Search results for: fruit growth
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6987

Search results for: fruit growth

5367 Effect of Temperature on Corrosion Fatigue Cracking Behavior of Inconel 625 in Steam and Supercritical Water

Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang

Abstract:

Inconel 625 is a nickel-based alloy having outstanding corrosion resistance and developed for use at service temperatures ranging from cryogenic to 980°C. It got a wide range of applications in nuclear, petrochemical, chemical, marine, aeronautical, and aerospace industries. Currently, it is one of the candidate materials to be used as a structural material in ultra-supercritical (USC) power plants. In the high-temperature corrosive medium environment, metallic materials are susceptible to corrosion fatigue (CF). CF is an interaction between cyclic stress and corrosive medium environment that acts on a susceptible material and results in initiation and propagation of cracks. For the application of Inconel 625 as a structural material in USC power plants, CF behavior must be evaluated in steam and supercritical water (SCW) environment. Fatigue crack growth rate (FCGR) curves obtained from CF experiments are required to predict residual life of metallic materials used in power plants. In this study, FCGR tests of Inconel 625 were obtained by using compact tension specimen at 550-650 °C in steam (8 MPa) and SCW (25 MPa). The dissolved oxygen level was kept constant at 8000 ppb for the test conducted in steam and SCW. The tests were performed under sine wave loading waveform, 1 Hz loading frequency, stress ratio of 0.6 and maximum stress intensity factor of 32 MPa√m. Crack growth rate (CGR) was detected by using direct current potential drop technique. Results showed that CGR increased with an increase in temperature in the tested environmental conditions. The mechanism concerning the influence of temperature on FCGR are further discussed.

Keywords: corrosion fatigue, crack growth rate, nickel-based alloy, temperature

Procedia PDF Downloads 133
5366 Illuminating the Policies Affecting Energy Security in Malaysia’s Electricity Sector

Authors: Hussain Ali Bekhet, Endang Jati Mat Sahid

Abstract:

For the past few decades, the Malaysian economy has expanded at an impressive pace, whilst, the Malaysian population has registered a relatively high growth rate. These factors had driven the growth of final energy demand. The ballooning energy demand coupled with the country’s limited indigenous energy resources have resulted in an increased of the country’s net import. Therefore, acknowledging the precarious position of the country’s energy self-sufficiency, this study has identified three main concerns regarding energy security, namely; over-dependence on fossil fuel, increasing energy import dependency, and increasing energy consumption per capita. This paper discusses the recent energy demand and supply trends, highlights the policies that are affecting energy security in Malaysia and suggests strategic options towards achieving energy security. The paper suggested that diversifying energy sources, reducing carbon content of energy, efficient utilization of energy and facilitating low-carbon industries could further enhance the effectiveness of the measures as the introduction of policies and initiatives will be more holistic.

Keywords: electricity, energy policy, energy security, Malaysia

Procedia PDF Downloads 310
5365 Population Growth of Bracon hebetor Say. under the Influence of Various Lepidopteran Host

Authors: Mohammad Muslim, M. Shafiq Ansari, Fazil Hasan

Abstract:

Bracon hebetor Say (Hymenoptera: Braconidae) is considered as a highly cosmopolitan ecto-parasitoid of various species of order Lepidoptera. To study the influence of lepidopteran hosts on population growth of B. hebetor, the newly mated gravid females were released on various host and the eggs laid by such females on respective host were counted and a single egg was allow to develop on single host larvae. The experiment was conducted at 27 ± 1°C, 65 ± 5% RH and 14L: 10D hr in Biological Oxygen Demand (BOD) chamber. Upon hatching the tiny larvae of parasitoid pierced the body of insect host, enter into them and consumed the internal body contents of paralyzed host larvae. Present findings showed that B. hebetor took ~36 days to complete its survivorship on Corcyra cephalonica and Galleria mellonella. However, on Spodoptera littoralis the survivorship decreased to 24 days. Nevertheless, development of H. hebetor’s immature was significantly prolonged on S. littoralis and S. litura compared to other insect hosts tested. Female of B. hebetor took longer time to lay eggs on C. cephalonica and G. mellonella than other hosts tested in this study. Longevity of male and female is significantly prolonged on C. cephalonica and G. mellonella compared to others insect hosts tested. Population growth parameters like mx Ro, rm, Tc, and τ was considerably highest on C. cephalonica and lowest on S. littoralis. Based on the demographic studies C. cephalonica and H. armegera were proved to be the most suitable host for the mass rearing of B. hebetor. Nevertheless, results of present investigation could be utilized to improve the mass-breeding program of B. hebetor, so that sufficient number of B. hebetor’s adults could be provided time to time for the effective control of lepidopteran pests of various economically important crops.

Keywords: Bracon hebetor, lepidopteran hosts, demography, biology, development

Procedia PDF Downloads 266
5364 Enhancement of Growth and Lipid Accumulation in Microalgae with Aggregation Induced Emission-Based Photosensitiser

Authors: Sharmin Ferdewsi Rakhi, A. H. M. Mohsinul Reza, Brynley Davies, Jianzhong Wang, Youhong Tang, Jian Qin

Abstract:

Mass production of microalgae has become a focus of research owing to their promising aspects for sustainable food, biofunctional compounds, and biofuel feedstock. However, low lipid content with optimum algal biomass is still a challenge that must be resolved for commercial use. This research aims to determine the effects of light spectral shift and reactive oxygen species (ROS) on growth and lipid biosynthesis in a green microalga, Chlamydomonas reinhardtii. Aggregation Induced Emission (AIE)-based photosensitisers, CN-TPAQ-PF6 ([C₃₂H₂₃N₄]+) with high ROS productivity, was introduced into the algal culture media separately for effective conversion of the green-yellow-light to the red spectra. The intense photon energy and high-photon flux density in the photosystems and ROS supplementation induced photosynthesis and lipid biogenesis. In comparison to the control, maximum algal growth (0.15 g/l) was achieved at 2 µM CN-TPAQ-PF6 exposure. A significant increase in total lipid accumulation (146.87 mg/g dry biomass) with high proportion of 10-Heptadecanoic acid (C17:1) linolenic acid (C18:2), α-linolenic acid (C18:3) was observed. The elevated level of cellular NADP/NADPH triggered the Acetyl-Co-A production in lipid biogenesis cascade. Furthermore, MTT analysis suggested that this nanomaterial is highly biocompatible on HaCat cell lines with 100% cell viability. This study reveals that the AIE-based approach can strongly impact algal biofactory development for sustainable food, healthy lipids and eco-friendly biofuel.

