Search results for: hierarchical architecture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2313

Search results for: hierarchical architecture

693 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm

Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim

Abstract:

All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.

Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features

Procedia PDF Downloads 235
692 Mind Care Assistant - Companion App

Authors: Roshani Gusain, Deep Sinha, Karan Nayal, Anmol Kumar Mishra, Manav Singh

Abstract:

In this research paper, we introduce "Mind Care Assistant - Companion App", which is a Flutter and Firebase-based mental health monitor. The app wants to improve and monitor the mental health of its users, it uses noninvasive ways to check for a change in their emotional state. By responding to questions, the app will provide individualized suggestions ᅳ tasks and mindfulness exercises ᅳ for users who are depressed or anxious. The app features a chat-bot that incorporates cognitive behavioural therapy (CBT) principles and combines natural language processing with machine learning to develop personalised responses. The feature of the app that makes it easy for us to choose between iOS and Android is cross-platform, which allows users from both mobile systems to experience almost no changes in their interfaces. With Firebase integration synchronized and real-time data storage, security is easily possible. The paper covers the architecture of the app, how it was developed and some important features. The primary research result presents the promise of a "Mind Care Assistant" in mental health care using new wait-for-health technology, proposing a full stack application to be able to manage depression/anxiety and overall Mental well-being very effectively.

Keywords: mental health, mobile application, flutter, firebase, Depression, Anxiety

Procedia PDF Downloads 12
691 An Enhanced Distributed Weighted Clustering Algorithm for Intra and Inter Cluster Routing in MANET

Authors: K. Gomathi

Abstract:

Mobile Ad hoc Networks (MANET) is defined as collection of routable wireless mobile nodes with no centralized administration and communicate each other using radio signals. Especially MANETs deployed in hostile environments where hackers will try to disturb the secure data transfer and drain the valuable network resources. Since MANET is battery operated network, preserving the network resource is essential one. For resource constrained computation, efficient routing and to increase the network stability, the network is divided into smaller groups called clusters. The clustering architecture consists of Cluster Head(CH), ordinary node and gateway. The CH is responsible for inter and intra cluster routing. CH election is a prominent research area and many more algorithms are developed using many different metrics. The CH with longer life sustains network lifetime, for this purpose Secondary Cluster Head(SCH) also elected and it is more economical. To nominate efficient CH, a Enhanced Distributed Weighted Clustering Algorithm (EDWCA) has been proposed. This approach considers metrics like battery power, degree difference and speed of the node for CH election. The proficiency of proposed one is evaluated and compared with existing algorithm using Network Simulator(NS-2).

Keywords: MANET, EDWCA, clustering, cluster head

Procedia PDF Downloads 398
690 HcDD: The Hybrid Combination of Disk Drives in Active Storage Systems

Authors: Shu Yin, Zhiyang Ding, Jianzhong Huang, Xiaojun Ruan, Xiaomin Zhu, Xiao Qin

Abstract:

Since large-scale and data-intensive applications have been widely deployed, there is a growing demand for high-performance storage systems to support data-intensive applications. Compared with traditional storage systems, next-generation systems will embrace dedicated processor to reduce computational load of host machines and will have hybrid combinations of different storage devices. The advent of flash- memory-based solid state disk has become a critical role in revolutionizing the storage world. However, instead of simply replacing the traditional magnetic hard disk with the solid state disk, it is believed that finding a complementary approach to corporate both of them is more challenging and attractive. This paper explores an idea of active storage, an emerging new storage configuration, in terms of the architecture and design, the parallel processing capability, the cooperation of other machines in cluster computing environment, and a disk configuration, the hybrid combination of different types of disk drives. Experimental results indicate that the proposed HcDD achieves better I/O performance and longer storage system lifespan.

