Search results for: behavior detection
8090 Andrea's Lifestyle Changes in Lauren Weisberger's 'The Devil Wears Prada'
Authors: Dini Riandini
Abstract:
The research is aimed to find out the causes and effect of Andrea’s lifestyle changes and the other factors that contribute to Andrea’s lifestyle changes which influence Andrea’s behavior and personality in The Devil Wears Prada novel. The method of this research is descriptive qualitative method. Theory of Anderson (1999) about social psychology is used to figure out Andrea’s lifestyle changes. Lifestyle changes are influenced by social and environment in which people live. Andrea changes her lifestyle from simple to luxurious because of society and environment in which she lives. Social interaction creates humans’ lifestyles which influence their personality and behavior.Keywords: lifestyle, lifestyle changes, personality, behaviour
Procedia PDF Downloads 3288089 Conservation Detection Dogs to Protect Europe's Native Biodiversity from Invasive Species
Authors: Helga Heylen
Abstract:
With dogs saving wildlife in New Zealand since 1890 and governments in Africa, Australia and Canada trusting them to give the best results, Conservation Dogs Ireland want to introduce more detection dogs to protect Europe's native wildlife. Conservation detection dogs are fast, portable and endlessly trainable. They are a cost-effective, highly sensitive and non-invasive way to detect protected and invasive species and wildlife disease. Conservation dogs find targets up to 40 times faster than any other method. They give results instantly, with near-perfect accuracy. They can search for multiple targets simultaneously, with no reduction in efficacy The European Red List indicates the decline in biodiversity has been most rapid in the past 50 years, and the risk of extinction never higher. Just two examples of major threats dogs are trained to tackle are: (I)Japanese Knotweed (Fallopia Japonica), not only a serious threat to ecosystems, crops, structures like bridges and roads - it can wipe out the entire value of a house. The property industry and homeowners are only just waking up to the full extent of the nightmare. When those working in construction on the roads move topsoil with a trace of Japanese Knotweed, it suffices to start a new colony. Japanese Knotweed grows up to 7cm a day. It can stay dormant and resprout after 20 years. In the UK, the cost of removing Japanese Knotweed from the London Olympic site in 2012 was around £70m (€83m). UK banks already no longer lend on a house that has Japanese Knotweed on-site. Legally, landowners are now obliged to excavate Japanese Knotweed and have it removed to a landfill. More and more, we see Japanese Knotweed grow where a new house has been constructed, and topsoil has been brought in. Conservation dogs are trained to detect small fragments of any part of the plant on sites and in topsoil. (II)Zebra mussels (Dreissena Polymorpha) are a threat to many waterways in the world. They colonize rivers, canals, docks, lakes, reservoirs, water pipes and cooling systems. They live up to 3 years and will release up to one million eggs each year. Zebra mussels attach to surfaces like rocks, anchors, boat hulls, intake pipes and boat engines. They cause changes in nutrient cycles, reduction of plankton and increased plant growth around lake edges, leading to the decline of Europe's native mussel and fish populations. There is no solution, only costly measures to keep it at bay. With many interconnected networks of waterways, they have spread uncontrollably. Conservation detection dogs detect the Zebra mussel from its early larvae stage, which is still invisible to the human eye. Detection dogs are more thorough and cost-effective than any other conservation method, and will greatly complement and speed up the work of biologists, surveyors, developers, ecologists and researchers.Keywords: native biodiversity, conservation detection dogs, invasive species, Japanese Knotweed, zebra mussel
Procedia PDF Downloads 1968088 Investigation of Tribological Behavior of Electrodeposited Cr, Co-Cr and Co-Cr/Tio2 Nano-Composite Coatings
Authors: S. Mahdavi, S.R. Allahkaram
Abstract:
Electrodeposition is a simple and economic technique for precision coating of different shaped substrates with pure metal, alloy or composite films. Dc electrodeposition was used to produce Cr, Co-Cr and Co-Cr/TiO2 nano-composite coatings from Cr(III) based electrolytes onto 316L SS substrates. The effects of TiO2 nano-particles concentration on co-deposition of these particles along with Cr content and microhardness of the coatings were investigated. Morphology of the Cr, Co-Cr and Co-Cr/TiO2 coatings besides their tribological behavior were studied. The results showed that increment of TiO2 nano-particles concentration from 0 to 30 g L-1 in the bath increased their co-deposition and Cr content of the coatings from 0 to 3.5 wt.% and from 23.7 to 31.2 wt.%, respectively. Microhardness of Cr coating was about 920 Hv which was higher than Co-Cr and even Co-Cr/TiO2 films. Microhardness of Co-Cr and Co-Cr/TiO2 coatings were improved by increasing their Cr and TiO2 content. All the coatings had nodular morphology and contained microcracks. Nodules sizes and the number of microcracks in the alloy and composite coatings were lower than the Cr film. Wear results revealed that the Co-Cr/TiO2 coating had the lowest wear loss between all the samples, while the Cr film had the worst wear resistance.Keywords: Co-Cr alloy, electrodeposition, nano-composite, tribological behavior, trivalent chromium