Keywords: microalgae, photosensitiser, lipid, biomass, aggregation-induced-emission, reactive oxygen species

Procedia PDF Downloads 60
5363 Assessing the Effects of Community Informatics on Livelihoods Sustainability in Nigeria: a Model for Rural Communities

Authors: Adebayo J. Julius, Oluremi N. Iluyomade

Abstract:

Livelihood in Nigeria is a paradox of poverty amidst plenty. The Country is endowed with a good climate for agriculture, naturally growing fruit trees and vegetables, and undomesticated water resources. In spite of all its endowment, Nigeria continues to live in poverty year in year out. This thus raises a very important question as to how can there be so much poverty in Nigeria with all its natural endowments. This study focused comparative analysis of the utilization of community informatics for sustainable livelihoods through agriculture. The idea projected in this study is that small strategic changes in the modus operandi of social informatics can have a significant impact on sustainability of livelihoods. This paper carefully explored the theories of community informatics and its efficacies in dealing with sustainability issues. This study identified, described and evaluates the roles of community informatics in some sectors of the economy, different analytical tools to benchmark the influence of social informatics in agriculture against what is obtainable in agricultural sectors of the economy were used. It further employed comparative analysis to build a case model for sustainable livelihood in agriculture through community informatics.

Keywords: informatics , model, rural community, livelihoods sustainability, Nigeria

Procedia PDF Downloads 157
5362 The Relations of Volatile Compounds, Some Parameters and Consumer Preference of Commercial Fermented Milks in Thailand

Authors: Suttipong Phosuksirikul, Rawichar Chaipojjana, Arunsri Leejeerajumnean

Abstract:

The aim of research was to define the relations between volatile compounds, some parameters (pH, titratable acidity (TA), total soluble solid (TSS), lactic acid bacteria count) and consumer preference of commercial fermented milks. These relations tend to be used for controlling and developing new fermented milk product. Three leading commercial brands of fermented milks in Thailand were evaluated by consumers (n=71) using hedonic scale for four attributes (sweetness, sourness, flavour, and overall liking), volatile compounds using headspace-solid phase microextraction (HS-SPME) GC-MS, pH, TA, TSS and LAB count. Then the relations were analyzed by principal component analysis (PCA). The PCA data showed that all of four attributes liking scores were related to each other. They were also related to TA, TSS and volatile compounds. The related volatile compounds were mainly on fermented produced compounds including acetic acid, furanmethanol, furfural, octanoic acid and the volatiles known as artificial fruit flavour (beta pinene, limonene, vanillin, and ethyl vanillin). These compounds were provided the information about flavour addition in commercial fermented milk in Thailand.

Keywords: fermented milk, volatile compounds, preference, PCA

Procedia PDF Downloads 367
5361 Analysis of Vibration and Shock Levels during Transport and Handling of Bananas within the Post-Harvest Supply Chain in Australia

Authors: Indika Fernando, Jiangang Fei, Roger Stanley, Hossein Enshaei

Abstract:

Delicate produce such as fresh fruits are increasingly susceptible to physiological damage during the essential post-harvest operations such as transport and handling. Vibration and shock during the distribution are identified factors for produce damage within post-harvest supply chains. Mechanical damages caused during transit may significantly diminish the quality of fresh produce which may also result in a substantial wastage. Bananas are one of the staple fruit crops and the most sold supermarket produce in Australia. It is also the largest horticultural industry in the state of Queensland where 95% of the total production of bananas are cultivated. This results in significantly lengthy interstate supply chains where fruits are exposed to prolonged vibration and shocks. This paper is focused on determining the shock and vibration levels experienced by packaged bananas during transit from the farm gate to the retail market. Tri-axis acceleration data were captured by custom made accelerometer based data loggers which were set to a predetermined sampling rate of 400 Hz. The devices recorded data continuously for 96 Hours in the interstate journey of nearly 3000 Km from the growing fields in far north Queensland to the central distribution centre in Melbourne in Victoria. After the bananas were ripened at the ripening facility in Melbourne, the data loggers were used to capture the transport and handling conditions from the central distribution centre to three retail outlets within the outskirts of Melbourne. The quality of bananas were assessed before and after transport at each location along the supply chain. Time series vibration and shock data were used to determine the frequency and the severity of the transient shocks experienced by the packages. Frequency spectrogram was generated to determine the dominant frequencies within each segment of the post-harvest supply chain. Root Mean Square (RMS) acceleration levels were calculated to characterise the vibration intensity during transport. Data were further analysed by Fast Fourier Transform (FFT) and the Power Spectral Density (PSD) profiles were generated to determine the critical frequency ranges. It revealed the frequency range in which the escalated energy levels were transferred to the packages. It was found that the vertical vibration was the highest and the acceleration levels mostly oscillated between ± 1g during transport. Several shock responses were recorded exceeding this range which were mostly attributed to package handling. These detrimental high impact shocks may eventually lead to mechanical damages in bananas such as impact bruising, compression bruising and neck injuries which affect their freshness and visual quality. It was revealed that the frequency range between 0-5 Hz and 15-20 Hz exert an escalated level of vibration energy to the packaged bananas which may result in abrasion damages such as scuffing, fruit rub and blackened rub. Further research is indicated specially in the identified critical frequency ranges to minimise exposure of fruits to the harmful effects of vibration. Improving the handling conditions and also further study on package failure mechanisms when exposed to transient shock excitation will be crucial to improve the visual quality of bananas within the post-harvest supply chain in Australia.