Keywords: arallel storage system, hybrid storage system, data inten- sive, solid state disks, reliability

Procedia PDF Downloads 448
689 Modular, Responsive, and Interactive Green Walls - A Case Study

Authors: Flaviu Mihai Frigura-Lliasa, Andreea Anamaria Anghel, Attila Simo

Abstract:

Due to the beauty, usefulness, science, constantly changing, constantly evolving features, and most of the time, mystery it involves, nature-based art is seen as a both modern and timeless direction that has been extensively used in design. The goal of the team's activities was to experiment with ways of fusing the two most common contemporary ways of referring to green installations, that is, either in a pure artistic or in an ecological manner, and creating a living, dynamic, interactive installation capable of both receiving and interpreting external factors, such as natural and human stimuli, that would not only determine some of the mechanism's presets. By consequent, a complex experiment made up of various research and project stages was elaborated in order to transform an idea into an actual interactive green installation within months thanks to the interaction, teamwork, and design processes undertaken throughout the academic years by both university lecturers and some of our students. The outcomes would lead to the development of a dynamic artwork called "Modgrew" as well as the introduction of experiment-based learning at the Timisoara Faculty of Architecture and Urban Planning, as well as at the Faculty of Electrical and Power Engineering, for the green wall automation issues.

Keywords: green design, living walls, modular structure, interactive proof of concept

Procedia PDF Downloads 76
688 A Critical Analysis of Cognitive Explanations of Afterlife Belief

Authors: Mahdi Biabanaki

Abstract:

Religion is present in all human societies and has been for tens of thousands of years. What is noteworthy is that although religious traditions vary in different societies, there are considerable similarities in their religious beliefs. In all human cultures, for example, there is a widespread belief in the afterlife. Cognitive science of Religion (CSR), an emerging branch of cognitive science, searches for the root of these widespread similarities and the widespread prevalence of beliefs such as beliefs in the afterlife in common mental structures among humans. Accordingly, the cognitive architecture of the human mind has evolved to produce such beliefs automatically and non-reflectively. For CSR researchers, belief in the afterlife is an intuitive belief resulting from the functioning of mental tools. Our purpose in this article is to extract and evaluate the cognitive explanations presented in the CSR field for explaining beliefs in the afterlife. Our research shows that there are two basic theories in this area of CSR, namely "intuitive dualism" and "simulation constraint" theory. We show that these two theories face four major challenges and limitations in explaining belief in the afterlife: inability to provide a causal explanation, inability to explain cultural/religious differences in afterlife belief, the lack of distinction between the natural and the rational foundations of belief in the afterlife and disregarding the supernatural foundations of the afterlife belief.

Keywords: afterlife, cognitive science of religion, intuitive dualism, simulation constraint

Procedia PDF Downloads 213
687 Mechanical Response of Aluminum Foam Under Biaxial Combined Quasi-Static Compression-Torsional Loads

Authors: Solomon Huluka, Akrum Abdul-Latif, Rachid Baleh

Abstract:

Metal foams have been developed intensively as a new class of materials for the last two decades due to their unique structural and multifunctional properties. The aim of this experimental work was to characterize the effect of biaxial loading complexity (combined compression-torsion) on the plastic response of highly uniform architecture open-cell aluminum foams of spherical porous with a density of 80%. For foam manufacturing, the Kelvin cells model was used to generate the generally spherical shape with a cell diameter of 11 mm. A patented rig called ACTP (Absorption par Compression-Torsion Plastique), was used to investigate the foam response under quasi-static complex loading paths having different torsional components (i.e. 0°, 45° and 60°). The key mechanical responses to be examined are yield stress, stress plateau, and energy absorption capacity. The collapse mode was also investigated. It was concluded that the higher the loading complexity, the greater the yield strength and the greater energy absorption capacity of the foam. Experimentally, it was also noticed that there were large softening effects that occurred after the first pick stress for both biaxial-45° and biaxial-60° loading.

Keywords: aluminum foam, loading complexity, characterization, biaxial loading

Procedia PDF Downloads 142
686 Accessibility and Visibility through Space Syntax Analysis of the Linga Raj Temple in Odisha, India

Authors: S. Pramanik

Abstract:

Since the early ages, the Hindu temples have been interpreted through various Vedic philosophies. These temples are visited by pilgrims which demonstrate the rituals and religious belief of communities, reflecting a variety of actions and behaviors. Darsana a direct seeing, is a part of the pilgrimage activity. During the process of Darsana, a devotee is prepared for entry in the temple to realize the cognizing Truth culminating in visualizing the idol of God, placed at the Garbhagriha (sanctum sanctorum). For this, the pilgrim must pass through a sequential arrangement of spaces. During the process of progress, the pilgrims visualize the spaces differently from various points of views. The viewpoints create a variety of spatial patterns in the minds of pilgrims coherent to the Hindu philosophies. The space organization and its order are perceived by various techniques of spatial analysis. A temple, as examples of Kalinga stylistic variations, has been chosen for the study. This paper intends to demonstrate some visual patterns generated during the process of Darsana (visibility) and its accessibility by Point Isovist Studies and Visibility Graph Analysis from the entrance (Simha Dwara) to The Sanctum sanctorum (Garbhagriha).