Procedia PDF Downloads 4888087 The Knowledge-Behavior Gap in the Online Information Seeking Process
Authors: Yen-Mei Lee
Abstract:
The concept of a knowledge-behavior gap has been discussed for several years. It is addressed that an individual’s knowledge does not sufficiently transfer to his or her actual actions. This concept is mostly focused on fields related to medicine or applied to health care issues to explain how people or patients connect their personal knowledge to actual health care behaviors. To our knowledge, seldomly has this research been applied to discuss people’s online information seeking behavior. In the current study, the main purpose is to investigate the relationship between web users’ personal values and their actual performances when seeking information on the Internet. The total number of twenty-eight participants, divided into one experienced group (n=14) and one novice group (n=14), were recruited and asked to complete a self-report questionnaire of fifty items related to information seeking actions and behaviors. During the execution, participants needed to rate the importance level (how important each item is) and the performance level (how often they actually do each item) from 1 to 10 points on each item. In this paper, the mean scores of the importance and the performance level are analyzed and discussed. The results show that there is a gap between web user’s knowledge and their actual online seeking behaviors. Both experienced group and novice group have higher average scores of the importance level (experienced group = 7.57, novice group = 6.01) than the actual performance level (experienced group = 6.89, novice group = 5.00) in terms of the fifty online information seeking actions. On the other hand, the experienced group perceives more importance of the fifty online seeking actions and performs actual behaviors better than the novice group. Moreover, experienced participants express a consistent result between their concept knowledge and actual behaviors. For instance, they feel extending a seeking strategy is important and frequently perform this action when seeking online. However, novice participants do not have a consistency between their knowledge and behaviors. For example, though they perceive browsing and judging information are less important than they get lost in the online information seeking process. However, in the actual behavior rating, the scores show that novices do browsing and judge information more often than they get lost when seeking information online. These results, therefore, help scholars and educators have a better understanding of the difference between experienced and novice web users regarding their concept knowledge and actual behaviors. In future study, figuring out how to narrow down the knowledge-behavior gap and create practical guidance for novice users to increase their online seeking efficiency is crucial. Not only could it help experienced users be aware of their actual information seeking behaviors, but also help the novice become mastery to concisely obtain information on the Internet.Keywords: experienced web user, information seeking behavior, knowledge-behavior gap, novice, online seeking efficiency
Procedia PDF Downloads 1208086 Consumer Behavior and Marketing Mixed Factor Effect on Consumer Decision Making for Independent Movies Presented in Lido Cinema
Authors: Pongsawee Supanonth
Abstract:
This study aims to investigate the consumer behavior and marketing mixed factor affect on consumer decision making for independent movies presented in Lido cinema. The research method will use quantitative research, data was collected by questionnaires distributed to the audience in the Lido cinema for 400 sample by accidental sampling technique. Data was analyzed by descriptive statistic including percentage, mean, standard deviation and inferential statistic including independent t-test for hypothesis testing. The results showed that marketing mixed factors affecting consumer decision-making for Independent movies presented in Lido cinema by gender as different as less than the 0.05 significance level, it was found that the kind of movie ,quality of theater ,price of ticket, facility of watching movies, staff services and promotion of Lido cinema respectively had a vital influence on their attention and response which makes the advertisement more attractive is in harmony with the research hypotheses also.Keywords: consumer behavior, marketing mixed factor, resonance, consumer decision making, Lido cinema