Keywords: bananas, handling, post-harvest, supply chain, shocks, transport, vibration

Procedia PDF Downloads 195
5360 Relationship between Matrilin-3 (MATN-3) Gene Single Nucleotide Six Polymorphism, Transforming Growth Factor Beta 2 and Radiographic Grading in Primary Osteoarthritis

Authors: Heba Esaily, Rawhia Eledl, Daila Aboelela, Rasha Noreldin

Abstract:

Objective: Assess serum level of Transforming growth factor beta 2 (TGF-β2) and Matrilin-3 (MATN3) SNP6 polymorphism in osteoarthritic patients Background: Osteoarthritis (OA) is a musculoskeletal disease characterized by pain and joint stiffness. TGF-β 2 is involved in chondrogenesis and osteogenesis, It has found that MATN3 gene and protein expression was correlated with the extent of tissue damage in OA. Findings suggest that regulation of MATN3 expression is essential for maintenance of the cartilage extracellular matrix microenvironment Subjects and Methods: 72 cases of primary OA (56 with knee OA and 16 with generalized OA were compared with that of 18 healthy controls. Radiographs were scored with the Kellgren-Lawrence scale. Serum TGF-β2 was measured by using (ELISA), levels of marker were correlated to radiographic grading of disease and MATN3 SNP6 polymorphism was determined by (PCR-RFLP). Results: MATN3 SNP6 polymorphism and serum level of TGF-β2 were higher in OA compared with controls. Genotype, NN and N allele frequency were higher in patients with OA compared with controls. NN genotype and N allele frequency were higher in knee osteoarthritis than generalized OA. Significant positive correlation between level of TGFβ2 and radiographic grading in group with knee OA, but no correlation between serum level of TGFβ2 and radiographic grading in generalized OA. Conclusion: MATN3 SNP6 polymorphism and TGF-β2 implicated in the pathogenesis of osteoarthritis. Association of N/N genotype with primary osteoarthritis emphasizes on the need for prospective study include larger sample size to confirm the results of the present study.

Keywords: Matrilin-3, transforming growth factor beta 2, primary osteoarthritis, knee osteoarthritis

Procedia PDF Downloads 271
5359 Effect of Nanostructure on Hydrogen Embrittlement Resistance of the Severely Deformed 316LN Austenitic Steel

Authors: Frank Jaksoni Mweta, Nozomu Adachi, Yoshikazu Todaka, Hirokazu Sato, Yuta Sato, Hiromi Miura, Masakazu Kobayashi, Chihiro Watanabe, Yoshiteru Aoyagi

Abstract:

Advances in the consumption of hydrogen fuel increase demands of high strength steel pipes and storage tanks. However, high strength steels are highly sensitive to hydrogen embrittlement. Because the introduction of hydrogen into steel during the fabrication process or from the environment is unavoidable, it is essential to improve hydrogen embrittlement resistance of high strength steels through microstructural control. In the present study, the heterogeneous nanostructure with a tensile strength of about 1.8 GPa and the homogeneous nanostructure with a tensile strength of about 2.0 GPa of 316LN steels were generated after 92% heavy cold rolling and high-pressure torsion straining, respectively. The heterogeneous nanostructure is composed of twin domains, shear bands, and lamellar grains. The homogeneous nanostructure is composed of uniformly distributed ultrafine nanograins. The influence of heterogeneous and homogenous nanostructures on the hydrogen embrittlement resistance was investigated. The specimen for each nanostructure was electrochemically charged with hydrogen for 3, 6, 12, and 24 hours, respectively. Under the same hydrogen charging time, both nanostructures show almost the same concentration of the diffusible hydrogen based on the thermal desorption analysis. The tensile properties of the homogenous nanostructure were severely affected by the diffusible hydrogen. However, the diffusible hydrogen shows less impact on the tensile properties of the heterogeneous nanostructure. The difference in embrittlement behavior between the heterogeneous and homogeneous nanostructures was elucidated based on the mechanism of the cracks' growth observed in the tensile fractography. The hydrogen embrittlement was suppressed in the heterogeneous nanostructure because the twin domain became an obstacle for crack growth. The homogeneous nanostructure was not consisting an obstacle such as a twin domain; thus, the crack growth resistance was low in this nanostructure.

Keywords: diffusible hydrogen, heterogeneous nanostructure, homogeneous nanostructure, hydrogen embrittlement

Procedia PDF Downloads 131
5358 A Phase Field Approach to Model Crack Interface Interaction in Ceramic Matrix Composites

Authors: Dhaladhuli Pranavi, Amirtham Rajagopal

Abstract:

There are various failure modes in ceramic matrix composites; notable ones are fiber breakage, matrix cracking and fiber matrix debonding. Crack nucleation and propagation in microstructure of such composites requires an understanding of interaction of crack with the multiple inclusion heterogeneous system and interfaces. In order to assess structural integrity, the material parameters especially of the interface that governs the crack growth should be determined. In the present work, a nonlocal phase field approach is proposed to model the crack interface interaction in such composites. Nonlocal approaches help in understanding the complex mechanisms of delamination growth and mitigation and operates at a material length scale. The performance of the proposed formulation is illustrated through representative numerical examples. The model proposed is implemented in the framework of the finite element method. Several parametric studies on interface crack interaction are conducted. The proposed model is easy and simple to implement and works very well in modeling fracture in composite systems.

Keywords: composite, interface, nonlocal, phase field

Procedia PDF Downloads 146
5357 Self-Regenerating, Vascularizing Hybrid Scaffold-Hydrogel For Bone Tissue Engineering

Authors: Alisha Gupta

Abstract:

Osteoarthritis (OA) is the most common form of arthritis which is a degenerative joint disease causing joints to begin to break down and underlying bones to change. This “wear and tear” most frequently affects hands, hips, and knees. This is important because OA pain is considered to be a leading cause of mobility impairment in older adults, with hip and knee OA ranked 11th highest contributors to global disability. Bone tissue engineering utilizing polymer scaffolds and hydrogels is an emerging field for treating osteoarthritis. Polymer scaffolds provide a three-dimensional structure for tissue growth, and hydrogels can be used to deliver drugs and growth factors. The combination of the two materials creates a hybrid structure that can better withstand physiological and mechanical demands while also providing a more controlled environment for drug and nutrient delivery. I think using bone tissue engineering for making scaffold-hydrogel composites that are self-regenerating and vascularizing might be useful in solving this problem. Successful implementation can reconstruct healthy, simulated bone tissue on deficient applicants.