Keywords: Hindu temple architecture, point isovist, space syntax analysis, visibility graph analysis

Procedia PDF Downloads 120
685 Impact of Legs Geometry on the Efficiency of Thermoelectric Devices

Authors: Angel Fabian Mijangos, Jaime Alvarez Quintana

Abstract:

Key concepts like waste heat recycling or waste heat recovery are the basic ideas in thermoelectricity so as to the design the newest solid state sources of energy for a stable supply of electricity and environmental protection. According to several theoretical predictions; at device level, the geometry and configuration of the thermoelectric legs are crucial in the thermoelectric performance of the thermoelectric modules. Thus, in this work, it has studied the geometry effect of legs on the thermoelectric figure of merit ZT of the device. First, asymmetrical legs are proposed in order to reduce the overall thermal conductance of the device so as to increase the temperature gradient in the legs, as well as by harnessing the Thomson effect, which is generally neglected in conventional symmetrical thermoelectric legs. It has been developed a novel design of a thermoelectric module having asymmetrical legs, and by first time it has been validated experimentally its thermoelectric performance by realizing a proof-of-concept device which shows to have almost twofold the thermoelectric figure of merit as compared to conventional one. Moreover, it has been also varied the length of thermoelectric legs in order to analyze its effect on the thermoelectric performance of the device. Along with this, it has studied the impact of contact resistance in these systems. Experimental results show that device architecture can improve up to twofold the thermoelectric performance of the device.

Keywords: asymmetrical legs, heat recovery, heat recycling, thermoelectric module, Thompson effect

Procedia PDF Downloads 241
684 Long Distance Aspirating Smoke Detection for Large Radioactive Areas

Authors: Michael Dole, Pierre Ninin, Denis Raffourt

Abstract:

Most of the CERN’s facilities hosting particle accelerators are large, underground and radioactive areas. All fire detection systems installed in such areas, shall be carefully studied to cope with the particularities of this stringent environment. The detection equipment usually chosen by CERN to secure these underground facilities are based on air sampling technology. The electronic equipment is located in non-radioactive areas whereas air sampling networks are deployed in radioactive areas where fire detection is required. The air sampling technology provides very good detection performances and prevent the "radiation-to-electronic" effects. In addition, it reduces the exposure to radiations of maintenance workers and is permanently available during accelerator operation. In order to protect the Super Proton Synchrotron and its 7 km tunnels, a specific long distance aspirating smoke detector has been developed to detect smoke at up to 700 meters between electronic equipment and the last air sampling hole. This paper describes the architecture, performances and return of experience of the long distance fire detection system developed and installed to secure the CERN Super Proton Synchrotron tunnels.

Keywords: air sampling, fire detection, long distance, radioactive areas

Procedia PDF Downloads 162
683 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning

Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag

Abstract:

The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.

Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling

Procedia PDF Downloads 91
682 A Distinct Method Based on Mamba-Unet for Brain Tumor Image Segmentation

Authors: Djallel Bouamama, Yasser R. Haddadi

Abstract:

Accurate brain tumor segmentation is crucial for diagnosis and treatment planning, yet it remains a challenging task due to the variability in tumor shapes and intensities. This paper introduces a distinct approach to brain tumor image segmentation by leveraging an advanced architecture known as Mamba-Unet. Building on the well-established U-Net framework, Mamba-Unet incorporates distinct design enhancements to improve segmentation performance. Our proposed method integrates a multi-scale attention mechanism and a hybrid loss function to effectively capture fine-grained details and contextual information in brain MRI scans. We demonstrate that Mamba-Unet significantly enhances segmentation accuracy compared to conventional U-Net models by utilizing a comprehensive dataset of annotated brain MRI scans. Quantitative evaluations reveal that Mamba-Unet surpasses traditional U-Net architectures and other contemporary segmentation models regarding Dice coefficient, sensitivity, and specificity. The improvements are attributed to the method's ability to manage class imbalance better and resolve complex tumor boundaries. This work advances the state-of-the-art in brain tumor segmentation and holds promise for improving clinical workflows and patient outcomes through more precise and reliable tumor detection.

