Search results for: ML techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6736

Search results for: ML techniques

5116 Mixed Integer Programming-Based One-Class Classification Method for Process Monitoring

Authors: Younghoon Kim, Seoung Bum Kim

Abstract:

One-class classification plays an important role in detecting outlier and abnormality from normal observations. In the previous research, several attempts were made to extend the scope of application of the one-class classification techniques to statistical process control problems. For most previous approaches, such as support vector data description (SVDD) control chart, the design of the control limits is commonly based on the assumption that the proportion of abnormal observations is approximately equal to an expected Type I error rate in Phase I process. Because of the limitation of the one-class classification techniques based on convex optimization, we cannot make the proportion of abnormal observations exactly equal to expected Type I error rate: controlling Type I error rate requires to optimize constraints with integer decision variables, but convex optimization cannot satisfy the requirement. This limitation would be undesirable in theoretical and practical perspective to construct effective control charts. In this work, to address the limitation of previous approaches, we propose the one-class classification algorithm based on the mixed integer programming technique, which can solve problems formulated with continuous and integer decision variables. The proposed method minimizes the radius of a spherically shaped boundary subject to the number of normal data to be equal to a constant value specified by users. By modifying this constant value, users can exactly control the proportion of normal data described by the spherically shaped boundary. Thus, the proportion of abnormal observations can be made theoretically equal to an expected Type I error rate in Phase I process. Moreover, analogous to SVDD, the boundary can be made to describe complex structures by using some kernel functions. New multivariate control chart applying the effectiveness of the algorithm is proposed. This chart uses a monitoring statistic to characterize the degree of being an abnormal point as obtained through the proposed one-class classification. The control limit of the proposed chart is established by the radius of the boundary. The usefulness of the proposed method was demonstrated through experiments with simulated and real process data from a thin film transistor-liquid crystal display.

Keywords: control chart, mixed integer programming, one-class classification, support vector data description

Procedia PDF Downloads 172
5115 The Corrosion Resistance of the 32CrMoV13 Steel Nitriding

Authors: Okba Belahssen, Lazhar Torchane, Said Benramache, Abdelouahed Chala

Abstract:

This paper presents corrosion behavior of the plasma-nitrided 32CrMoV13 steel. Different kinds of samples were tested: non-treated, plasma nitrided samples. The structure of layers was determined by X-ray diffraction, while the morphology was observed by scanning electron microscopy (SEM). The corrosion behavior was evaluated by electrochemical techniques (potentiodynamic curves and electrochemical impedance spectroscopy). The corrosion tests were carried out in acid chloride solution (HCl 1M). Experimental results showed that the nitrides ε-Fe2−3N and γ′-Fe4N present in the white layer are nobler than the substrate but may promote, by galvanic effect, a localized corrosion through open porosity. The better corrosion protection was observed for nitrided sample.

Keywords: plasma-nitrided, 32CrMoV13 steel, corrosion, EIS

Procedia PDF Downloads 584
5114 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 51
5113 Practical Challenges of Tunable Parameters in Matlab/Simulink Code Generation

Authors: Ebrahim Shayesteh, Nikolaos Styliaras, Alin George Raducu, Ozan Sahin, Daniel Pombo VáZquez, Jonas Funkquist, Sotirios Thanopoulos

Abstract:

One of the important requirements in many code generation projects is defining some of the model parameters tunable. This helps to update the model parameters without performing the code generation again. This paper studies the concept of embedded code generation by MATLAB/Simulink coder targeting the TwinCAT Simulink system. The generated runtime modules are then tested and deployed to the TwinCAT 3 engineering environment. However, defining the parameters tunable in MATLAB/Simulink code generation targeting TwinCAT is not very straightforward. This paper focuses on this subject and reviews some of the techniques tested here to make the parameters tunable in generated runtime modules. Three techniques are proposed for this purpose, including normal tunable parameters, callback functions, and mask subsystems. Moreover, some test Simulink models are developed and used to evaluate the results of proposed approaches. A brief summary of the study results is presented in the following. First of all, the parameters defined tunable and used in defining the values of other Simulink elements (e.g., gain value of a gain block) could be changed after the code generation and this value updating will affect the values of all elements defined based on the values of the tunable parameter. For instance, if parameter K=1 is defined as a tunable parameter in the code generation process and this parameter is used to gain a gain block in Simulink, the gain value for the gain block is equal to 1 in the gain block TwinCAT environment after the code generation. But, the value of K can be changed to a new value (e.g., K=2) in TwinCAT (without doing any new code generation in MATLAB). Then, the gain value of the gain block will change to 2. Secondly, adding a callback function in the form of “pre-load function,” “post-load function,” “start function,” and will not help to make the parameters tunable without performing a new code generation. This means that any MATLAB files should be run before performing the code generation. The parameters defined/calculated in this file will be used as fixed values in the generated code. Thus, adding these files as callback functions to the Simulink model will not make these parameters flexible since the MATLAB files will not be attached to the generated code. Therefore, to change the parameters defined/calculated in these files, the code generation should be done again. However, adding these files as callback functions forces MATLAB to run them before the code generation, and there is no need to define the parameters mentioned in these files separately. Finally, using a tunable parameter in defining/calculating the values of other parameters through the mask is an efficient method to change the value of the latter parameters after the code generation. For instance, if tunable parameter K is used in calculating the value of two other parameters K1 and K2 and, after the code generation, the value of K is updated in TwinCAT environment, the value of parameters K1 and K2 will also be updated (without any new code generation).