Keywords: tissue engineering, regenerative medicine, scaffold-hydrogel composites, osteoarthritis

Procedia PDF Downloads 122
5356 Comparative Proteomic Analysis of Rice bri1 Mutant Leaves at Jointing-Booting Stage

Authors: Jiang Xu, Daoping Wang, Yinghong Pan

Abstract:

The jointing-booting stage is a critical period of both vegetative growth and reproductive growth in rice. Therefore, the proteomic analysis of the mutant Osbri1, whose corresponding gene OsBRI1 encodes the putative BRs receptor OsBRI1, at jointing-booting stage is very important for understanding the effects of BRs on vegetative and reproductive growth. In this study, the proteomes of leaves from an allelic mutant of the DWARF 61 (D61, OsBRI1) gene, Fn189 (dwarf54, d54) and its wild-type variety T65 (Taichung 65) at jointing-booting stage were analysed by using a Q Exactive plus orbitrap mass spectrometer, and more than 3,100 proteins were identified in each sample. Ontology analysis showed that these proteins distribute in various space of the cells, such as the chloroplast, mitochondrion, and nucleus, they functioned as structural components and/or catalytic enzymes and involved in many physiological processes. Moreover, quantitative analysis displayed that 266 proteins were differentially expressed in two samples, among them, 77 proteins decreased and 189 increased more than two times in Fn189 compared with T65, the proteins whose content decreased in Fn189 including b5-like Heme/Steroid binding domain containing protein, putative retrotransposon protein, putative glutaminyl-tRNA synthetase, and higher content proteins such as mTERF, putative Oligopeptidase homologue, zinc knuckle protein, and so on. A former study founded that the transcription level of a mTERF was up-regulated in the leaves of maize seedling after EBR treatment. In our experiments, it was interesting that one mTERF protein increased, but another mTERF decreased in leaves of Fn189 at jointing-booting stage, which suggested that BRs may have differential regulation mechanisms on the expression of various mTERF proteins. The relationship between other differential proteins with BRs is still unclear, and the effects of BRs on rice protein contents and its regulation mechanisms still need further research.

Keywords: bri1 mutant, jointing-booting stage, proteomic analysis, rice

Procedia PDF Downloads 251
5355 Dynamics of Follicle Vascular Perfusion, Dimensions, Antrum Growth, Circulating Angiogenic Mediators from Deviation to Ovulation

Authors: Elshymaa A. Abdelnaby, Amal M. Abo El-Maaty

Abstract:

This study aimed to investigate dynamics of dominant and subordinate follicles change in dimensions, vascularity and angiogenic hormones after completing deviation till ovulation. Five cyclic mares were subjected to daily blood sampling and rectal Doppler ultrasonographic examination along two estrous cycles. Using electronic calipers, three diameters were recorded for each follicle to estimate area and volume. Leptin, Insulin-like growth factor-I (IGF-1), nitric oxide (NO) and estradiol (E2) were measured. Area of color- and power- Doppler modes with area and circumference of the first (preovulatory) and subordinate follicles were measured in pixels. Follicles were classified into F1O (preovulatory), F2O (subordinate), F3O (third ovulatory) on the dominant ovary and F1C (first contra) and F2C (second contra) on the contralateral ovary. Days before ovulation significantly (P < 0.0001) affected diameter, circumference, area, volume, area/pixel and antrum area of the preovulatory follicle. With the increase of diameter, area, volume area/pixel, antrum area/pixel and circumference of F1O, those of all subordinates were decreasing. The blue blood flow area, power and power minus red blood flow area of F1O increased from day -6 till day of ovulation (day 0), but red blood flow area significantly decreased. F1O had the lowest percent of colored pixels and percent of the colored pixels without antrum. Estradiol and leptin increased from day -6 till day 0 but IGF-1 decreased till day -1 but NO achieved a peak on day -3 then decreased till day 0. In conclusion, antrum growth, blood flow and angiogenic hormones play a role in maturation and ovulation of the dominant follicle in mares.

Keywords: angiogenic hormones, blood flow, mare, preovulatory follicle

Procedia PDF Downloads 318
5354 Preparing Entrepreneurial Women: A Challenge for Indian Education System

Authors: Dinesh Khanduja, Pardeep Kumar Sharma

Abstract:

Education as the most important resource in any country has multiplying effects on all facets of development in a society. The new social realities, particularly, the interplay between democratization of education; unprecedented developments in the IT sector; emergence of knowledge society, liberalization of economy, and globalization have greatly influenced the educational process of all nations. This turbulence entails upon education to undergo dramatic changes to keep up with the new expectations. Growth of entrepreneurship among Indian women is highly important for empowering them and this is highly essential for the socio-economic development of a society. Unfortunately, in India, there is poor acceptance of entrepreneurship among women as unfounded myths and fears restrain them to be enterprising. To remove these inhibitions, the education system needs to be re-engineered to make entrepreneurship more acceptable. This paper empirically analyses the results of a survey done on around 500 female graduates in North India to measure and evaluate various entrepreneurial traits present in them. A formative model has been devised in this context, which should improve the teaching-learning process in our education system, which can lead to a sustainable growth of women entrepreneurship in India.

Keywords: women empowerment, entrepreneurship, education system, women entrepreneurship, sustainable development

Procedia PDF Downloads 360
5353 Evaluating the Effects of Microwaves and Polymers on the Quality of Some Iranian Export Products

Authors: Reza Sadeghi

Abstract:

Storage pests with quantitative, qualitative, and hygienic losses to storage products lead to heavy damage to these products. One of the best methods of controlling storage pests is microwave heating, which is an environmentally friendly method and can be used to replace chemical methods to control storage pests. Pistachios and almonds are the most important dried fruit items in Iran, which account for a significant part of Iran's exports every year. In this study, which along with Pistachio and almond samples were exposed to microwave radiation at 320, 720, 900 watts with times of 10, 20, 30 seconds. Qualitative evaluation of product changes due to the above treatments was performed in the form of changes in colorimetric factors and organoleptic properties of the product. The results showed that in microwave treatment, power, and time factors had a significant effect on the taste and overall acceptance of pistachio product, polymer and power interaction, polymer and time, time and power had no significant effect on pistachio product quality. In almond products, the factors of polymer, time, power, interaction of polymer and power, polymer and time, and power had no significant effect on almond quality.

Keywords: microwave, qualitative, pistachio, almond

Procedia PDF Downloads 14
5352 The Effect of Mgo and Rubber Nanofillers on Electrical Treeing Characteristic of XLPE Based Nanocomposites

Authors: Nur Amira nor Arifin, Tashia Marie Anthony, Mohd Ruzlin Mokhtar, Huzainie Shafi Abd Halim

Abstract:

Cross-linked polyethylene (XLPE) material is being used as the cable insulation for the past decades due to its higher working temperature of 90 ˚C and some other advantages. However, the use of XLPE as an insulating material for underground distribution cables may have subjected to the unforeseeable weather and uncontrollable environmental condition. These unfavorable condition when combine with high electric field may lead to the initiation and growth of water tree in XLPE insulation. There are several studies on numerous nanofillers incorporate into polymer matrix to hinder the growth of tree propagation. Hence, in this study aims to investigate the effect of MgO and rubber nanofillers at different concentration on the electrical tree of XLPE. The nanofillers and XLPE were mixed and later extruded. After extrusion, the material were then fabricated into the desired shape for experimental purposes. The result shows that the electrical tree propagation of XLPE filled with optimize concentration of nanofillers were much slower compared to pure XLPE. In this paper, the effect of nanofillers towards electrical treeing characteristic will be discussed.