Keywords: brain tumor classification, image segmentation, CNN, U-NET

Procedia PDF Downloads 34
681 The Dynamics of Planktonic Crustacean Populations in an Open Access Lagoon, Bordered by Heavy Industry, Southwest, Nigeria

Authors: E. O. Clarke, O. J. Aderinola, O. A. Adeboyejo, M. A. Anetekhai

Abstract:

Aims: The study is aimed at establishing the influence of some physical and chemical parameters on the abundance, distribution pattern and seasonal variations of the planktonic crustacean populations. Place and Duration of Study: A premier investigation into the dynamics of planktonic crustacean populations in Ologe lagoon was carried out from January 2011 to December 2012. Study Design: The study covered identification, temporal abundance, spatial distribution and diversity of the planktonic crustacea. Methodology: Standard techniques were used to collect samples from eleven stations covering five proximal satellite towns (Idoluwo, Oto, Ibiye, Obele, and Gbanko) bordering the lagoon. Data obtained were statistically analyzed using linear regression and hierarchical clustering. Results:Thirteen (13) planktonic crustacean populations were identified. Total percentage abundance was highest for Bosmina species (20%) and lowest for Polyphemus species (0.8%). The Pearson’s correlation coefficient (“r” values) between total planktonic crustacean population and some physical and chemical parameters showed that positive correlations having low level of significance occurred with salinity (r = 0.042) (sig = 0.184) and with surface water dissolved oxygen (r = 0.299) (sig = 0.155). Linear regression plots indicated that, the total population of planktonic crustacea were mainly influenced and only increased with an increase in value of surface water temperature (Rsq = 0.791) and conductivity (Rsq = 0.589). The total population of planktonic crustacea had a near neutral (zero correlation) with the surface water dissolved oxygen and thus, does not significantly change with the level of the surface water dissolved oxygen. The correlations were positive with NO3-N (midstream) at Ibiye (Rsq =0.022) and (downstream) Gbanko (Rsq =0.013), PO4-P at Ibiye (Rsq =0.258), K at Idoluwo (Rsq =0.295) and SO4-S at Oto (Rsq = 0.094) and Gbanko (Rsq = 0.457). The Berger-Parker Dominance Index (BPDI) showed that the most dominant species was Bosmina species (BPDI = 1.000), followed by Calanus species (BPDI = 1.254). Clusters by squared Euclidan distances using average linkage between groups showed proximities, transcending the borders of genera. Conclusion: The results revealed that planktonic crustacean population in Ologe lagoon undergo seasonal perturbations, were highly influenced by nutrient, metal and organic matter inputs from river Owoh, Agbara industrial estate and surrounding farmlands and were patchy in spatial distribution.

Keywords: diversity, dominance, perturbations, richness, crustacea, lagoon

Procedia PDF Downloads 721
680 Tectonic Inversion Manifestations in the Jebel Rouas-Ruissate (Northeastern Tunisia)

Authors: Aymen Arfaoui, Abdelkader Soumaya, Noureddine Ben Ayed

Abstract:

The Rouas-Ruissateis a part of TunisianAtlas system. Analyze of the collected field data allowed us to propose a new interpretation for the main structural features of thisregion. Tectonic inversions along NE-SW trending fault of Zaghouan and holokinetic movements are the main factors controlling the architecture and geometry of the Jebel Rouas-Ruissate. The presence of breccias, Slumps, and synsedimentaryfaults along NW-SE and N-S trending major faults show that they were active during the Mesozoicextensionalepisodes. During Cenozoic inversion period, this structurewas shaped as imbricatefansformed byNE-SW trending thrust faults. The angularunconformitybetweenupperEocene- Oligocene, and Cretaceousdeposits reveals a compressive Eocene tectonic phase (called Pyrenean phase)occurred duringPaleocene-lower Eocene.The Triassicsaltsacted as a decollementlevel in the NE-SW trendingfault propagation fold model of the Rouas-Ruissate.The inversion of fault-slip data along the main regional fault zones reveals a coexistence of strike-slip and reverse fault stress regimes with NW-SE maximum horizontal stress(SHmax) characterizing the Alpine compressive phase (Upper Tortonian).

