated using the high resolution Worldview-2 multispectral images in the very shallow hypersaline Lake Acıgöl which does not have a stable water table due to the wet-dry season changes and industrial usage. Every year, a great part of the lake water budget has been consumed for the industrial salt production in the evaporation ponds, which are generally located on the south and north shores of Lake Acıgöl. Therefore, determination of the water level changes from a perspective of remote sensing-based lake water by bathymetry studies has a great importance in the sustainability-control of the lake. While the water table interval is around 1 meter between dry and wet season, dissolved ion concentration, salinity and turbidity also show clear differences during these two distinct seasonal periods. At the same time, with the satellite data acquisition (June 9, 2013), a field study was conducted to collect the salinity values, Secchi disk depths and turbidity levels. Max depth, Secchi disk depth and salinity were determined as 1,7 m, 0,9 m and 43,11 ppt, respectively. Eight-band Worldview-2 image was corrected for atmospheric effects by ATCOR technique. For each sampling point in the image, mean reflectance values in 1*1, 3*3, 5*5, 7*7, 9*9, 11*11, 13*13, 15*15, 17*17, 19*19, 21*21, 51*51 pixel reflectance neighborhoods were calculated separately. A unique image has been derivated for each matrix resolution. Spectral values and depth relation were evaluated for these distinct resolution images. Correlation coefficients were determined for the 1x1 matrix: 0,98, 0,96, 0,95 and 0,90 for the 724 nm, 831 nm, 908 nm and 659 nm, respectively. While 15x5 matrix characteristics with 0,98, 0,97 and 0,97 correlation values for the 724 nm, 908 nm and 831 nm, respectively; 51x51 matrix shows 0,98, 0,97 and 0,96 correlation values for the 724 nm, 831 nm and 659 nm, respectively. Comparison of all matrix resolutions indicates that RedEdge band (724 nm) of the Worldview-2 satellite image has the best correlation with the saline shallow lake of Acıgöl in-situ depth.Keywords: bathymetry, Worldview-2 satellite image, ATCOR technique, Lake Acıgöl, Denizli, Turkey
Procedia PDF Downloads 4475695 Mechanical Properties and Microstructural Analyzes of Epoxy Resins Reinforced with Satin Tissue
Authors: Băilă Diana Irinel, Păcurar Răzvan, Păcurar Ancuța
Abstract:
Although the volumes of fibre reinforced polymer composites (FRPs) used for aircraft applications is a relatively small percentage of total use, the materials often find their most sophisticated applications in this industry. In aerospace, the performance criteria placed upon materials can be far greater than in other areas – key aspects are light-weight, high-strength, high-stiffness, and good fatigue resistance. Composites were first used by the military before the technology was applied to commercial planes. Nowadays, composites are widely used, and this has been the result of a gradual direct substitution of metal components followed by the development of integrated composite designs as confidence in FRPs has increased. The airplane uses a range of components made from composites, including the fin and tailplane. In the last years, composite materials are increasingly used in automotive applications due to the improvement of material properties. In the aerospace and automotive sector, the fuel consumption is proportional to the weight of the body of the vehicle. A minimum of 20% of the cost can be saved if it used polymer composites in place of the metal structures and the operating and maintenance costs are alco very low. Glass fiber-epoxy composites are widely used in the making of aircraft and automobile body parts and are not only limited to these fields but also used in ship building, structural applications in civil engineering, pipes for the transport of liquids, electrical insulators in reactors. This article was establish the high-performance of composite material, a type glass-epoxy used in automotive and aeronautic domains, concerning the tensile and flexural tests and SEM analyzes.Keywords: glass-epoxy composite, traction and flexion tests, SEM analysis, acoustic emission (AE) signals
Procedia PDF Downloads 1035694 Cantilever Secant Pile Constructed in Sand: Capping Beam Analysis and Design - Part I
Authors: Khaled R. Khater
Abstract:
The paper theme is soil retaining structures. Cantilever secant-pile wall is triggering scientific point of curiosity. Specially the capping beams structural analysis and its interaction with secant piles as one integrated matrix. It is believed that straining actions of this integrated matrix are most probably induced due to a combination of induced line load and non-uniform horizontal pile tips displacement. The strategy that followed throughout this study starts by converting the pile head horizontal displacements generated by Plaxis-2D model to a system of concentrated line load acting per meter run along the capping beam. Then, those line loads are the input data of Staad-Pro 3D-model. Those models tailored to allow the capping beam and the secant piles interacting as one matrix, i.e. a unit. It is believed that the suggested strategy presents close to real structural simulation. The above is the paper thought and methodology. Three sand densities, one pile rigidity and one excavation depth, “h = 4.0-m,” are completely sufficient to achieve the paper’s objective.Keywords: secant piles, capping beam, analysis, design, plaxis 2D, staad pro 3D