Keywords: electrical trees, nanofillers, polymer nanocomposites, XLPE

Procedia PDF Downloads 145
5351 Breeding Cotton for Annual Growth Habit: Remobilizing End-of-season Perennial Reserves for Increased Yield

Authors: Salman Naveed, Nitant Gandhi, Grant Billings, Zachary Jones, B. Todd Campbell, Michael Jones, Sachin Rustgi

Abstract:

Cotton (Gossypium spp.) is the primary source of natural fiber in the U.S. and a major crop in the Southeastern U.S. Despite constant efforts to increase the cotton fiber yield, the yield gain has stagnated. Therefore, we undertook a novel approach to improve the cotton fiber yield by altering its growth habit from perennial to annual. In this effort, we identified genotypes with high-expression alleles of five floral induction and meristem identity genes (FT, SOC1, FUL, LFY, and AP1) from an upland cotton mini-core collection and crossed them in various combinations to develop cotton lines with annual growth habit, optimal flowering time and enhanced productivity. To facilitate the characterization of genotypes with the desired combinations of stacked alleles, we identified markers associated with the gene expression traits via genome-wide association analysis using a 63K SNP Array (Hulse-Kemp et al. 2015 G3 5:1187). Over 14,500 SNPs showed polymorphism and were used for association analysis. A total of 396 markers showed association with expression traits. Out of these 396 markers, 159 mapped to genes, 50 to untranslated regions, and 187 to random genomic regions. Biased genomic distribution of associated markers was observed where more trait-associated markers mapped to the cotton D sub-genome. Many quantitative trait loci coincided at specific genomic regions. This observation has implications as these traits could be bred together. The analysis also allowed the identification of candidate regulators of the expression patterns of these floral induction and meristem identity genes whose functions will be validated via virus-induced gene silencing.

Keywords: cotton, GWAS, QTL, expression traits

Procedia PDF Downloads 154
5350 Construction of Large Scale UAVs Using Homebuilt Composite Techniques

Authors: Brian J. Kozak, Joshua D. Shipman, Peng Hao Wang, Blake Shipp

Abstract:

The unmanned aerial system (UAS) industry is growing at a rapid pace. This growth has increased the demand for low cost, custom made and high strength unmanned aerial vehicles (UAV). The area of most growth is in the area of 25 kg to 200 kg vehicles. Vehicles this size are beyond the size and scope of simple wood and fabric designs commonly found in hobbyist aircraft. These high end vehicles require stronger materials to complete their mission. Traditional aircraft construction materials such as aluminum are difficult to use without machining or advanced computer controlled tooling. However, by using general aviation composite aircraft homebuilding techniques and materials, a large scale UAV can be constructed cheaply and easily. Furthermore, these techniques could be used to easily manufacture cost made composite shapes and airfoils that would be cost prohibitive when using metals. These homebuilt aircraft techniques are being demonstrated by the researchers in the construction of a 75 kg aircraft.

Keywords: composite aircraft, homebuilding, unmanned aerial system industry, UAS, unmanned aerial vehicles, UAV

Procedia PDF Downloads 143
5349 Development of Milky Products Leavend by Kefir Grains with Reduced Lactose and Flavored with Tropical Fruit

Authors: A. L. Balieiro, D. S. Silveira, R. A. Santos, L. S. Freitas, O. L. S. De Alsina, A. S. Lima, C. M. F. Soares

Abstract:

The state of Sergipe has been emerging in milk production, mainly in the dairy basin located in the northeast of the state of the Brazil. However, this area concentrates the production of dairy, developing diverse products with higher aggregated value and scent and regional flavours. With this goal the present wok allows the development of dairy drinks with reduced lactose index, using kefir grains flavored with mangaba pulp. Initially, the removal of milk lactose was evaluated in adsorption columns completed with silica particles obtained by molecular impression technique, using sol ? gel method with the presence and absence of lactose biomolecule, molecular imprinted polymer (PIM) or pure matrix (MP), respectively. Then kefir grains were used for the development of dairy drinks flavored with regional fruits (mangaba). The products were analyzed sensorially, evaluated the probiotic potential and the removal of the lactose. Among the products obtained, the one that present best result in the sensorially was to the drink with removal PIM flavored of mangaba, for which around 60% of the testers indicated that would buy the new product.

Keywords: molecular imprinted polymer, milk, lactose, kefir

Procedia PDF Downloads 287
5348 Removal of Pb²⁺ from Waste Water Using Nano Silica Spheres Synthesized on CaCO₃ as a Template: Equilibrium and Thermodynamic Studies

Authors: Milton Manyangadze, Joseph Govha, T. Bala Narsaiah, Ch. Shilpa Chakra

Abstract:

The availability and access to fresh water is today a serious global challenge. This has been a direct result of factors such as the current rapid industrialization and industrial growth, persistent droughts in some parts of the world, especially in the sub-Saharan Africa as well as population growth. Growth of the chemical processing industry has also seen an increase in the levels of pollutants in our water bodies which include heavy metals among others. Heavy metals are known to be dangerous to both human and aquatic life. As such, they have been linked to several diseases. This is mainly because they are highly toxic. They are also known to be bio accumulative and non-biodegradable. Lead for example, has been linked to a number of health problems which include damage of vital internal body systems like the nervous and reproductive system as well as the kidneys. From this background therefore, the removal of the toxic heavy metal, Pb2+ from waste water was investigated using nano silica hollow spheres (NSHS) as the adsorbent. Synthesis of NSHS was done using a three-stage process in which CaCO3 nanoparticles were initially prepared as a template. This was followed by treatment of the formed oxide particles with NaSiO3 to give a nanocomposite. Finally, the template was destroyed using 2.0M HCl to give NSHS. Characterization of the nanoparticles was done using analytical techniques like XRD, SEM, and TGA. For the adsorption process, both thermodynamic and equilibrium studies were carried out. Thermodynamic studies were carried out and the Gibbs free energy, Enthalpy and Entropy of the adsorption process were determined. The results revealed that the adsorption process was both endothermic and spontaneous. Equilibrium studies were also carried out in which the Langmuir and Freundlich isotherms were tested. The results showed that the Langmuir model best described the adsorption equilibrium.