Keywords: tunisia, imbricate fans, triassic decollement level, fault propagation fold

Procedia PDF Downloads 152
679 Building Safety Through Real-time Design Fire Protection Systems

Authors: Mohsin Ali Shaikh, Song Weiguo, Muhammad Kashan Surahio, Usman Shahid, Rehmat Karim

Abstract:

When the area of a structure that is threatened by a disaster affects personal safety, the effectiveness of disaster prevention, evacuation, and rescue operations can be summarized by three assessment indicators: personal safety, property preservation, and attribution of responsibility. These indicators are applicable regardless of the disaster that affects the building. People need to get out of the hazardous area and to a safe place as soon as possible because there's no other way to respond. The results of the tragedy are thus closely related to how quickly people are advised to evacuate and how quickly they are rescued. This study considers present fire prevention systems to address catastrophes and improve building safety. It proposes the methods of Prevention Level for Deployment in Advance and Spatial Transformation by Human-Machine Collaboration. We present and prototype a real-time fire protection system architecture for building disaster prevention, evacuation, and rescue operations. The design encourages the use of simulations to check the efficacy of evacuation, rescue, and disaster prevention procedures throughout the planning and design phase of the structure.

Keywords: prevention level, building information modeling, quality management system, simulated reality

Procedia PDF Downloads 69
678 Multi-Modal Feature Fusion Network for Speaker Recognition Task

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

Speaker recognition is a crucial task in the field of speech processing, aimed at identifying individuals based on their vocal characteristics. However, existing speaker recognition methods face numerous challenges. Traditional methods primarily rely on audio signals, which often suffer from limitations in noisy environments, variations in speaking style, and insufficient sample sizes. Additionally, relying solely on audio features can sometimes fail to capture the unique identity of the speaker comprehensively, impacting recognition accuracy. To address these issues, we propose a multi-modal network architecture that simultaneously processes both audio and text signals. By gradually integrating audio and text features, we leverage the strengths of both modalities to enhance the robustness and accuracy of speaker recognition. Our experiments demonstrate significant improvements with this multi-modal approach, particularly in complex environments, where recognition performance has been notably enhanced. Our research not only highlights the limitations of current speaker recognition methods but also showcases the effectiveness of multi-modal fusion techniques in overcoming these limitations, providing valuable insights for future research.

Keywords: feature fusion, memory network, multimodal input, speaker recognition

Procedia PDF Downloads 33
677 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation

Authors: Muhammad Zubair Khan, Yugyung Lee

Abstract:

Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.

Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network

Procedia PDF Downloads 103
676 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks

Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha

Abstract:

Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs –Sigmoid, ReLU, and Tanh–have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment with multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLUReLU) combination. Our results show that using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).

Keywords: activation function, universal approximation function, neural networks, convergence

Procedia PDF Downloads 158
675 Application of Mobile Aluminium Light Structure Housing System in Sustainable Building Process

Authors: Wang Haining, Zhang Hong

Abstract:

In China, rapid urbanization needs more and more buildings constructed for the growing population in cities. With the help of the methodology which contains investigation, contrastive analysis, design based on component with BIM and experiment before real construction, this research based on mobile light structure system, trying to the sustainable problems partly in present China by systematic study. The system cannot replace the permanent heavy structure completely. So the goal is the improvement of the whole building system by the addition of light structure. This house system uses modularized envelopes and standardized connections, which are pre-fabricated and assembled in factories and transported like containers. Aluminum is used as the structural material in this system, and inorganic thermal insulation material used in the envelope, which have high fireproof properties. The relationship between manufactory and construction of the system is progressive hierarchy. They exist as First Industrial, Second Industrial, Third Industrial and Site Assembly Stage. It could maximize the land usage capacity by fully exploit the area where normal permanent architecture can't take advantage of. Not only the building system itself especially the thermal isolated materials used and active solar photovoltaic system equipped can save energy, but also the way of product development is sustainable.