Procedia PDF Downloads 3128085 Nafion Multiwalled Carbon Nano Tubes Composite Film Modified Glassy Carbon Sensor for the Voltammetric Estimation of Dianabol Steroid in Pharmaceuticals and Biological Fluids
Authors: Nouf M. Al-Ourfi, A. S. Bashammakh, M. S. El-Shahawi
Abstract:
The redox behavior of dianabol steroid (DS) on Nafion Multiwalled Carbon nano -tubes (MWCNT) composite film modified glassy carbon electrode (GCE) in various buffer solutions was studied using cyclic voltammetry (CV) and differential pulse- adsorptive cathodic stripping voltammetry (DP-CSV) and successfully compared with the results at non modified bare GCE. The Nafion-MWCNT composite film modified GCE exhibited the best electrochemical response among the two electrodes for the electro reduction of DS that was inferred from the EIS, CV and DP-CSV. The modified sensor showed a sensitive, stable and linear response in the concentration range of 5 – 100 nM with a detection limit of 0.08 nM. The selectivity of the proposed sensor was assessed in the presence of high concentration of major interfering species. The analytical application of the sensor for the quantification of DS in pharmaceutical formulations and biological fluids (urine) was determined and the results demonstrated acceptable recovery and RSD of 5%. Statistical treatment of the results of the proposed method revealed no significant differences in the accuracy and precision. The relative standard deviations for five measurements of 50 and 300 ng mL−1 of DS were 3.9 % and 1.0 %, respectively.Keywords: dianabol steroid, determination, modified GCE, urine
Procedia PDF Downloads 2848084 A Neural Network Classifier for Identifying Duplicate Image Entries in Real-Estate Databases
Authors: Sergey Ermolin, Olga Ermolin
Abstract:
A Deep Convolution Neural Network with Triplet Loss is used to identify duplicate images in real-estate advertisements in the presence of image artifacts such as watermarking, cropping, hue/brightness adjustment, and others. The effects of batch normalization, spatial dropout, and various convergence methodologies on the resulting detection accuracy are discussed. For comparative Return-on-Investment study (per industry request), end-2-end performance is benchmarked on both Nvidia Titan GPUs and Intel’s Xeon CPUs. A new real-estate dataset from San Francisco Bay Area is used for this work. Sufficient duplicate detection accuracy is achieved to supplement other database-grounded methods of duplicate removal. The implemented method is used in a Proof-of-Concept project in the real-estate industry.Keywords: visual recognition, convolutional neural networks, triplet loss, spatial batch normalization with dropout, duplicate removal, advertisement technologies, performance benchmarking
Procedia PDF Downloads 3388083 A National Systematic Review on Determining Prevalence of Mobbing Exposure in Turkish Nurses
Authors: Betül Sönmez, Aytolan Yıldırım
Abstract:
Objective: This systematic review aims to methodically analyze studies regarding mobbing behavior prevalence, individuals performing this behavior and the effects of mobbing on Turkish nurses. Background: Worldwide reports on mobbing cases have increased in the past years, a similar trend also observable in Turkey. It has been demonstrated that among healthcare workers, mobbing is significantly widespread in nurses. The number of studies carried out in this regard has also increased. Method: The main criteria for choosing articles in this systematic review were nurses located in Turkey, regardless of any specific date. In November 2014, a search using the keywords 'mobbing, bullying, psychological terror/violence, emotional violence, nurses, healthcare workers, Turkey' in PubMed, Science Direct, Ebscohost, National Thesis Centre database and Google search engine led to 71 studies in this field. 33 studies were not met the inclusion criteria specified for this study. Results: The findings were obtained using the results of 38 studies carried out in the past 13 years in Turkey, a large sample consisting of 8,877 nurses. Analysis of the incidences of mobbing behavior revealed a broad spectrum, ranging from none-slight experiences to 100% experiences. The most frequently observed mobbing behaviors include attacking personality, blocking communication and attacking professional and social reputation. Victims mostly experienced mobbing from their managers, the most common consequence of these actions being psychological effects. Conclusions: The results of studies with various scales indicate exposure of nurses to similar mobbing behavior. The high frequency of exposure of nurses to mobbing behavior in such a large sample highlights the importance of considering this issue in terms of individual and institutional consequences that adversely affect the performance of nurses.Keywords: mobbing, bullying, workplace violence, nurses, Turkey
Procedia PDF Downloads 2778082 Patterns of Gear Substitution in Norwegian Trawl Fishery
Authors: Tannaz Alizadeh Ashrafi
Abstract:
Seasonal variability in biological and ecological factors together with relevant socio-economic determinants affect the choice of fishing gear, frequency of its usage and decision about gear conversion under multi-species situation. In order to deal with the complex dynamics of fisheries, fishers, constantly, have to make decisions about how long to fish, when to go fishing, what species to target, and which gear to deploy. In this regard, the purpose of this study is to examine the dynamics of gear/ species combination in Norwegian fishery. A comprehensive vessel-level set of data for the main economically important species including: cod, haddock, saithe, shrimp and mixed catch have been obtained from the Norwegian Directorate of Fisheries covering the daily data in 2010. The present study further analyzes the level of flexibility and rationality of the fishers operating in the trawl fishery. The results show the disproportion between intention of the trawl fishers to maximize profitability of each fishing trip and their harvesting behavior in reality. Discussion is based on so-called maximizing behavior.Keywords: trawl fishery, gear substitution, rationality, profit maximizing behavior
Procedia PDF Downloads 2778081 42CrMo4 Steel Flow Behavior Characterization for High Temperature Closed Dies Hot Forging in Automotive Components Applications
Authors: O. Bilbao, I. Loizaga, F. A. Girot, A. Torregaray
Abstract:
The current energetical situation and the high competitiveness in industrial sectors as the automotive one have become the development of new manufacturing processes with less energy and raw material consumption a real necessity. As consequence, new forming processes related with high temperature hot forging in closed dies have emerged in the last years as new solutions to expand the possibilities of hot forging and iron casting in the automotive industry. These technologies are mid-way between hot forging and semi-solid metal processes, working at temperatures higher than the hot forging but below the solidus temperature or the semi solid range, where no liquid phase is expected. This represents an advantage comparing with semi-solid forming processes as thixoforging, by the reason that no so high temperatures need to be reached in the case of high melting point alloys as steels, reducing the manufacturing costs and the difficulties associated to semi-solid processing of them. Comparing with hot forging, this kind of technologies allow the production of parts with as forged properties and more complex and near-net shapes (thinner sidewalls), enhancing the possibility of designing lightweight components. From the process viewpoint, the forging forces are significantly decreased, and a significant reduction of the raw material, energy consumption, and the forging steps have been demonstrated. Despite the mentioned advantages, from the material behavior point of view, the expansion of these technologies has shown the necessity of developing new material flow behavior models in the process working temperature range to make the simulation or the prediction of these new forming processes feasible. Moreover, the knowledge of the material flow behavior at the working temperature range also allows the design of the new closed dies concept required. In this work, the flow behavior characterization in the mentioned temperature range of the widely used in automotive commercial components 42CrMo4 steel has been studied. For that, hot compression tests have been carried out in a thermomechanical tester in a temperature range that covers the material behavior from the hot forging until the NDT (Nil Ductility Temperature) temperature (1250 ºC, 1275 ºC, 1300 ºC, 1325 ºC, 1350ºC, and 1375 ºC). As for the strain rates, three different orders of magnitudes have been considered (0,1 s-1, 1s-1, and 10s-1). Then, results obtained from the hot compression tests have been treated in order to adapt or re-write the Spittel model, widely used in automotive commercial softwares as FORGE® that restrict the current existing models up to 1250ºC. Finally, the obtained new flow behavior model has been validated by the process simulation in a commercial automotive component and the comparison of the results of the simulation with the already made experimental tests in a laboratory cellule of the new technology. So as a conclusion of the study, a new flow behavior model for the 42CrMo4 steel in the new working temperature range and the new process simulation in its application in automotive commercial components has been achieved and will be shown.Keywords: 42CrMo4 high temperature flow behavior, high temperature hot forging in closed dies, simulation of automotive commercial components, spittel flow behavior model
Procedia PDF Downloads 1298080 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids
Authors: Xun Li, Haojie Wang
Abstract:
Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense
Procedia PDF Downloads 1148079 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires
Authors: Musaab Salman Sultan
Abstract:
The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.Keywords: MOKE magnetometry, MR measurements, OOMMF package, micromagnetic simulations, ferromagnetic nanowires, surface magnetic properties