Keywords: characterization, endothermic, equilibrium studies, Freundlich, Langmuir, nanoparticles, thermodynamic studies

Procedia PDF Downloads 221
5347 Study of the Influence of Hole Topology on Crack Propagation Rate

Authors: Hallan Moura Ladeira, Carla Tatiana Mota Anflor

Abstract:

The drilling process for bolted or riveted joints of components is very common in the naval, aeronautical, mechanical, and civil industries. In this context, the present work aims to study, through computer simulation, the influence of hole geometry (through, chamfered, and rounded) on crack propagation when submitted to static and dynamic loads. For the static crack evaluation, failure was considered when the stress intensity factor (FIT) exceeds the fracture toughness of the material (KIc). In the case of fatigue, the condition of the small crack tip plastification zone and the Paris Law were considered for determining region II of the dadN x ΔK curve. Initially, a parametric analysis of the hole geometry was performed to obtain a topology that would result in less discontinuity of the stress field and, consequently, less influence on static crack growth. The best performing topology was then used to study the fatigue crack growth rate considering the Paris Law. The numerical tests were performed on a 7075-T6 aluminum specimen resulting in dadN x ΔK curves in good agreement with the literature.

Keywords: holes, cracks, loading, fracture toughness

Procedia PDF Downloads 119
5346 The Role of Macroeconomic Condition and Volatility in Credit Risk: An Empirical Analysis of Credit Default Swap Index Spread on Structural Models in U.S. Market during Post-Crisis Period

Authors: Xu Wang

Abstract:

This research builds linear regressions of U.S. macroeconomic condition and volatility measures in the investment grade and high yield Credit Default Swap index spreads using monthly data from March 2009 to July 2016, to study the relationship between different dimensions of macroeconomy and overall credit risk quality. The most significant contribution of this research is systematically examining individual and joint effects of macroeconomic condition and volatility on CDX spreads by including macroeconomic time series that captures different dimensions of the U.S. economy. The industrial production index growth, non-farm payroll growth, consumer price index growth, 3-month treasury rate and consumer sentiment are introduced to capture the condition of real economic activity, employment, inflation, monetary policy and risk aversion respectively. The conditional variance of the macroeconomic series is constructed using ARMA-GARCH model and is used to measure macroeconomic volatility. The linear regression model is conducted to capture relationships between monthly average CDX spreads and macroeconomic variables. The Newey–West estimator is used to control for autocorrelation and heteroskedasticity in error terms. Furthermore, the sensitivity factor analysis and standardized coefficients analysis are conducted to compare the sensitivity of CDX spreads to different macroeconomic variables and to compare relative effects of macroeconomic condition versus macroeconomic uncertainty respectively. This research shows that macroeconomic condition can have a negative effect on CDX spread while macroeconomic volatility has a positive effect on determining CDX spread. Macroeconomic condition and volatility variables can jointly explain more than 70% of the whole variation of the CDX spread. In addition, sensitivity factor analysis shows that the CDX spread is the most sensitive to Consumer Sentiment index. Finally, the standardized coefficients analysis shows that both macroeconomic condition and volatility variables are important in determining CDX spread but macroeconomic condition category of variables have more relative importance in determining CDX spread than macroeconomic volatility category of variables. This research shows that the CDX spread can reflect the individual and joint effects of macroeconomic condition and volatility, which suggests that individual investors or government should carefully regard CDX spread as a measure of overall credit risk because the CDX spread is influenced by macroeconomy. In addition, the significance of macroeconomic condition and volatility variables, such as Non-farm Payroll growth rate and Industrial Production Index growth volatility suggests that the government, should pay more attention to the overall credit quality in the market when macroecnomy is low or volatile.

Keywords: autoregressive moving average model, credit spread puzzle, credit default swap spread, generalized autoregressive conditional heteroskedasticity model, macroeconomic conditions, macroeconomic uncertainty

Procedia PDF Downloads 171
5345 Education of Mothers and Influence on the Development of Intrauterine Growth Restriction

Authors: Sabina Garayeva

Abstract:

To determine the significant risk factors for intrauterine growth restriction (IUGR), we carried out a thorough study of the social status of the parents of children with IUGR. We observed 315 mothers who gave birth to children with (IUGR), of which 172 mothers with asymmetric type and 143 mothers with symmetric type of IUGR. Through a detailed survey was gathered detailed information about education of parents. The results show that the majority of mothers with IUGR had secondary education (44,8 ± 2,8%), and fathers - higher education (35,2 ± 2,7%). Whereas in the control group, the largest number of parents had higher education (mother 35,3 ± 4,4%, fathers 42,9 ± 4,5%). Number of mothers with secondary education with IUGR was significantly (p1 <0,01; χ2 = 22,67) differs from the number of mothers with physiological pregnancy with the same level of education. Meanwhile, in the group with a symmetrical embodiment of IUGR mothers with secondary formation of significantly greater 53,1 ± 4,2%, than the asymmetric embodiment IUGR 37,8 ± 3,7% (p2 <0,05; χ2 = 8 06). Among fathers with secondary education significant difference was noted in the symmetric version of IUGR 37,8 ± 4,1% more than in the control group (p1 <0,05), and among parents of children with asymmetric IUGR option prevailed fathers with higher education - 37 2 ± 3,7%. Thus, our results revealed a low educational level of the mother as a risk factor for IUGR, which further help to develop preventive and therapeutic measures to eliminate the severity of its consequences. As seen from the data presented, mothers of children with asymmetric IUGR had a school education and fathers - higher education, while in the symmetric type of both parents had secondary education. It is found that frequency of children, born with IUGR, of mothers - housewives and fathers, engage in physical labor, was high. Thus, the analysis conducted by the social status of the parents with IUGR revealed a low level of education and unemployed mothers as risk factors for this disease, which in the future will help to develop preventive and therapeutic measures to eliminate the severity of its.