Keywords: aluminum house, light Structure, rapid assembly, repeat construction

Procedia PDF Downloads 492
674 Reconfigurable Consensus Achievement of Multi Agent Systems Subject to Actuator Faults in a Leaderless Architecture

Authors: F. Amirarfaei, K. Khorasani

Abstract:

In this paper, reconfigurable consensus achievement of a team of agents with marginally stable linear dynamics and single input channel has been considered. The control algorithm is based on a first order linear protocol. After occurrence of a LOE fault in one of the actuators, using the imperfect information of the effectiveness of the actuators from fault detection and identification module, the control gain is redesigned in a way to still reach consensus. The idea is based on the modeling of change in effectiveness as change of Laplacian matrix. Then as special cases of this class of systems, a team of single integrators as well as double integrators are considered and their behavior subject to a LOE fault is considered. The well-known relative measurements consensus protocol is applied to a leaderless team of single integrator as well as double integrator systems, and Gersgorin disk theorem is employed to determine whether fault occurrence has an effect on system stability and team consensus achievement or not. The analyses show that loss of effectiveness fault in actuator(s) of integrator systems affects neither system stability nor consensus achievement.

Keywords: multi-agent system, actuator fault, stability analysis, consensus achievement

Procedia PDF Downloads 337
673 Identification of Peroxisome Proliferator-Activated Receptors α/γ Dual Agonists for Treatment of Metabolic Disorders, Insilico Screening, and Molecular Dynamics Simulation

Authors: Virendra Nath, Vipin Kumar

Abstract:

Background: TypeII Diabetes mellitus is a foremost health problem worldwide, predisposing to increased mortality and morbidity. Undesirable effects of the current medications have prompted the researcher to develop more potential drug(s) against the disease. The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptors family and take part in a vital role in the regulation of metabolic equilibrium. They can induce or repress genes associated with adipogenesis, lipid, and glucose metabolism. Aims: Investigation of PPARα/γ agonistic hits were screened by hierarchical virtual screening followed by molecular dynamics simulation and knowledge-based structure-activity relation (SAR) analysis using approved PPAR α/γ dual agonist. Methods: The PPARα/γ agonistic activity of compounds was searched by using Maestro through structure-based virtual screening and molecular dynamics (MD) simulation application. Virtual screening of nuclear-receptor ligands was done, and the binding modes with protein-ligand interactions of newer entity(s) were investigated. Further, binding energy prediction, Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit along with the structural comparative analysis of approved PPARα/γ agonists with screened hit was done for knowledge-based SAR. Results and Discussion: The silicone chip-based approach recognized the most capable nine hits and had better predictive binding energy as compared to the reference drug compound (Tesaglitazar). In this study, the key amino acid residues of binding pockets of both targets PPARα/γ were acknowledged as essential and were found to be associated in the key interactions with the most potential dual hit (ChemDiv-3269-0443). Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit and found root mean square deviation (RMSD) stabile around 2Å and 2.1Å, respectively. Frequency distribution data also revealed that the key residues of both proteins showed maximum contacts with a potent hit during the MD simulation of 20 nanoseconds (ns). The knowledge-based SAR studies of PPARα/γ agonists were studied using 2D structures of approved drugs like aleglitazar, tesaglitazar, etc. for successful designing and synthesis of compounds PPARγ agonistic candidates with anti-hyperlipidimic potential.

Keywords: computational, diabetes, PPAR, simulation

Procedia PDF Downloads 103
672 Building Information Modelling Implementation in the Lifecycle of Sustainable Buildings

Authors: Scarlet Alejandra Romano, Joni Kareco

Abstract:

The three pillars of sustainability (social, economic and environmental) are relevant concepts to the Architecture, Engineering, and Construction (AEC) industry because of the increase of international agreements and guidelines related to this topic during the last years. Considering these three pillars, the AEC industry faces important challenges, for instance, to decrease the carbon emissions (environmental challenge), design sustainable spaces for people (social challenge), and improve the technology of this field to reduce costs and environmental problems (economic and environmental challenge). One alternative to overcome these challenges is Building Information Modelling program (BIM) because according to several authors, this technology improves the performance of the sustainable buildings in all their lifecycle phases. The main objective of this paper is to explore and analyse the current advantages and disadvantages of the BIM implementation in the life-cycle of sustainable buildings considering the three pillars of sustainability as analysis parameters. The methodology established to achieve this objective is exploratory-descriptive with the literature review technique. The partial results illustrate that despite the BIM disadvantages and the lack of information about its social sustainability advantages, this software represents a significant opportunity to improve the three sustainable pillars of the sustainable buildings.