Procedia PDF Downloads 1075693 Development of 3D Printed Natural Fiber Reinforced Composite Scaffolds for Maxillofacial Reconstruction
Authors: Sri Sai Ramya Bojedla, Falguni Pati
Abstract:
Nature provides the best of solutions to humans. One such incredible gift to regenerative medicine is silk. The literature has publicized a long appreciation for silk owing to its incredible physical and biological assets. Its bioactive nature, unique mechanical strength, and processing flexibility make us curious to explore further to apply it in the clinics for the welfare of mankind. In this study, Antheraea mylitta and Bombyx mori silk fibroin microfibers are developed by two economical and straightforward steps via degumming and hydrolysis for the first time, and a bioactive composite is manufactured by mixing silk fibroin microfibers at various concentrations with polycaprolactone (PCL), a biocompatible, aliphatic semi-crystalline synthetic polymer. Reconstructive surgery in any part of the body except for the maxillofacial region deals with replacing its function. But answering both the aesthetics and function is of utmost importance when it comes to facial reconstruction as it plays a critical role in the psychological and social well-being of the patient. The main concern in developing adequate bone graft substitutes or a scaffold is the noteworthy variation in each patient's bone anatomy. Additionally, the anatomical shape and size will vary based on the type of defect. The advent of additive manufacturing (AM) or 3D printing techniques to bone tissue engineering has facilitated overcoming many of the restraints of conventional fabrication techniques. The acquired patient's CT data is converted into a stereolithographic (STL)-file which is further utilized by the 3D printer to create a 3D scaffold structure in an interconnected layer-by-layer fashion. This study aims to address the limitations of currently available materials and fabrication technologies and develop a customized biomaterial implant via 3D printing technology to reconstruct complex form, function, and aesthetics of the facial anatomy. These composite scaffolds underwent structural and mechanical characterization. Atomic force microscopic (AFM) and field emission scanning electron microscopic (FESEM) images showed the uniform dispersion of the silk fibroin microfibers in the PCL matrix. With the addition of silk, there is improvement in the compressive strength of the hybrid scaffolds. The scaffolds with Antheraea mylitta silk revealed higher compressive modulus than that of Bombyx mori silk. The above results of PCL-silk scaffolds strongly recommend their utilization in bone regenerative applications. Successful completion of this research will provide a great weapon in the maxillofacial reconstructive armamentarium.Keywords: compressive modulus, 3d printing, maxillofacial reconstruction, natural fiber reinforced composites, silk fibroin microfibers
Procedia PDF Downloads 1995692 Investigation of Dry Ice Mixed Novel Hybrid Lubri-Coolant in Sustainable Machining of Ti-6AL-4V Alloy: A Comparison of Experimental and Modelling
Authors: Muhammad Jamil, Ning He, Aqib Mashood Khan, Munish Kumar Gupta
Abstract:
Ti-6Al-4V has numerous applications in the medical, automobile, and aerospace industries due to corrosion resistivity, structural stability, and chemical inertness to most fluids at room temperature. These peculiar characteristics are beneficial for their application and present formidable challenges during machining. Machining of Ti-6Al-4V produces an elevated cutting temperature above 1000oC at dry conditions. This accelerates tool wear and reduces product quality. Therefore, there is always a need to employ sustainable/effective coolant/lubricant when machining such alloy. In this study, Finite Element Modeling (FEM) and experimental analysis when cutting Ti-6Al-4V under a distinctly developed dry ice mixed hybrid lubri-coolant are presented. This study aims to model the milling process of Ti-6Al-4V under a proposed novel hybrid lubri-coolant using different cutting speeds and feed per tooth DEFORM® software package was used to conduct the FEM and the numerical model was experimentally validated. A comparison of experimental and simulation results showed a maximum error of no more than 6% for all experimental conditions. In a nutshell, it can be said that the proposed model is effective in predicting the machining temperature precisely.Keywords: friction coefficient, heat transfer, finite element modeling (FEM), milling Ti-6Al-4V
Procedia PDF Downloads 585691 A Coupled Stiffened Skin-Rib Fully Gradient Based Optimization Approach for a Wing Box Made of Blended Composite Materials