Keywords: intrauterine growth restriction, education of mothers, education influence, IUGR

Procedia PDF Downloads 390
5344 2D CFD-PBM Coupled Model of Particle Growth in an Industrial Gas Phase Fluidized Bed Polymerization Reactor

Authors: H. Kazemi Esfeh, V. Akbari, M. Ehdaei, T. N. G. Borhani, A. Shamiri, M. Najafi

Abstract:

In an industrial fluidized bed polymerization reactor, particle size distribution (PSD) plays a significant role in the reactor efficiency evaluation. The computational fluid dynamic (CFD) models coupled with population balance equation (CFD-PBM) have been extensively employed to investigate the flow behavior in the poly-disperse multiphase fluidized bed reactors (FBRs) utilizing ANSYS Fluent code. In this study, an existing CFD-PBM/ DQMOM coupled modeling framework has been used to highlight its potential to analyze the industrial-scale gas phase polymerization reactor. The predicted results reveal an acceptable agreement with the observed industrial data in terms of pressure drop and bed height. The simulated results also indicate that the higher particle growth rate can be achieved for bigger particles. Hence, the 2D CFD-PBM/DQMOM coupled model can be used as a reliable tool for analyzing and improving the design and operation of the gas phase polymerization FBRs.

Keywords: computational fluid dynamics, population balance equation, fluidized bed polymerization reactor, direct quadrature method of moments

Procedia PDF Downloads 370
5343 Analysis of Causality between Economic Growth and Carbon Emissions: The Case of Mexico 1971-2011

Authors: Mario Gómez, José Carlos Rodríguez

Abstract:

This paper analyzes the Environmental Kuznets Curve (EKC) hypothesis to test the causality relationship between economic activity, trade openness and carbon dioxide emissions in Mexico (1971-2011). The results achieved in this research show that there are three long-run relationships between production, trade openness, energy consumption and carbon dioxide emissions. The EKC hypothesis was not verified in this research. Indeed, it was found evidence of a short-term unidirectional causality from GDP and GDP squared to carbon dioxide emissions, from GDP, GDP squared and TO to EC, and bidirectional causality between TO and GDP. Finally, it was found evidence of long-term unidirectional causality from all variables to carbon emissions. These results suggest that a reduction in energy consumption, economic activity, or an increase in trade openness would reduce pollution.

Keywords: causality, cointegration, energy consumption, economic growth, environmental Kuznets curve

Procedia PDF Downloads 353
5342 Intensive Multidisciplinary Feeding Intervention for a Toddler with In-Utero Drug Exposure

Authors: Leandra Prempeh, Emily Malugen

Abstract:

Prenatal drug exposure can have a molecular impact on the hypothalamic and reward genes that regulate feeding behavior. This can impact feeding regulation, resulting in feeding difficulties and growth failure. This was potentially seen in “McKayla,” a 19- month old girl with a history of in-utero drug exposure, patent ductus arteriosus, and gastroesophageal reflux disease who presented for intensive day treatment feeding therapy. She was diagnosed with Avoidant Restrictive Food Intake Disorder, described as total food refusal and meeting 100% of her caloric needs from a gastrostomy tube. The primary goals during intensive feeding therapy were to increase her oral intake and decrease her reliance on supplementation with formula. Several behavioral antecedent manipulations were implemented to establish consistent responding and make progress towards treatment goals. This included multiple modified bolus placements (using underloaded and Nuk brush), reinforcement contingencies, and variety fading before stability was finally achieved. Following, increasing retention of bites then increasing volume and variety were goals targeted. From treatment onset to the last 3 days of treatment, McKayla's rate of rapid acceptance of bite presentations increased significantly from 33.33% to 93.13%, rapid swallowing went from 0.00% to 92.32%, and her percentage of inappropriate mealtime behavior and expels decreased from 58.33% and 100% to 2.31% and 7.68%, respectively. Overall, the treatment team successfully introduced and increased the bite size of 7 pureed foods, generalize the treatment to caregivers with high integrity, and began facilitating tube weaning. She was receiving about 33.42% of her needs by mouth at the time of discharge. Other nutritional concerns addressed during treatment included drinking a nutritionally complete drink out of an open cup and age appropriate growth. McKayla continued to have emesis almost daily, as was her baseline before starting treatment; however, the frequency during mealtime decreased. Overall, McKayla responded well to treatment. She had a very slow response to treatment and required a lot of antecedent manipulations to establish consistent responding. As the literature suggests, [drug]-exposed neonates, like McKayla, may be at increased risk for nutritional and growth challenges that may persist throughout development. This supports the need for longterm follow-up of infant growth.

Keywords: behavioral intervention, feeding problems, in-utero drug exposure, intensive multidisciplinary intervention

Procedia PDF Downloads 69
5341 Potential of Enhancing Oil Recovery in Omani Oil Fields via Biopolymer Injection

Authors: Yahya Al-Wahaibi, Saif Al-Bahry, Abdulkadir Elshafie, Ali Al-Bemani, Sanket Joshi

Abstract:

Microbial enhanced oil recovery is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. There are a variety of metabolites produced by microorganisms that can be useful for oil recovery, like biopolymers-polysaccharides secreted by microbes, biodegradable thus environmentally friendly. Some fungi like Schizophyllum commune (a type of mushroom), and Aureobasidium pullulans are reported to produce biopolymers-schizophyllan and pullulan. Hence, we have procured a microbial strain (Schizophyllum commune) from American Type Culture Collection, which is reported for producing a biopolymer and also isolated several Omani strains of Aureobasidium pullulans from different samples. Studies were carried out for maintenance of the strains and primary screening of production media and environmental conditions for growth of S. commune and Omani A. pullulans isolates, for 30 days. The observed optimum growth and production temperature was ≤35 °C for S. commune and Omani A. pullulans isolates. Better growth was observed for both types of fungi under shaking conditions. The initial yield of lyophilized schizophyllan was ≥3.0 g/L, and the yield of pullulan was ≥0.5g/L. Both schizophyllan and pullulan were extracted in crude form and were partially identified by Fourier transform infrared spectroscopy (FTIR), which showed partial similarity in chemical structure with published biopolymers. The produced pullulan and schizophyllan increased the viscosity from 9-20 cp of the control media (without biopolymer) to 20 - 121.4 cp of the cell free broth at 0.1 s-1 shear rate at range of temperatures from 25–45 °C. Enhanced biopolymer production and its physicochemical and rheological properties under different environmental conditions (different temperatures, salt concentrations and wide range of pH), complete characterization and effects on oil recovery enhancement were also investigated in this study.