Keywords: building information modelling, building lifecycle analysis, sustainability, sustainable buildings

Procedia PDF Downloads 186
671 A Cloud Computing System Using Virtual Hyperbolic Coordinates for Services Distribution

Authors: Telesphore Tiendrebeogo, Oumarou Sié

Abstract:

Cloud computing technologies have attracted considerable interest in recent years. Thus, these latters have become more important for many existing database applications. It provides a new mode of use and of offer of IT resources in general. Such resources can be used “on demand” by anybody who has access to the internet. Particularly, the Cloud platform provides an ease to use interface between providers and users, allow providers to develop and provide software and databases for users over locations. Currently, there are many Cloud platform providers support large scale database services. However, most of these only support simple keyword-based queries and can’t response complex query efficiently due to lack of efficient in multi-attribute index techniques. Existing Cloud platform providers seek to improve performance of indexing techniques for complex queries. In this paper, we define a new cloud computing architecture based on a Distributed Hash Table (DHT) and design a prototype system. Next, we perform and evaluate our cloud computing indexing structure based on a hyperbolic tree using virtual coordinates taken in the hyperbolic plane. We show through our experimental results that we compare with others clouds systems to show our solution ensures consistence and scalability for Cloud platform.

Keywords: virtual coordinates, cloud, hyperbolic plane, storage, scalability, consistency

Procedia PDF Downloads 425
670 Socio-Cultural Behaviors of Individuals in High-Rise Housing

Authors: Raweyah Al-Sedairawi

Abstract:

While high-rise housing detained massive negative connotations on several societies and well-being, this typology did deliver housing demand efficiently. Despite its adverse reference due to declining precedents, high-rise housing is still in global demand. Yet the suitability of this typology is still questioned. In this research, the suitability of high-rise housing as a socio-culturally sustainable solution to meet housing demands will be examined. By questioning what is the potential of high-rise housing as a socio-culturally sustainable solution for housing demands, the research will examine some high-rise housing practices. Through reviewing the literature on the origins of high-rise housing, how and why they were developed, some unsuccessful cases, and some successful cases, with the identification of factors for successful high-rise living. Thus, the research groundings will materialize from existing patterns of housing demands. Whilst most of the literature covers the housing market from an economic, real estate, and political perspective, there is less amount that discloses occupants’ reactions towards this typology and its appropriateness for the reason that income controls individuals’ choices. To bridge the gap, the prospect of implementing the study would be effective. This will be applied through a mixture of a qualitative and a quantitative methodology by conducting questionnaires and focus groups on existing cases of high-net-worth residential towers.

Keywords: architecture, behaviors, high-rise, socio-cultural, sustainability

Procedia PDF Downloads 88
669 Fuzzy Optimization for Identifying Anticancer Targets in Genome-Scale Metabolic Models of Colon Cancer

Authors: Feng-Sheng Wang, Chao-Ting Cheng

Abstract:

Developing a drug from conception to launch is costly and time-consuming. Computer-aided methods can reduce research costs and accelerate the development process during the early drug discovery and development stages. This study developed a fuzzy multi-objective hierarchical optimization framework for identifying potential anticancer targets in a metabolic model. First, RNA-seq expression data of colorectal cancer samples and their healthy counterparts were used to reconstruct tissue-specific genome-scale metabolic models. The aim of the optimization framework was to identify anticancer targets that lead to cancer cell death and evaluate metabolic flux perturbations in normal cells that have been caused by cancer treatment. Four objectives were established in the optimization framework to evaluate the mortality of cancer cells for treatment and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. The applied nested hybrid differential evolution was applied to solve the trilevel MDM problem using two nutrient media to identify anticancer targets in the genome-scale metabolic model of colorectal cancer, respectively. Using Dulbecco’s Modified Eagle Medium (DMEM), the computational results reveal that the identified anticancer targets were mostly involved in cholesterol biosynthesis, pyrimidine and purine metabolisms, glycerophospholipid biosynthetic pathway and sphingolipid pathway. However, using Ham’s medium, the genes involved in cholesterol biosynthesis were unidentifiable. A comparison of the uptake reactions for the DMEM and Ham’s medium revealed that no cholesterol uptake reaction was included in DMEM. Two additional media, i.e., a cholesterol uptake reaction was included in DMEM and excluded in HAM, were respectively used to investigate the relationship of tumor cell growth with nutrient components and anticancer target genes. The genes involved in the cholesterol biosynthesis were also revealed to be determinable if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in cholesterol biosynthesis became unidentifiable if such a reaction was induced.