Keywords: code generation, MATLAB, tunable parameters, TwinCAT

Procedia PDF Downloads 225
5112 Restoration of Steppes in Algeria: Case of the Stipa tenacissima L. Steppe

Authors: H. Kadi-Hanifi, F. Amghar

Abstract:

Steppes of arid Mediterranean zones are deeply threatened by desertification. To stop or alleviate ecological and economic problems associated with this desertification, management actions have been implemented since the last three decades. The struggle against desertification has become a national priority in many countries. In Algeria, several management techniques have been used to cope with desertification. This study aims at investigating the effect of exclosure on floristic diversity and chemical soil proprieties after four years of implementation. 167 phyto-ecological samples have been studied, 122 inside the exclosure and 45 outside. Results showed that plant diversity, composition, vegetation cover, pastoral value and soil fertility were significantly higher in protected areas.

Keywords: Algeria, arid, desertification, pastoral management, soil fertility

Procedia PDF Downloads 190
5111 Just a Heads Up: Approach to Head Shape Abnormalities

Authors: Noreen Pulte

Abstract:

Prior to the 'Back to Sleep' Campaign in 1992, 1 of every 300 infants seen by Advanced Practice Providers had plagiocephaly. Insufficient attention is given to plagiocephaly and brachycephaly diagnoses in practice and pediatric education. In this talk, Nurse Practitioners and Pediatric Providers will be able to: (1) identify red flags associated with head shape abnormalities, (2) learn techniques they can teach parents to prevent head shape abnormalities, and (3) differentiate between plagiocephaly, brachycephaly, and craniosynostosis. The presenter is a Primary Care Pediatric Nurse Practitioner at Ann & Robert H. Lurie Children's Hospital of Chicago and the primary provider for its head shape abnormality clinics. She will help participants translate key information obtained from birth history, review of systems, and developmental history to understand risk factors for head shape abnormalities and progression of deformities. Synostotic and non-synostotic head shapes will be explained to help participants differentiate plagiocephaly and brachycephaly from synostotic head shapes. This knowledge is critical for the prompt referral of infants with craniosynostosis for surgical evaluation and correction. Rapid referral for craniosynostosis can possibly direct the patient to a minimally invasive surgical procedure versus a craniectomy. As for plagiocephaly and brachycephaly, this timely referral can also aid in a physical therapy referral if necessitated, which treats torticollis and aids in improving head shape. A well-timed referral to a head shape clinic can possibly eliminate the need for a helmet and/or minimize the time in a helmet. Practitioners will learn the importance of obtaining head measurements using calipers. The presenter will explain head calculations and how the calculations are interpreted to determine the severity of the head shape abnormalities. Severity defines the treatment plan. Participants will learn when to refer patients to a head shape abnormality clinic and techniques they should teach parents to perform while waiting for the referral appointment. The purpose, mechanics, and logistics of helmet therapy, including optimal time to initiate helmet therapy, recommended helmet wear-time, and tips for helmet therapy compliance, will be described. Case scenarios will be incorporated into the presenter's presentation to support learning. The salient points of the case studies will be explained and discussed. Practitioners will be able to immediately translate the knowledge and skills gained in this presentation into their clinical practice.