Authors: F. Farzan Nasab, H. J. M. Geijselaers, I. Baran, A. De Boer
Abstract:
A method is introduced for the coupled skin-rib optimization of a wing box where mass minimization is the objective and local buckling is the constraint. The structure is made of composite materials where continuity of plies in multiple adjacent panels (blending) has to be satisfied. Blending guarantees the manufacturability of the structure; however, it is a highly challenging constraint to treat and has been under debate in recent research in the same area. To fulfill design guidelines with respect to symmetry, balance, contiguity, disorientation and percentage rule of the layup, a reference for the stacking sequences (stacking sequence table or SST) is generated first. Then, an innovative fully gradient-based optimization approach in relation to a specific SST is introduced to obtain the optimum thickness distribution all over the structure while blending is fulfilled. The proposed optimization approach aims to turn the discrete optimization problem associated with the integer number of plies into a continuous one. As a result of a wing box deflection, a rib is subjected to load values which vary nonlinearly with the amount of deflection. The bending stiffness of a skin affects the wing box deflection and thus affects the load applied to a rib. This indicates the necessity of a coupled skin-rib optimization approach for a more realistic optimized design. The proposed method is examined with the optimization of the layup of a composite stiffened skin and rib of a wing torsion box subjected to in-plane normal and shear loads. Results show that the method can successfully prescribe a valid design with a significantly cheap computation cost.Keywords: blending, buckling optimization, composite panels, wing torsion box
Procedia PDF Downloads 4095690 Studies on H2S Gas Sensing Performance of Al2O3-Doped ZnO Thick Films at Ppb Level
Authors: M. K. Deore
Abstract:
The thick films of undoped and Al2O3 doped- ZnO were prepared by screen printing technique. AR grade (99.9 % pure) Zinc Oxide powder were mixed mechanochemically in acetone medium with Aluminium Chloride (AlCl2) material in various weight percentages such as 0.5, 1, 3 and 5 wt % to obtain Al2O3 - ZnO composite. The prepared materials were sintered at 1000oC for 12h in air ambience and ball milled to ensure sufficiently fine particle size. The electrical, structural and morphological properties of the films were investigated. The X-ray diffraction analysis of pure and doped ZnO shows the polycrystalline nature. The surface morphology of the films was studied by SEM. The final composition of each film was determined by EDAX analysis. The gas response of undoped and Al2O3- doped ZnO films were studied for different gases such as CO, H2, NH3, and H2S at operating temperature ranging from 50 oC to 450 o C. The pure film shows the response to H2S gas (500ppm) at 300oC while the film doped with 3 wt.% Al2O3 gives the good response to H2S gas(ppb) at 350oC. The selectivity, response and recovery time of the sensor were measured and presented.Keywords: thick films, ZnO-Al2O3, H2S gas, sensitivity, selectivity, response and recovery time
Procedia PDF Downloads 4205689 Testing Immunochemical Method for the Bacteriological Diagnosis of Bovine Tuberculosis
Authors: Assiya Madenovna Borsynbayeva, Kairat Altynbekovich Turgenbayev, Nikolay Petrovich Ivanov
Abstract:
In this article presents the results of rapid diagnostics of tuberculosis in comparison with classical bacteriological method. The proposed method of rapid diagnosis of tuberculosis than bacteriological method allows shortening the time of diagnosis to 7 days, to visualize the growth of mycobacteria in the semi-liquid medium and differentiate the type of mycobacterium. Fast definition of Mycobacterium tuberculosis and its derivatives in the culture medium is a new and promising direction in the diagnosis of tuberculosis.Keywords: animal diagnosis of tuberculosis, bacteriological diagnostics, antigen, specific antibodies, immunological reaction
Procedia PDF Downloads 3455688 Somatic Embryogenesis of Lachenalia viridiflora, a Critically Endangered Ornamental Geophyte with High Floricultural Potential
Authors: Vijay Kumar, Mack Moyo, Johannes Van Staden
Abstract:
Lachenalia viridiflora is a critically endangered bulbous plant with high potential on the international floriculture market. In the present study, an efficient protocol for in vitro plantlet regeneration through somatic embryogenesis was developed. Embryogenic callus was established on Murashige and Skoog (MS) basal medium supplemented with various concentrations and combinations of picloram and thidiazuron (TDZ). A high number of SEs (28.5 ± 1.49) with at different developmental stages of somatic embryos (SEs: globular embryos, torpedo and cotyledon embryo with bipolar characteristics) was obtained on Murashige and Skoog (MS) (Murashige and Skoog 1962) medium with 2.5 μM picloram, and 1.0 μM TDZ. Histological and scanning electron microscopic (SEM) analysis confirmed the presence of somatic embryos. Mature somatic embryos germinated and developed into plantlets after 6 weeks on half/full strength MS medium. High plant regeneration frequency (91.11 %) was achieved on full-strength MS medium supplemented with 5 μM phloroglucinol (PG). Well-developed healthy plantlets were successfully acclimatized in the greenhouse with a survival rate of 80%. The result of this study is beneficial in the mass propagation of high-quality Lachenalia viridiflora clonal plants for the commercial horticultural market and also provides a platform for future genetic transformation studies on the plant.Keywords: horticultural plant, Lachenalia viridiflora, phloroglucinol, somatic embryogenesis, thidiazuron