Keywords: Aureobasidium pullulans, biopolymer, oil recovery enhancement, Schizophyllum commune

Procedia PDF Downloads 396
5340 De Novo Assembly and Characterization of the Transcriptome during Seed Development, and Generation of Genic-SSR Markers in Pomegranate (Punica granatum L.)

Authors: Ozhan Simsek, Dicle Donmez, Burhanettin Imrak, Ahsen Isik Ozguven, Yildiz Aka Kacar

Abstract:

Pomegranate (Punica granatum L.) is known to be one of the oldest edible fruit tree species, with a wide geographical global distribution. Fruits from the two defined varieties (Hicaznar and 33N26) were taken at intervals after pollination and fertilization at different sizes. Seed samples were used for transcriptome sequencing. Primary sequencing was produced by Illumina Hi-Seq™ 2000. Firstly, we had raw reads, and it was subjected to quality control (QC). Raw reads were filtered into clean reads and aligned to the reference sequences. De novo analysis was performed to detect genes expressed in seeds of pomegranate varieties. We performed downstream analysis to determine differentially expressed genes. We generated about 27.09 gb bases in total after Illumina Hi-Seq sequencing. All samples were assembled together, we got 59,264 Unigenes, the total length, average length, N50, and GC content of Unigenes are 84.547.276 bp, 1.426 bp, 2,137 bp, and 46.20 %, respectively. Unigenes were annotated with 7 functional databases, finally, 42.681(NR: 72.02%), 39.660 (NT: 66.92%), 30.790 (Swissprot: 51.95%), 20.212 (COG: 34.11%), 27.689 (KEGG: 46.72%), 12.328 (GO: 20.80%), and 33,833 (Interpro: 57.09%) Unigenes were annotated. With functional annotation results, we detected 42.376 CDS, and 4.999 SSR distribute on 16.143 Unigenes.

Keywords: next generation sequencing, SSR, RNA-Seq, Illumina

Procedia PDF Downloads 243
5339 Evaluate the Kinetic Parameters and Characterize for Waste Prosopis juliflora Pods

Authors: Jean C. G. Silva, Kaline N. Ferreira, Rennio F. Sena, Flavio L. H. Silva

Abstract:

The Prosopis juliflora (called algaroba in Northeastern Region of Brazil) is a species of medium to large size that can reach 18 meters high, being typical of arid and semi-arid regions by to requirement less water to survive; this is a fundamental attribute from its adaptation. It's considered of multiple uses, because the trunk, the fruit, and the algaroba pods are utilized for several purposes, among them, the production of wood from lumber mill, charcoal, alcohol, animal and human consumption, being hence, a culture of economic and social value. The use of waste Prosopis juliflora can be carried out for like pyrolysis and gasification processes, in order to energy production in those regions where it is grown. Thus this study aims to characterize the residue of the algaroba pods and evaluate the kinetic parameters, activation energy (Ea) and pre-exponential factor (k0), the devolatilization process through the data obtained from TG/DTG curves with different levels of heating rates. At work was used the heating rates of 5 K.min-1, 10 K.min-1, 15 K.min-1, 20 K.min-1 and 30 K.min-1, in inert nitrogen atmosphere (99.997%) under a flow of 40 ml.min-1. The kinetic parameters were obtained using the methods of Friedman and Ozawa-Flynn-Wall.

Keywords: activation energy, devolatilization, kinetic parameters, waste

Procedia PDF Downloads 389
5338 Supplementation of Yeast Cell Wall on Growth Performance in Broiler Reared under High Ambient Temperature

Authors: Muhammad Shahzad Hussain

Abstract:

Two major problems are facing generally by conventional poultry farming that is disease outbreaks and poor performance, which results due to improper management. To enhance the growth performance and efficiency of feed and reduce disease outbreaks, antibiotic growth promoters (AGPs) which are antibiotics at sub-therapeutic levels, are extensively used in the poultry industry. European Union has banned the use of antibiotics due to their presence in poultry products, development of antibiotic-resistant pathogens, and disturbance of normal gut microbial ecology. These residues cause serious health concerns and produce antibiotic resistance in pathogenic microbes in human beings. These issues strengthen the need for the withdrawal of AGPs from poultry feed. Nowadays, global warming is a major issue, and it is more critical in tropical areas like Pakistan, where heat stress is already a major problem. Heat stress leads to poor production performance, high mortality, immuno-suppression, and concomitant diseases outbreak. The poultry feed industry in Pakistan, like other countries of the world, has been facing shortages and high prices of local as well as imported feed ingredients. Prebiotics are potential replacer for AGP as prebiotics has properties to enhance the production potential and reduce the growth of harmful bacteria as well as stimulate the growth/activity of beneficial bacteria. The most commonly used prebiotics in poultry includes mannan oligosaccharide (MOS). MOS is an essential component of the yeast cell wall (YCW) (Saccharomyces cerevisiae); therefore, the YCW wall possesses prebiotic properties. The use of distillery yeast wall (YCW) has the potential to replace conventional AGPs and to reduce mortality due to heat stress as well as to bind toxins in the feed. The dietary addition of YCW has not only positive effects on production performance in poultry during normal conditions but during stressful conditions. A total of 168-day-old broilers were divided into 6 groups, each of which has 28 birds with 4 replicates (n=7).Yeast cell wall (YCW) supplementation @ 0%, 1%, 1.5%, 2%, 2.5%, 3% from day 0 to 35. Heat stress was exposed from day 21 to 35 at 30±1.1ᵒC with relative humidity 65±5%. Zootechnical parameters like body weight, FCR, Organ development, and histomorphometric parameters were studied. A significant weight gain was observed at group C supplemented @ 1.5% YCW during the fifth week. Significant organ weight gain of Gizzard, spleen, small intestine, and cecum was observed at group C supplemented @ 1.5% YCW. According to morphometric indices Duodenum, Jejunum, and Ileum has significant villus height, while Jejunum and Ileum have also significant villus surface area in the group supplemented with 1.5% YCW. IEL count was only decreased in 1.5% YCW-fed group in jejunum and ileum, not in duodenum, that was less in 2% YCW-supplemented group. Dietary yeast cell wall of saccharomyces cerevisiae partially reduced the effects of high ambient temperature in terms of better growth and modified gut histology and components of mucosal immune response to better withstand heat stress in broilers.

Keywords: antibiotics, AGPs, broilers, MOS, prebiotics, YCW

Procedia PDF Downloads 101