Keywords: plagiocephaly, brachycephaly, craniosynostosis, red flags

Procedia PDF Downloads 95
5110 The Quotation-Based Algorithm for Distributed Decision Making

Authors: Gennady P. Ginkul, Sergey Yu. Soloviov

Abstract:

The article proposes to use so-called "quotation-based algorithm" for simulation of decision making process in distributed expert systems and multi-agent systems. The idea was adopted from the techniques for group decision-making. It is based on the assumption that one expert system to perform its logical inference may use rules from another expert system. The application of the algorithm was demonstrated on the example in which the consolidated decision is the decision that requires minimal quotation.

Keywords: backward chaining inference, distributed expert systems, group decision making, multi-agent systems

Procedia PDF Downloads 372
5109 Adsoption Tests of Two Industrial Dyes by Hydroxyds of Metals

Authors: R. Berrached, H. Ait Mahamed, A. Iddou

Abstract:

Water pollution is nowadays a serious problem, due to the increasing scarcity of water and thus to the impact induced by such pollution on the human health. Various techniques are made use of to deal with water pollution. Among the most used ones, some can be enumerated: the bacterian bed, the activated sludge, lagoons as biological processes and coagulation-flocculation as a physic-chemical process. These processes are very expensive and a decreasing in efficiency treatment with the increase of the initial pollutants concentration. This is the reason why research has been reoriented towards the use of adsorption process as an alternative solution instead of the other traditional processes. In our study, we have tempted to explore the characteristics of hydroxides of Al and Fe to purify contaminated water by two industrial dyes SBL blue and SRL-150 orange. Results have shown the efficiency of the two materials on the blue SBL dye.

Keywords: metallic hydroxydes, dyes, purification, adsorption

Procedia PDF Downloads 335
5108 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 36
5107 Actuator Fault Detection and Fault Tolerant Control of a Nonlinear System Using Sliding Mode Observer

Authors: R. Loukil, M. Chtourou, T. Damak

Abstract:

In this work, we use the Fault detection and isolation and the Fault tolerant control based on sliding mode observer in order to introduce the well diagnosis of a nonlinear system. The robustness of the proposed observer for the two techniques is tested through a physical example. The results in this paper show the interaction between the Fault tolerant control and the Diagnosis procedure.

Keywords: fault detection and isolation FDI, fault tolerant control FTC, sliding mode observer, nonlinear system, robustness, stability

Procedia PDF Downloads 373
5106 Geometallurgy of Niobium Deposits: An Integrated Multi-Disciplined Approach

Authors: Mohamed Nasraoui

Abstract:

Spatial ore distribution, ore heterogeneity and their links with geological processes involved in Niobium concentration are all factors for consideration when bridging field observations to extraction scheme. Indeed, mineralogy changes of Nb-hosting phases, their textural relationships with hydrothermal or secondary minerals, play a key control over mineral processing. This study based both on filed work and ore characterization presents data from several Nb-deposits related to carbonatite complexes. The results obtained by a wide range of analytical techniques, including, XRD, XRF, ICP-MS, SEM, Microprobe, Spectro-CL, FTIR-DTA and Mössbauer spectroscopy, demonstrate how geometallurgical assessment, at all stage of mine development, can greatly assist in the design of a suitable extraction flowsheet and data reconciliation.

Keywords: carbonatites, Nb-geometallurgy, Nb-mineralogy, mineral processing.

Procedia PDF Downloads 162
5105 Developing Location-allocation Models in the Three Echelon Supply Chain

Authors: Mehdi Seifbarghy, Zahra Mansouri

Abstract:

In this paper a few location-allocation models are developed in a multi-echelon supply chain including suppliers, manufacturers, distributors and retailers. The objectives are maximizing demand coverage, minimizing the total distance of distributors from suppliers, minimizing some facility establishment costs and minimizing the environmental effects. Since nature of the given models is multi-objective, we suggest a number of goal-based solution techniques such L-P metric, goal programming, multi-choice goal programming and goal attainment in order to solve the problems.

Keywords: location, multi-echelon supply chain, covering, goal programming

Procedia PDF Downloads 558
5104 Close Loop Controlled Current Nerve Locator

Authors: H. A. Alzomor, B. K. Ouda, A. M. Eldeib

Abstract:

Successful regional anesthesia depends upon precise location of the peripheral nerve or nerve plexus. Locating peripheral nerves is preferred to be done using nerve stimulation. In order to generate a nerve impulse by electrical means, a minimum threshold stimulus of current “rheobase” must be applied to the nerve. The technique depends on stimulating muscular twitching at a close distance to the nerve without actually touching it. Success rate of this operation depends on the accuracy of current intensity pulses used for stimulation. In this paper, we will discuss a circuit and algorithm for closed loop control for the current, theoretical analysis and test results and compare them with previous techniques.