Keywords: Cancer metabolism, genome-scale metabolic model, constraint-based model, multilevel optimization, fuzzy optimization, hybrid differential evolution

Procedia PDF Downloads 80
668 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations

Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu

Abstract:

Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.

Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10

Procedia PDF Downloads 111
667 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 150
666 Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection

Authors: Chia-Chen Wei, Pack Hsieh, Jeffrey Chen

Abstract:

Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.

Keywords: big data analytics, Industry 4.0, SPI threshold setting, surface mount technology

Procedia PDF Downloads 116
665 Evaluating the Factors Controlling the Hydrochemistry of Gaza Coastal Aquifer Using Hydrochemical and Multivariate Statistical Analysis

Authors: Madhat Abu Al-Naeem, Ismail Yusoff, Ng Tham Fatt, Yatimah Alias

Abstract:

Groundwater in Gaza strip is increasingly being exposed to anthropic and natural factors that seriously impacted the groundwater quality. Physiochemical data of groundwater can offer important information on changes in groundwater quality that can be useful in improving water management tactics. An integrative hydrochemical and statistical techniques (Hierarchical cluster analysis (HCA) and factor analysis (FA)) have been applied on the existence ten physiochemical data of 84 samples collected in (2000/2001) using STATA, AquaChem, and Surfer softwares to: 1) Provide valuable insight into the salinization sources and the hydrochemical processes controlling the chemistry of groundwater. 2) Differentiate the influence of natural processes and man-made activities. The recorded large diversity in water facies with dominance Na-Cl type that reveals a highly saline aquifer impacted by multiple complex hydrochemical processes. Based on WHO standards, only (15.5%) of the wells were suitable for drinking. HCA yielded three clusters. Cluster 1 is the highest in salinity, mainly due to the impact of Eocene saline water invasion mixed with human inputs. Cluster 2 is the lowest in salinity also due to Eocene saline water invasion but mixed with recent rainfall recharge and limited carbonate dissolution and nitrate pollution. Cluster 3 is similar in salinity to Cluster 2, but with a high diversity of facies due to the impact of many sources of salinity as sea water invasion, carbonate dissolution and human inputs. Factor analysis yielded two factors accounting for 88% of the total variance. Factor 1 (59%) is a salinization factor demonstrating the mixing contribution of natural saline water with human inputs. Factor 2 measure the hardness and pollution which explained 29% of the total variance. The negative relationship between the NO3- and pH may reveal a denitrification process in a heavy polluted aquifer recharged by a limited oxygenated rainfall. Multivariate statistical analysis combined with hydrochemical analysis indicate that the main factors controlling groundwater chemistry were Eocene saline invasion, seawater invasion, sewage invasion and rainfall recharge and the main hydrochemical processes were base ion and reverse ion exchange processes with clay minerals (water rock interactions), nitrification, carbonate dissolution and a limited denitrification process.

Keywords: dendrogram and cluster analysis, water facies, Eocene saline invasion and sea water invasion, nitrification and denitrification

Procedia PDF Downloads 365
664 Development of an Energy Independant DC Building Demonstrator for Insulated Island Site

Authors: Olivia Bory Devisme, Denis Genon-Catalot, Frederic Alicalapa, Pierre-Olivier Lucas De Peslouan, Jean-Pierre Chabriat

Abstract:

In the context of climate change, it is essential that island territories gain energy autonomy. Currently mostly dependent on fossil fuels, the island of Reunion lo- cated in the Indian Ocean nevertheless has a high potential for solar energy. As the market for photovoltaic panels has been growing in recent years, the issues of energy losses linked to the multiple conversions from direct current to alternating current are emerging. In order to quantify these advantages and disadvantages by a comparative study, this document present the measurements carried out on a direct current test bench, particularly for lighting, ventilation, air condi- tioning and office equipment for the tertiary sector. All equipment is supplied with DC power from energy produced by photovoltaic panels. A weather sta- tion, environmental indoor sensors, and drivers are also used to control energy. Self-consumption is encouraged in order to manage different priorities between user consumption and energy storage in a lithium iron phosphate battery. The measurements are compared to a conventional electrical architecture (DC-AC- DC) for energy consumption, equipment overheating, cost, and life cycle analysis.

Keywords: DC microgrids, solar energy, smart buildings, storage

Procedia PDF Downloads 162