Procedia PDF Downloads 6315687 Study of the Green Composite Jute/Epoxy
Authors: A. Mir, C. Aribi, B. Bezzazi
Abstract:
Work presented is interested in the characterization of the quasistatic mechanical properties and in fatigue of a composite laminated in jute/epoxy. The natural fibers offer promising prospects thanks to their interesting specific properties, because of their low density, but also with their bio deterioration. Several scientific studies highlighted the good mechanical resistance of the vegetable fiber composites reinforced, even after several recycling. Because of the environmental standards which become increasingly severe, one attends the emergence of eco-materials at the base of natural fibers such as flax, bamboo, hemp, sisal, jute. The fatigue tests on elementary vegetable fibers show an increase of about 60% of the rigidity of elementary fibers of hemp subjected to cyclic loading. In this study, the test-tubes manufactured by the method infusion have sequences of stacking of 0/90° and ± 45° for the shearing and tensile tests. The quasistatic tests reveal a variability of the mechanical properties of about 8%. The tensile fatigue tests were carried out for levels of constraints equivalent to half of the ultimate values of the composite. Once the fatigue tests carried out for well-defined values of cycles, a series of static tests of traction type highlights the influence of the number of cycles on the quasi static mechanical behavior of the laminate jute/epoxy.Keywords: jute, epoxy resin, mechanical, static, dynamic behavior
Procedia PDF Downloads 2445686 Improving the Biomechanical Resistance of a Treated Tooth via Composite Restorations Using Optimised Cavity Geometries
Authors: Behzad Babaei, B. Gangadhara Prusty
Abstract:
The objective of this study is to assess the hypotheses that a restored tooth with a class II occlusal-distal (OD) cavity can be strengthened by designing an optimized cavity geometry, as well as selecting the composite restoration with optimized elastic moduli when there is a sharp de-bonded edge at the interface of the tooth and restoration. Methods: A scanned human maxillary molar tooth was segmented into dentine and enamel parts. The dentine and enamel profiles were extracted and imported into a finite element (FE) software. The enamel rod orientations were estimated virtually. Fifteen models for the restored tooth with different cavity occlusal depths (1.5, 2, and 2.5 mm) and internal cavity angles were generated. By using a semi-circular stone part, a 400 N load was applied to two contact points of the restored tooth model. The junctions between the enamel, dentine, and restoration were considered perfectly bonded. All parts in the model were considered homogeneous, isotropic, and elastic. The quadrilateral and triangular elements were employed in the models. A mesh convergence analysis was conducted to verify that the element numbers did not influence the simulation results. According to the criteria of a 5% error in the stress, we found that a total element number of over 14,000 elements resulted in the convergence of the stress. A Python script was employed to automatically assign 2-22 GPa moduli (with increments of 4 GPa) for the composite restorations, 18.6 GPa to the dentine, and two different elastic moduli to the enamel (72 GPa in the enamel rods’ direction and 63 GPa in perpendicular one). The linear, homogeneous, and elastic material models were considered for the dentine, enamel, and composite restorations. 108 FEA simulations were successively conducted. Results: The internal cavity angles (α) significantly altered the peak maximum principal stress at the interface of the enamel and restoration. The strongest structures against the contact loads were observed in the models with α = 100° and 105. Even when the enamel rods’ directional mechanical properties were disregarded, interestingly, the models with α = 100° and 105° exhibited the highest resistance against the mechanical loads. Regarding the effect of occlusal cavity depth, the models with 1.5 mm depth showed higher resistance to contact loads than the model with thicker cavities (2.0 and 2.5 mm). Moreover, the composite moduli in the range of 10-18 GPa alleviated the stress levels in the enamel. Significance: For the class II OD cavity models in this study, the optimal geometries, composite properties, and occlusal cavity depths were determined. Designing the cavities with α ≥100 ̊ was significantly effective in minimizing peak stress levels. The composite restoration with optimized properties reduced the stress concentrations on critical points of the models. Additionally, when more enamel was preserved, the sturdier enamel-restoration interface against the mechanical loads was observed.Keywords: dental composite restoration, cavity geometry, finite element approach, maximum principal stress