Keywords: Close Loop Control (CLC), constant current, nerve locator, rheobase

Procedia PDF Downloads 251
5103 Exploring the Concept of Fashion Waste: Hanging by a Thread

Authors: Timothy Adam Boleratzky

Abstract:

The goal of this transformative endeavour lies in the repurposing of textile scraps, heralding a renaissance in the creation of wearable art. Through a judicious fusion of Life Cycle Assessment (LCA) methodologies and cutting-edge techniques, this research embarks upon a voyage of exploration, unraveling the intricate tapestry of environmental implications woven into the fabric of textile waste. Delving deep into the annals of empirical evidence and scholarly discourse, the study not only elucidates the urgent imperative for waste reduction strategies but also unveils the transformative potential inherent in embracing circular economy principles within the hallowed halls of fashion. As the research unfurls its sails, guided by the compass of sustainability, it traverses uncharted territories, charting a course toward a more enlightened and responsible fashion ecosystem. The canvas upon which this journey unfolds is richly adorned with insights gleaned from the crucible of experimentation, laying bare the myriad pathways toward waste minimisation and resource optimisation. From the adoption of recycling strategies to the cultivation of eco-friendly production techniques, the research endeavours to sculpt a blueprint for a more sustainable future, one stitch at a time. In this unfolding narrative, the role of wearable art emerges as a potent catalyst for change, transcending the boundaries of conventional fashion to embrace a more holistic ethos of sustainability. Through the alchemy of creativity and craftsmanship, discarded textile scraps are imbued with new life, morphing into exquisite creations that serve as both a testament to human ingenuity and a rallying cry for environmental preservation. Each thread, each stitch, becomes a silent harbinger of change, weaving together a tapestry of hope in a world besieged by ecological uncertainty. As the research journey culminates, its echoes resonate far beyond the confines of academia, reverberating through the corridors of industry and beyond. In its wake, it leaves a legacy of empowerment and enlightenment, inspiring a generation of designers, entrepreneurs, and consumers to embrace a more sustainable vision of fashion. For in the intricate interplay of threads and textiles lies the promise of a brighter, more resilient future, where beauty coexists harmoniously with responsibility and where fashion becomes not merely an expression of style but a celebration of sustainability.

Keywords: fabric-manipulation, sustainability, textiles, waste, wearable-art

Procedia PDF Downloads 38
5102 Groundwater Numerical Modeling, an Application of Remote Sensing, and GIS Techniques in South Darb El Arbaieen, Western Desert, Egypt

Authors: Abdallah M. Fayed

Abstract:

The study area is located in south Darb El Arbaieen, western desert of Egypt. It occupies the area between latitudes 22° 00/ and 22° 30/ North and Longitudes 29° 30/ and 30° 00/ East, from southern border of Egypt to the area north Bir Kuraiym and from the area East of East Owienat to the area west Tushka district, its area about 2750 Km2. The famous features; southern part of Darb El Arbaieen road, G Baraqat El Scab El Qarra, Bir Dibis, Bir El Shab and Bir Kuraiym, Interpretation of soil stratification shows layers that are related to Quaternary and Upper-Lower Cretaceous eras. It is dissected by a series of NE-SW striking faults. The regional groundwater flow direction is in SW-NE direction with a hydraulic gradient is 1m / 2km. Mathematical model program has been applied for evaluation of groundwater potentials in the main Aquifer –Nubian Sandstone- in the area of study and Remote sensing technique is considered powerful, accurate and saving time in this respect. These techniques are widely used for illustrating and analysis different phenomenon such as the new development in the desert (land reclamation), residential development (new communities), urbanization, etc. The major issues concerning water development objective of this work is to determine the new development areas in western desert of Egypt during the period from 2003 to 2015 using remote sensing technique, the impacts of the present and future development have been evaluated by using the two-dimensional numerical groundwater flow Simulation Package (visual modflow 4.2). The package was used to construct and calibrate a numerical model that can be used to simulate the response of the aquifer in the study area under implementing different management alternatives in the form of changes in piezometric levels and salinity. Total period of simulation is 100 years. After steady state calibration, two different scenarios are simulated for groundwater development. 21 production wells are installed at the study area and used in the model, with the total discharge for the two scenarios were 105000 m3/d, 210000 m3/d. The drawdown was 11.8 m and 23.7 m for the two scenarios in the end of 100 year. Contour maps for water heads and drawdown and hydrographs for piezometric head are represented. The drawdown was less than the half of the saturated thickness (the safe yield case).