Procedia PDF Downloads 2508078 A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array
Authors: Lei Qi, Rongxin Yan, Lichen Sun
Abstract:
With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit.Keywords: acoustic sensor array, spacecraft, damage assessment, leakage location
Procedia PDF Downloads 2958077 Mean Reversion in Stock Prices: Evidence from Karachi Stock Exchange
Authors: Tabassum Riaz
Abstract:
This study provides a complete examination of the stock prices behavior in the Karachi stock exchange. It examines that whether Karachi stock exchange can be described as mean reversion or not. For this purpose daily, weekly and monthly index data from Karachi stock exchange ranging from period July 1, 1997 to July 2, 2011 was taken. After employing the Multiple variance ratio and unit root tests it is concluded that stock market follow mean reversion behavior and hence have reverting trend which opens the door for the active invest management. Thus technical analysis may be help to identify the potential areas for value creation.Keywords: mean reversion, random walk, technical analysis, Karachi stock exchange
Procedia PDF Downloads 4328076 Extending Theory of Planned Behavior to Modelling Chronic Patients’ Acceptance of Health Information: An Information Overload Perspective
Authors: Shu-Lien Chou, Chung-Feng Liu
Abstract:
Self-health management of chronic illnesses plays an important part in chronic illness treatments. However, various kinds of health information (health education materials) which government or healthcare institutions provide for patients may not achieve the expected outcome. One of the critical reasons affecting patients’ use intention could be patients’ perceived Information overload regarding the health information. This study proposed an extended model of Theory of Planned Behavior, which integrating perceived information overload as another construct to explore patients’ use intention of the health information for self-health management. The independent variables are attitude, subject norm, perceived behavior control and perceived information overload while the dependent variable is behavior intention to use the health information. The cross-sectional study used a structured questionnaire for data collection, focusing on the chronic patients with coronary artery disease (CAD), who are the potential users of the health information, in a medical center in Taiwan. Data were analyzed using descriptive statistics of the basic information distribution of the questionnaire respondents, and the Partial Least Squares (PLS) structural equation model to study the reliability and construct validity for testing our hypotheses. A total of 110 patients were enrolled in this study and 106 valid questionnaires were collected. The PLS analysis result indicates that the patients’ perceived information overload of health information contributes the most critical factor influencing the behavioral intention. Subjective norm and perceived behavioral control of TPB constructs had significant effects on patients’ intentions to use health information also, whereas the attitude construct did not. This study demonstrated a comprehensive framework, which extending perceived information overload into TPB model to predict patients’ behavioral intention of using heath information. We expect that the results of this study will provide useful insights for studying health information from the perspectives of academia, governments, and healthcare providers.Keywords: chronic patients, health information, information overload, theory of planned behavior
Procedia PDF Downloads 4368075 Factors Related with Self-Care Behaviors among Iranian Type 2 Diabetic Patients: An Application of Health Belief Model
Authors: Ali Soroush, Mehdi Mirzaei Alavijeh, Touraj Ahmadi Jouybari, Fazel Zinat-Motlagh, Abbas Aghaei, Mari Ataee
Abstract:
Diabetes is a disease with long cardiovascular, renal, ophthalmic and neural complications. It is prevalent all around the world including Iran, and its prevalence is increasing. The aim of this study was to determine the factors related to self-care behavior based on health belief model among sample of Iranian diabetic patients. This cross-sectional study was conducted among 301 type 2 diabetic patients in Gachsaran, Iran. Data collection was based on an interview and the data were analyzed by SPSS version 20 using ANOVA, t-tests, Pearson correlation, and linear regression statistical tests at 95% significant level. Linear regression analyses showed the health belief model variables accounted for 29% of the variation in self-care behavior; and perceived severity and perceived self-efficacy are more influential predictors on self-care behavior among diabetic patients.Keywords: diabetes, patients, self-care behaviors, health belief model
Procedia PDF Downloads 4688074 The Effectiveness of Energy Index Technique in Bearing Condition Monitoring
Authors: Faisal Alshammari, Abdulmajid Addali, Mosab Alrashed, Taihiret Alhashan
Abstract:
The application of acoustic emission techniques is gaining popularity, as it can monitor the condition of gears and bearings and detect early symptoms of a defect in the form of pitting, wear, and flaking of surfaces. Early detection of these defects is essential as it helps to avoid major failures and the associated catastrophic consequences. Signal processing techniques are required for early defect detection – in this article, a time domain technique called the Energy Index (EI) is used. This article presents an investigation into the Energy Index’s effectiveness to detect early-stage defect initiation and deterioration, and compares it with the common r.m.s. index, Kurtosis, and the Kolmogorov-Smirnov statistical test. It is concluded that EI is a more effective technique for monitoring defect initiation and development than other statistical parameters.Keywords: acoustic emission, signal processing, kurtosis, Kolmogorov-Smirnov test
Procedia PDF Downloads 3668073 DEEPMOTILE: Motility Analysis of Human Spermatozoa Using Deep Learning in Sri Lankan Population
Authors: Chamika Chiran Perera, Dananjaya Perera, Chirath Dasanayake, Banuka Athuraliya
Abstract:
Male infertility is a major problem in the world, and it is a neglected and sensitive health issue in Sri Lanka. It can be determined by analyzing human semen samples. Sperm motility is one of many factors that can evaluate male’s fertility potential. In Sri Lanka, this analysis is performed manually. Manual methods are time consuming and depend on the person, but they are reliable and it can depend on the expert. Machine learning and deep learning technologies are currently being investigated to automate the spermatozoa motility analysis, and these methods are unreliable. These automatic methods tend to produce false positive results and false detection. Current automatic methods support different techniques, and some of them are very expensive. Due to the geographical variance in spermatozoa characteristics, current automatic methods are not reliable for motility analysis in Sri Lanka. The suggested system, DeepMotile, is to explore a method to analyze motility of human spermatozoa automatically and present it to the andrology laboratories to overcome current issues. DeepMotile is a novel deep learning method for analyzing spermatozoa motility parameters in the Sri Lankan population. To implement the current approach, Sri Lanka patient data were collected anonymously as a dataset, and glass slides were used as a low-cost technique to analyze semen samples. Current problem was identified as microscopic object detection and tackling the problem. YOLOv5 was customized and used as the object detector, and it achieved 94 % mAP (mean average precision), 86% Precision, and 90% Recall with the gathered dataset. StrongSORT was used as the object tracker, and it was validated with andrology experts due to the unavailability of annotated ground truth data. Furthermore, this research has identified many potential ways for further investigation, and andrology experts can use this system to analyze motility parameters with realistic accuracy.Keywords: computer vision, deep learning, convolutional neural networks, multi-target tracking, microscopic object detection and tracking, male infertility detection, motility analysis of human spermatozoa
Procedia PDF Downloads 1068072 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things
Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker
Abstract:
Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.Keywords: CUSUM, evidence theory, kl divergence, quickest change detection, time series data
Procedia PDF Downloads 3348071 Universality and Synchronization in Complex Quadratic Networks
Authors: Anca Radulescu, Danae Evans
Abstract:
The relationship between a network’s hardwiring and its emergent dynamics are central to neuroscience. We study the principles of this correspondence in a canonical setup (in which network nodes exhibit well-studied complex quadratic dynamics), then test their universality in biological networks. By extending methods from discrete dynamics, we study the effects of network connectivity on temporal patterns, encapsulating long-term behavior into the rich topology of network Mandelbrot sets. Then elements of fractal geometry can be used to predict and classify network behavior.Keywords: canonical model, complex dynamics, dynamic networks, fractals, Mandelbrot set, network connectivity
Procedia PDF Downloads 3088070 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images
Authors: A. Biran, P. Sobhe Bidari, A. Almazroe, V. Lakshminarayanan, K. Raahemifar
Abstract:
Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.Keywords: diabetic retinopathy, fundus images, STARE, Gabor filter, support vector machine
Procedia PDF Downloads 2948069 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management
Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran
Abstract:
Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities
Procedia PDF Downloads 728068 Behavioral Similarities between Perpetrators of School Violence and Having a Parent Incarcerated during Adolescence
Authors: Darynne Madison Dela Gente, Panayiota Courelli
Abstract:
Similarities in behavior between perpetrators of school violence and those with a parent in prison raise concern when considering the root causes of a student’s violent behavior. Dealing with parental incarceration is highly consequential on a student’s emotional well-being and may cause aggressive behavior that can lead to them becoming a perpetrator of school violence. These students are more likely to have interpersonal issues, antisocial tendencies, and a hostile demeanor, which are factors that closely align with indicators of an offender of violence. Developmental risk factors of parental incarceration are heavily understudied and often overlooked. This literature review aims to analyze the correlation between having a parent in prison and exhibiting physical or verbal aggression in a school environment. Furthermore, it strives to bring awareness to the inconsistencies in existing research and encourage a greater depth of study of the behavioral impacts, specifically in an academic setting. Furthermore, it will elaborate on the effectiveness of current intervention programs, such as Project Avary, Hope House, Kids Mates Inc., and Girl Scouts Beyond Bars, which provide immense support, as well as proposed methods of implementation in a school environment. Creating a space for these students to cope ultimately aids in the prevention of violent behaviors and intergenerational incarceration. Access to intervention programs, especially in schools located in areas with high rates of incarceration, would greatly reduce the risk of these students becoming perpetrators of school violence.Keywords: adolescent behavior, adolescent mental health, parental incarceration, school violence prevention
Procedia PDF Downloads 948067 Modeling of International Financial Integration: A Multicriteria Decision
Authors: Zouari Ezzeddine, Tarchoun Monaem
Abstract:
Despite the multiplicity of advanced approaches, the concept of financial integration couldn’t be an explicit analysis. Indeed, empirical studies appear that the measures of international financial integration are one-dimensional analyses. For the ambivalence of the concept and its multiple determinants, it must be analyzed in multidimensional level. The interest of this research is a proposal of a decision support by multicriteria approach for determining the positions of countries according to their international and financial dependencies links with the behavior of financial actors (trying to make governance decisions or diversification strategies of international portfolio ...Keywords: financial integration, decision support, behavior, multicriteria approach, governance and diversification
Procedia PDF Downloads 5278066 A Smartphone-Based Real-Time Activity Recognition and Fall Detection System
Authors: Manutchanok Jongprasithporn, Rawiphorn Srivilai, Paweena Pongsopha
Abstract:
Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand.Keywords: activity recognition, accelerometer, fall, gyroscope, smartphone
Procedia PDF Downloads 6928065 The Combination Of Aortic Dissection Detection Risk Score (ADD-RS) With D-dimer As A Diagnostic Tool To Exclude The Diagnosis Of Acute Aortic Syndrome (AAS)
Authors: Mohamed Hamada Abdelkader Fayed
Abstract:
Background: To evaluate the diagnostic accuracy of (ADD-RS) with D-dimer as a screening test to exclude AAS. Methods: We conducted research for the studies examining the diagnostic accuracy of (ADD- RS)+ D-dimer to exclude the diagnosis of AAS, We searched MEDLINE, Embase, and Cochrane of Trials up to 31 December 2020. Results: We identified 3 studies using (ADD-RS) with D-dimer as a diagnostic tool for AAS, involving 3261 patients were AAS was diagnosed in 559(17.14%) patients. Overall results showed that the pooled sensitivities were 97.6 (95% CI 0.95.6, 99.6) at (ADD-RS)≤1(low risk group) with D-dimer and 97.4(95% CI 0.95.4,, 99.4) at (ADD-RS)>1(High risk group) with D-dimer., the failure rate was 0.48% at low risk group and 4.3% at high risk group respectively. Conclusions: (ADD-RS) with D-dimer was a useful screening test with high sensitivity to exclude Acute Aortic Syndrome.Keywords: aortic dissection detection risk score, D-dimer, acute aortic syndrome, diagnostic accuracy
Procedia PDF Downloads 2158064 Gender Differences in Risk Aversion Behavior: Case Study of Saudi Arabia and Jordan
Authors: Razan Salem
Abstract:
Men and women have different approaches towards investing, both in terms of strategies and risk attitudes. This study aims to focus mainly on investigating the financial risk behaviors of Arab women investors and to examine the financial risk tolerance levels of Arab women relative to Arab men investors. Using survey data on 547 Arab men and women investors, the results of Wilcoxon Signed-Rank (One-Sample) test Mann-Whitney U test reveal that Arab women are risk-averse investors and have lower financial risk tolerance levels relative to Arab men. Such findings can be explained by the fact of women's nature and lower investment literacy levels. Further, the current political uncertainty in the Arab region may be considered as another explanation of Arab women’s risk aversion behavior. The study's findings support the existing literature by validating the stereotype of “women are more risk-averse than men” in the Arab region. Overall, when it comes to investment and financial behaviors, women around the world behave similarly.Keywords: Arab region, culture, financial risk behavior, gender differences, women investors