Procedia PDF Downloads 1025685 Primary School Teacher's Perception of the Efficacy of Mother Tongue-Based Multilingual Education (MTB-MLE) in Saint Louis University, Laboratory Elementary School
Authors: Villiam Ambong, Kevin Banawag, Wynne Shane Bugatan, Mark Alvin Jay Carpio, Hwan Hee Choi, Moises Kevin Chungalao
Abstract:
This survey research investigated the perception of primary school teachers on the efficacy of MTB-MLE in SLU-LES, Baguio City. SLU-LES has a total of 21 primary school teachers who served as respondents of this study in an attempt to answer the major questions regarding the efficacy of MTB-MLE among primary school teachers. A questionnaire was used in collecting the data which were analyzed using weighted mean and ANOVA. The questionnaire was validated by a statistician and it was administered to a school which does not differ from the intended respondents for further validation of the items. Findings revealed from the intended respondents that they perceive MTB-MLE as effective; however, they do not prefer the use of Mother Tongue as a medium of instruction. A research on the same topic was conducted in Ibadan, Nigeria by Dr. David O. Fakeye and although his respondents were students; the results came out that the respondents do perceive MTB-MLE to be efficacious. The results of this study also showed that years of teaching experience and the number of languages spoken by the teachers have no bearing on the preference of the respondents between MT medium and English medium gave that the respondents are in melting pot community. Comparative studies between rural and urban schools are encouraged. Future researchers should include questions that elicit reasons of the respondents on the efficacy of mother tongue as well as their preference between mother tongue medium and English.Keywords: mother tongue, primary teachers, perception, multilingual education
Procedia PDF Downloads 2795684 An Image Processing Scheme for Skin Fungal Disease Identification
Authors: A. A. M. A. S. S. Perera, L. A. Ranasinghe, T. K. H. Nimeshika, D. M. Dhanushka Dissanayake, Namalie Walgampaya
Abstract:
Nowadays, skin fungal diseases are mostly found in people of tropical countries like Sri Lanka. A skin fungal disease is a particular kind of illness caused by fungus. These diseases have various dangerous effects on the skin and keep on spreading over time. It becomes important to identify these diseases at their initial stage to control it from spreading. This paper presents an automated skin fungal disease identification system implemented to speed up the diagnosis process by identifying skin fungal infections in digital images. An image of the diseased skin lesion is acquired and a comprehensive computer vision and image processing scheme is used to process the image for the disease identification. This includes colour analysis using RGB and HSV colour models, texture classification using Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix and Local Binary Pattern, Object detection, Shape Identification and many more. This paper presents the approach and its outcome for identification of four most common skin fungal infections, namely, Tinea Corporis, Sporotrichosis, Malassezia and Onychomycosis. The main intention of this research is to provide an automated skin fungal disease identification system that increase the diagnostic quality, shorten the time-to-diagnosis and improve the efficiency of detection and successful treatment for skin fungal diseases.Keywords: Circularity Index, Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix, Local Binary Pattern, Object detection, Ring Detection, Shape Identification
Procedia PDF Downloads 2325683 Buckling Resistance of GFRP Sandwich Infill Panels with Different Cores under Increased Temperatures
Authors: WooYoung Jung, V. Sim
Abstract:
This paper presents numerical analysis in terms of buckling resistance strength of polymer matrix composite (PMC) infill panels system under the influence of temperature on the foam core. Failure mode under in-plane compression is investigated by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length and both the type of foam for core and the variation of its Young's Modulus under the thermal influence. Variation of temperature is considered in static cases and only applied to core. Indeed, it is shown that the effect of temperature on the panel system mechanical properties is significance. Moreover, the variations of temperature result in the decrements of the system strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on performance of infill panel. Their significance factors are based on type of polymer for core. Hence, by comparing difference type of core material, the variation can be reducing.Keywords: buckling, contact length, foam core, temperature dependent