Keywords: remote sensing, management of aquifer systems, simulation modeling, western desert, South Darb El Arbaieen

Procedia PDF Downloads 399
5101 Green Synthesis, Characterization and Application of Zinc Oxide and Silver Oxide Nonparticipants

Authors: Nassima Khanfri, Ali Boucenna

Abstract:

As metallic nanoparticles are increasingly used in many economic sectors, there is interest in the biological and environmental safety of their production. The main methods of synthesizing nanoparticales are chemical and physical approaches that are often expensive and potentially harmful to the environment. The present study is devoted to the possibility of the synthesis of silver nanoparticales and zinc oxide from silver nitrate and zinc acetate using basilica plant extracts. The products obtained are characterized by various analysis techniques, such as UV/V, XRD, MEB-EDX, FTIR, and RAMAN. These analyzes confirm the crystalline nature of AgNps and ZnONps. These crystalline powders having effective biological activities regarding the antioxidant and antibacterial, which could be used in several biological applications.

Keywords: green synthesis, bio-reduction, metals nan Oparticales, Plants extracts

Procedia PDF Downloads 197
5100 Methods for Mitigating Corrosion Caused by Biogenic Sulfuric Acid in Sewerage Systems: State of the Art Review

Authors: M. Cortés, E. Vera, M. Avella

Abstract:

Corrosion is an imminent process in nature, which affects all types of materials. In sewerage systems, the corrosion process caused by microorganisms, also known as biogenic sulfuric acid attack, has been studied. This affects the structural integrity of the concrete drainage pipes and the sewage treatment plants. This article is a review of research which focuses on the study of how to reduce the production of hydrogen sulfide, how to improve the resistance of concrete through the use of additives and the implementation of antimicrobial techniques to reduce bacterial growth.

Keywords: bactericides, biogenic sulfuric acid, corrosion, concrete, hydrogen sulphide, nano materials, zeolites

Procedia PDF Downloads 443
5099 3D Modeling of Tunis Soft Soil Settlement Reinforced with Plastic Wastes

Authors: Aya Rezgui, Lasaad Ajam, Belgacem Jalleli

Abstract:

The Tunis soft soils present a difficult challenge as construction sites and for Geotechnical works. Currently, different techniques are used to improve such soil properties taking into account the environmental considerations. One of the recent methods is involving plastic wastes as a reinforcing materials. The present study pertains to the development of a numerical model for predicting the behavior of Tunis Soft soil (TSS) improved with recycled Monobloc chair wastes.3D numerical models for unreinforced TSS and reinforced TSS aims to evaluate settlement reduction and the values of consolidation times in oedometer conditions.

Keywords: Tunis soft soil, settlement, plastic wastes, finte -difference, FLAC3D modeling

Procedia PDF Downloads 132
5098 Using Structured Analysis and Design Technique Method for Unmanned Aerial Vehicle Components

Authors: Najeh Lakhoua

Abstract:

Introduction: Scientific developments and techniques for the systemic approach generate several names to the systemic approach: systems analysis, systems analysis, structural analysis. The main purpose of these reflections is to find a multi-disciplinary approach which organizes knowledge, creates universal language design and controls complex sets. In fact, system analysis is structured sequentially by steps: the observation of the system by various observers in various aspects, the analysis of interactions and regulatory chains, the modeling that takes into account the evolution of the system, the simulation and the real tests in order to obtain the consensus. Thus the system approach allows two types of analysis according to the structure and the function of the system. The purpose of this paper is to present an application of system analysis of Unmanned Aerial Vehicle (UAV) components in order to represent the architecture of this system. Method: There are various analysis methods which are proposed, in the literature, in to carry out actions of global analysis and different points of view as SADT method (Structured Analysis and Design Technique), Petri Network. The methodology adopted in order to contribute to the system analysis of an Unmanned Aerial Vehicle has been proposed in this paper and it is based on the use of SADT. In fact, we present a functional analysis based on the SADT method of UAV components Body, power supply and platform, computing, sensors, actuators, software, loop principles, flight controls and communications). Results: In this part, we present the application of SADT method for the functional analysis of the UAV components. This SADT model will be composed exclusively of actigrams. It starts with the main function ‘To analysis of the UAV components’. Then, this function is broken into sub-functions and this process is developed until the last decomposition level has been reached (levels A1, A2, A3 and A4). Recall that SADT techniques are semi-formal; however, for the same subject, different correct models can be built without having to know with certitude which model is the good or, at least, the best. In fact, this kind of model allows users a sufficient freedom in its construction and so the subjective factor introduces a supplementary dimension for its validation. That is why the validation step on the whole necessitates the confrontation of different points of views. Conclusion: In this paper, we presented an application of system analysis of Unmanned Aerial Vehicle components. In fact, this application of system analysis is based on SADT method (Structured Analysis Design Technique). This functional analysis proved the useful use of SADT method and its ability of describing complex dynamic systems.