Procedia PDF Downloads 1668063 Automated Detection of Women Dehumanization in English Text
Authors: Maha Wiss, Wael Khreich
Abstract:
Animals, objects, foods, plants, and other non-human terms are commonly used as a source of metaphors to describe females in formal and slang language. Comparing women to non-human items not only reflects cultural views that might conceptualize women as subordinates or in a lower position than humans, yet it conveys this degradation to the listeners. Moreover, the dehumanizing representation of females in the language normalizes the derogation and even encourages sexism and aggressiveness against women. Although dehumanization has been a popular research topic for decades, according to our knowledge, no studies have linked women's dehumanizing language to the machine learning field. Therefore, we introduce our research work as one of the first attempts to create a tool for the automated detection of the dehumanizing depiction of females in English texts. We also present the first labeled dataset on the charted topic, which is used for training supervised machine learning algorithms to build an accurate classification model. The importance of this work is that it accomplishes the first step toward mitigating dehumanizing language against females.Keywords: gender bias, machine learning, NLP, women dehumanization
Procedia PDF Downloads 808062 Investigating the Molecular Behavior of H₂O in Caso 4 -2h₂o Two-Dimensional Nanoscale System
Authors: Manal Alhazmi, Artem Mishchenko
Abstract:
A molecular fluids' behavior and interaction with other materials at the nanoscale is a complex process. Nanoscale fluids behave so differently than macroscale fluids and interact with other materials in unique ways. It is, therefore, feasible to understand the molecular behavior of H₂O in such two-dimensional nanoscale systems by studying (CaSO4-2H2O), commonly known as gypsum. In the present study, spectroscopic measurements on a 2D structure of exfoliated gypsum crystals are carried out by Raman and IR spectroscopy. An array of gypsum flakes with thicknesses ranging from 8nm to 100nm were observed and analyzed for their Raman and IR spectrum. Water molecules stretching modes spectra lines were also measured and observed in nanoscale gypsum flakes and compared with those of bulk crystals. CaSO4-2H2O crystals have Raman and infrared bands at 3341 cm-1 resulting from the weak hydrogen bonds between the water molecules. This internal vibration of water molecules, together with external vibrations with other atoms, are responsible for these bands. There is a shift of about 70 cm-1 In the peak position of thin flakes with respect to the bulk crystal, which is a result of the different atomic arrangement from bulk to thin flake on the nano scale. An additional peak was observed in Raman spectra around 2910-3137 cm⁻¹ in thin flakes but is missing in bulk crystal. This additional peak is attributed to a combined mode of water internal (stretching mode at 3394cm⁻¹) and external vibrations. In addition to Raman and infra- red analysis of gypsum 2D structure, electrical measurements were conducted to reveal the water molecules transport behavior in such systems. Electrical capacitance of the fabricated device is measured and found to be (0.0686 *10-12) F, and the calculated dielectric constant (ε) is (12.26).Keywords: gypsum, infra-red spectroscopy, raman spectroscopy, H₂O behavior
Procedia PDF Downloads 1048061 Flashover Detection Algorithm Based on Mother Function
Authors: John A. Morales, Guillermo Guidi, B. M. Keune
Abstract:
Electric Power supply is a crucial topic for economic and social development. Power outages statistics show that discharges atmospherics are imperative phenomena to produce those outages. In this context, it is necessary to correctly detect when overhead line insulators are faulted. In this paper, an algorithm to detect if a lightning stroke generates or not permanent fault on insulator strings is proposed. On top of that, lightning stroke simulations developed by using the Alternative Transients Program, are used. Based on these insights, a novel approach is designed that depends on mother functions analysis corresponding to the given variance-covariance matrix. Signals registered at the insulator string are projected on corresponding axes by the means of Principal Component Analysis. By exploiting these new axes, it is possible to determine a flashover characteristic zone useful to a good insulation design. The proposed methodology for flashover detection extends the existing approaches for the analysis and study of lightning performance on transmission lines.Keywords: mother function, outages, lightning, sensitivity analysis
Procedia PDF Downloads 587