Procedia PDF Downloads 2985682 Primary School Teachers’ Perception on the Efficacy of Mother Tongue-Based Multilingual Education (MTB-MLE) in Saint Louis University, Laboratory Elementary School
Authors: Villiam C. Ambong, Kevin G. Banawag, Wynne Shane B. Bugatan, Mark Alvin Jay R. Carpio, Hwan Hee Choi, Moses Kevin L. Chungalao
Abstract:
This survey research investigated the perception of primary school teachers on the efficacy of MTB-MLE in SLU-LES, Baguio City. SLU-LES has a total of 21 primary school teachers who served as the respondents of this study in an attempt to answer three major questions regarding the efficacy of MTB-MLE among primary school teachers. A questionnaire was used in collecting the data which were analyzed using weighted mean and ANOVA. The questionnaire was validated by a statistician and it was administered to a school which does not differ from the intended respondents for further validation of the items. Findings revealed from the intended respondents that they perceive MTB-MLE as effective; however, they do not prefer the use of Mother Tongue as medium of instruction. A research of the same topic was conducted in Ibadan, Nigeria by Dr. David O. Fakeye and although his respondents were students; the results came out that the respondents do perceive MTB-MLE to be efficacious. The results of this study also showed that years of teaching experience and number of languages spoken by the teachers have no bearing on the preference of the respondents between MT medium and English medium given that the respondents are in a melting pot community. Comparative studies between rural schools and urban schools are encouraged. Future researches should include questions that elicit reasons of the respondents on the efficacy of mother tongue as well as their preference between mother tongue medium and English.Keywords: mother tongue, primary teachers, perception, multilingual education
Procedia PDF Downloads 4535681 Tricalcium Phosphate-Chitosan Composites for Tissue Engineering Applications
Authors: G. Voicu, C. D. Ghitulica, A. Cucuruz, C. Busuioc
Abstract:
In the field of tissue engineering, the compositional and microstructural features of the employed materials play an important role, with implications on the mechanical and biological behaviour of the medical devices. In this context, the development of calcium phosphate-natural biopolymer composites represents a choice of many scientific groups. Thus, tricalcium phosphate powders were synthesized by a wet method, namely co-precipitation, starting from high purity reagents. Moreover, the substitution of calcium with magnesium have been approached, in the 5-10 wt.% range. Afterwards, the phosphate powders were integrated into two types of composites with chitosan, different from morphological point of view. First, 3D porous scaffolds were obtained by a freeze-drying procedure. Second, uniform compact films were achieved by film casting. The influence of chitosan molecular weight (low, medium and high), as well as phosphate powder to polymer ratio (1:1 and 1:2) on the morphological properties, were analysed in detail. In conclusion, the reported biocomposites, prepared by a straightforward route are suitable for bone substitution or repairing applications.Keywords: bone reconstruction, chitosan, composite scaffolds, tricalcium phosphate
Procedia PDF Downloads 2445680 Turing Pattern in the Oregonator Revisited
Authors: Elragig Aiman, Dreiwi Hanan, Townley Stuart, Elmabrook Idriss
Abstract:
In this paper, we reconsider the analysis of the Oregonator model. We highlight an error in this analysis which leads to an incorrect depiction of the parameter region in which diffusion driven instability is possible. We believe that the cause of the oversight is the complexity of stability analyses based on eigenvalues and the dependence on parameters of matrix minors appearing in stability calculations. We regenerate the parameter space where Turing patterns can be seen, and we use the common Lyapunov function (CLF) approach, which is numerically reliable, to further confirm the dependence of the results on diffusion coefficients intensities.Keywords: diffusion driven instability, common Lyapunov function (CLF), turing pattern, positive-definite matrix
Procedia PDF Downloads 3585679 Prediction of Springback in U-bending of W-Temper AA6082 Aluminum Alloy
Authors: Jemal Ebrahim Dessie, Lukács Zsolt
Abstract:
High-strength aluminum alloys have drawn a lot of attention because of the expanding demand for lightweight vehicle design in the automotive sector. Due to poor formability at room temperature, warm and hot forming have been advised. However, warm and hot forming methods need more steps in the production process and an advanced tooling system. In contrast, since ordinary tools can be used, forming sheets at room temperature in the W temper condition is advantageous. However, springback of supersaturated sheets and their thinning are critical challenges and must be resolved during the use of this technique. In this study, AA6082-T6 aluminum alloy was solution heat treated at different oven temperatures and times using a specially designed and developed furnace in order to optimize the W-temper heat treatment temperature. A U-shaped bending test was carried out at different time periods between W-temper heat treatment and forming operation. Finite element analysis (FEA) of U-bending was conducted using AutoForm aiming to validate the experimental result. The uniaxial tensile and unload test was performed in order to determine the kinematic hardening behavior of the material and has been optimized in the Finite element code using systematic process improvement (SPI). In the simulation, the effect of friction coefficient & blank holder force was considered. Springback parameters were evaluated by the geometry adopted from the NUMISHEET ’93 benchmark problem. It is noted that the change of shape was higher at the more extended time periods between W-temper heat treatment and forming operation. Die radius was the most influential parameter at the flange springback. However, the change of shape shows an overall increasing tendency on the sidewall as the increase of radius of the punch than the radius of the die. The springback angles on the flange and sidewall seem to be highly influenced by the coefficient of friction than blank holding force, and the effect becomes increases as increasing the blank holding force.Keywords: aluminum alloy, FEA, springback, SPI, U-bending, W-temper
Procedia PDF Downloads 1005678 Investigating Secondary Students’ Attitude towards Learning English
Authors: Pinkey Yaqub
Abstract:
The aim of this study was to investigate secondary (grades IX and X) students’ attitudes towards learning the English language based on the medium of instruction of the school, the gender of the students and the grade level in which they studied. A further aim was to determine students’ proficiency in the English language according to their gender, the grade level and the medium of instruction of the school. A survey was used to investigate the attitudes of secondary students towards English language learning. Simple random sampling was employed to obtain a representative sample of the target population for the research study as a comprehensive list of established English medium schools, and newly established English medium schools were available. A questionnaire ‘Attitude towards English Language Learning’ (AtELL) was adapted from a research study on Libyan secondary school students’ attitudes towards learning English language. AtELL was reviewed by experts (n=6) and later piloted on a representative sample of secondary students (n= 160). Subsequently, the questionnaire was modified - based on the reviewers’ feedback and lessons learnt during the piloting phase - and directly administered to students of grades 9 and 10 to gather information regarding their attitudes towards learning the English language. Data collection spanned a month and a half. As the data were not normally distributed, the researcher used Mann-Whitney tests to test the hypotheses formulated to investigate students’ attitudes towards learning English as well as proficiency in the language across the medium of instruction of the school, the gender of the students and the grade level of the respondents. Statistical analyses of the data showed that the students of established English medium schools exhibited a positive outlook towards English language learning in terms of the behavioural, cognitive and emotional aspects of attitude. A significant difference was observed in the attitudes of male and female students towards learning English where females showed a more positive attitude in terms of behavioural, cognitive and emotional aspects as compared to their male counterparts. Moreover, grade 10 students had a more positive attitude towards learning English language in terms of behavioural, cognitive and emotional aspects as compared to grade 9 students. Nonetheless, students of newly established English medium schools were more proficient in English as gauged by their examination scores in this subject as compared to their counterparts studying in established English medium schools. Moreover, female students were more proficient in English while students studying in grade 9 were less proficient in English than their seniors studying in grade 10. The findings of this research provide empirical evidence to future researchers wishing to explore the relationship between attitudes towards learning language and variables such as the medium of instruction of the school, gender and the grade level of the students. Furthermore, policymakers might revisit the English curriculum to formulate specific guidelines that promote a positive and gender-balanced outlook towards learning English for male and female students.Keywords: attitude, behavioral aspect of attitude, cognitive aspect of attitude, emotional aspect of attitude
Procedia PDF Downloads 228