Keywords: system analysis, unmanned aerial vehicle, functional analysis, architecture

Procedia PDF Downloads 202
5097 Characterization of the Viscoelastic Behavior of Polymeric Composites

Authors: Abir Abdessalem, Sahbi Tamboura, J. Fitoussi, Hachmi Ben Daly, Abbas Tcharkhtchi

Abstract:

Dynamic mechanical analysis (DMA) is one of the most used experimental techniques to investigate the temperature and frequency dependence of the mechanical behavior of viscoelastic materials. The measured data are generally shifted by the application of the principle of the time– temperature superposition (TTS) to obtain the viscoelastic system’s master curve. The aim of this work is to show the methodology to define the horizontal shift factor to be applied to the storage modulus measured in order to indicate the validity of (TTS) principle for this material system. This principle was successfully used to determine the long-term properties of the Sheet Moulding Compound (SMC) composites.

Keywords: composite material, dynamic mechanical analysis, SMC composites, viscoelastic behavior, modeling

Procedia PDF Downloads 231
5096 A Geometric Based Hybrid Approach for Facial Feature Localization

Authors: Priya Saha, Sourav Dey Roy Jr., Debotosh Bhattacharjee, Mita Nasipuri, Barin Kumar De, Mrinal Kanti Bhowmik

Abstract:

Biometric face recognition technology (FRT) has gained a lot of attention due to its extensive variety of applications in both security and non-security perspectives. It has come into view to provide a secure solution in identification and verification of person identity. Although other biometric based methods like fingerprint scans, iris scans are available, FRT is verified as an efficient technology for its user-friendliness and contact freeness. Accurate facial feature localization plays an important role for many facial analysis applications including biometrics and emotion recognition. But, there are certain factors, which make facial feature localization a challenging task. On human face, expressions can be seen from the subtle movements of facial muscles and influenced by internal emotional states. These non-rigid facial movements cause noticeable alterations in locations of facial landmarks, their usual shapes, which sometimes create occlusions in facial feature areas making face recognition as a difficult problem. The paper proposes a new hybrid based technique for automatic landmark detection in both neutral and expressive frontal and near frontal face images. The method uses the concept of thresholding, sequential searching and other image processing techniques for locating the landmark points on the face. Also, a Graphical User Interface (GUI) based software is designed that could automatically detect 16 landmark points around eyes, nose and mouth that are mostly affected by the changes in facial muscles. The proposed system has been tested on widely used JAFFE and Cohn Kanade database. Also, the system is tested on DeitY-TU face database which is created in the Biometrics Laboratory of Tripura University under the research project funded by Department of Electronics & Information Technology, Govt. of India. The performance of the proposed method has been done in terms of error measure and accuracy. The method has detection rate of 98.82% on JAFFE database, 91.27% on Cohn Kanade database and 93.05% on DeitY-TU database. Also, we have done comparative study of our proposed method with other techniques developed by other researchers. This paper will put into focus emotion-oriented systems through AU detection in future based on the located features.

Keywords: biometrics, face recognition, facial landmarks, image processing

Procedia PDF Downloads 410
5095 A Comparison of Smoothing Spline Method and Penalized Spline Regression Method Based on Nonparametric Regression Model

Authors: Autcha Araveeporn

Abstract:

This paper presents a study about a nonparametric regression model consisting of a smoothing spline method and a penalized spline regression method. We also compare the techniques used for estimation and prediction of nonparametric regression model. We tried both methods with crude oil prices in dollars per barrel and the Stock Exchange of Thailand (SET) index. According to the results, it is concluded that smoothing spline method performs better than that of penalized spline regression method.

Keywords: nonparametric regression model, penalized spline regression method, smoothing spline method, Stock Exchange of Thailand (SET)

Procedia PDF Downloads 437
5094 Realization of a (GIS) for Drilling (DWS) through the Adrar Region

Authors: Djelloul Benatiallah, Ali Benatiallah, Abdelkader Harouz

Abstract:

Geographic Information Systems (GIS) include various methods and computer techniques to model, capture digitally, store, manage, view and analyze. Geographic information systems have the characteristic to appeal to many scientific and technical field, and many methods. In this article we will present a complete and operational geographic information system, following the theoretical principles of data management and adapting to spatial data, especially data concerning the monitoring of drinking water supply wells (DWS) Adrar region. The expected results of this system are firstly an offer consulting standard features, updating and editing beneficiaries and geographical data, on the other hand, provides specific functionality contractors entered data, calculations parameterized and statistics.

Keywords: GIS, DWS, drilling, Adrar

Procedia PDF Downloads 308
5093 Magnetic Activated Carbon: Preparation, Characterization, and Application for Vanadium Removal

Authors: Hakimeh Sharififard, Mansooreh Soleimani

Abstract:

In this work, the magnetic activated carbon nanocomposite (Fe-CAC) has been synthesized by anchorage iron hydr(oxide) nanoparticles onto commercial activated carbon (CAC) surface and characterized using BET, XRF, SEM techniques. The influence of various removal parameters such as pH, contact time and initial concentration of vanadium on vanadium removal was evaluated using CAC and Fe-CAC in batch method. The sorption isotherms were studied using Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. These equilibrium data were well described by the Freundlich model. Results showed that CAC had the vanadium adsorption capacity of 37.87 mg/g, while the Fe-AC was able to adsorb 119.01 mg/g of vanadium. Kinetic data was found to confirm pseudo-second-order kinetic model for both adsorbents.

Keywords: magnetic activated carbon, remove, vanadium, nanocomposite, freundlich

Procedia PDF Downloads 460
5092 Exploration and Evaluation of the Effect of Multiple Countermeasures on Road Safety

Authors: Atheer Al-Nuaimi, Harry Evdorides

Abstract:

Every day many people die or get disabled or injured on roads around the world, which necessitates more specific treatments for transportation safety issues. International road assessment program (iRAP) model is one of the comprehensive road safety models which accounting for many factors that affect road safety in a cost-effective way in low and middle income countries. In iRAP model road safety has been divided into five star ratings from 1 star (the lowest level) to 5 star (the highest level). These star ratings are based on star rating score which is calculated by iRAP methodology depending on road attributes, traffic volumes and operating speeds. The outcome of iRAP methodology are the treatments that can be used to improve road safety and reduce fatalities and serious injuries (FSI) numbers. These countermeasures can be used separately as a single countermeasure or mix as multiple countermeasures for a location. There is general agreement that the adequacy of a countermeasure is liable to consistent losses when it is utilized as a part of mix with different countermeasures. That is, accident diminishment appraisals of individual countermeasures cannot be easily added together. The iRAP model philosophy makes utilization of a multiple countermeasure adjustment factors to predict diminishments in the effectiveness of road safety countermeasures when more than one countermeasure is chosen. A multiple countermeasure correction factors are figured for every 100-meter segment and for every accident type. However, restrictions of this methodology incorporate a presumable over-estimation in the predicted crash reduction. This study aims to adjust this correction factor by developing new models to calculate the effect of using multiple countermeasures on the number of fatalities for a location or an entire road. Regression models have been used to establish relationships between crash frequencies and the factors that affect their rates. Multiple linear regression, negative binomial regression, and Poisson regression techniques were used to develop models that can address the effectiveness of using multiple countermeasures. Analyses are conducted using The R Project for Statistical Computing showed that a model developed by negative binomial regression technique could give more reliable results of the predicted number of fatalities after the implementation of road safety multiple countermeasures than the results from iRAP model. The results also showed that the negative binomial regression approach gives more precise results in comparison with multiple linear and Poisson regression techniques because of the overdispersion and standard error issues.

Keywords: international road assessment program, negative binomial, road multiple countermeasures, road safety

Procedia PDF Downloads 239
5091 Passive Solar Techniques to Improve Thermal Comfort and Reduce Energy Consumption of Domestic Use

Authors: Naci Kalkan, Ihsan Dagtekin

Abstract:

Passive design responds to improve indoor thermal comfort and minimize the energy consumption. The present research analyzed the how efficiently passive solar technologies generate heating and cooling and provide the system integration for domestic applications. In addition to this, the aim of this study is to increase the efficiency of solar systems system with integration some innovation and optimization. As a result, outputs of the project might start a new sector to provide environmentally friendly and cheap cooling for domestic use.

Keywords: passive solar systems, heating, cooling, thermal comfort, ventilation systems

Procedia PDF Downloads 297
5090 Political Manipulation in Global Discourse

Authors: Gohar Madoyan, Kristine Harutyunyan, Gevorg Barseghyan

Abstract:

It is common knowledge that linguistic manipulation is and has always been a powerful instrument of political discourse. Politicians from different countries and through centuries have successfully used linguistic means to persuade the public. Yet, this persuasion should be linguistically unobtrusive. Small changes in wording may result in a huge difference in perception by the audience. Thus, manipulation is a strategy that is mostly used to convey a certain message to the manipulators, who should be aware of the vulnerabilities of their audience and who must use them to achieve control. Political manipulation, though commonly observed in the 21st century, can easily be traced back to ancient rhetoric, which warns us to choose words carefully while addressing the audience. On the other hand, modern manipulative techniques have become more sophisticated, making use of all scientific advances.

Keywords: manipulators, politics, persuasion, political discourse, linguo-stylistic analysis, rhetoric

Procedia PDF Downloads 84
5089 JavaScript Object Notation Data against eXtensible Markup Language Data in Software Applications a Software Testing Approach

Authors: Theertha Chandroth

Abstract:

This paper presents a comparative study on how to check JSON (JavaScript Object Notation) data against XML (eXtensible Markup Language) data from a software testing point of view. JSON and XML are widely used data interchange formats, each with its unique syntax and structure. The objective is to explore various techniques and methodologies for validating comparison and integration between JSON data to XML and vice versa. By understanding the process of checking JSON data against XML data, testers, developers and data practitioners can ensure accurate data representation, seamless data interchange, and effective data validation.

Keywords: XML, JSON, data comparison, integration testing, Python, SQL

Procedia PDF Downloads 138
5088 Cold Spray Fabrication of Coating for Highly Corrosive Environment

Authors: Harminder Singh

Abstract:

Cold spray is a novel and emerging technology for the fabrication of coating. In this study, coating is successfully developed by this process on superalloy surface. The selected coating composition is already proved as corrosion resistant. The microstructure of the newly developed coating is examined by various characterization techniques, for testing its suitability for high temperature corrosive conditions of waste incinerator. The energy producing waste incinerators are still running at low efficiency, mainly due to their chlorine based highly corrosive conditions. The characterization results show that the developed cold sprayed coating structure is suitable for its further testing in highly aggressive conditions.

Keywords: coating, cold spray, corrosion, microstructure

Procedia PDF Downloads 391
5087 Long-Term Exposure, Health Risk, and Loss of Quality-Adjusted Life Expectancy Assessments for Vinyl Chloride Monomer Workers

Authors: Tzu-Ting Hu, Jung-Der Wang, Ming-Yeng Lin, Jin-Luh Chen, Perng-Jy Tsai

Abstract:

The vinyl chloride monomer (VCM) has been classified as group 1 (human) carcinogen by the IARC. Workers exposed to VCM are known associated with the development of the liver cancer and hence might cause economical and health losses. Particularly, for those work for the petrochemical industry have been seriously concerned in the environmental and occupational health field. Considering assessing workers’ health risks and their resultant economical and health losses requires the establishment of long-term VCM exposure data for any similar exposure group (SEG) of interest, the development of suitable technologies has become an urgent and important issue. In the present study, VCM exposures for petrochemical industry workers were determined firstly based on the database of the 'Workplace Environmental Monitoring Information Systems (WEMIS)' provided by Taiwan OSHA. Considering the existence of miss data, the reconstruction of historical exposure techniques were then used for completing the long-term exposure data for SEGs with routine operations. For SEGs with non-routine operations, exposure modeling techniques, together with their time/activity records, were adopted for determining their long-term exposure concentrations. The Bayesian decision analysis (BDA) was adopted for conducting exposure and health risk assessments for any given SEG in the petrochemical industry. The resultant excessive cancer risk was then used to determine the corresponding loss of quality-adjusted life expectancy (QALE). Results show that low average concentrations can be found for SEGs with routine operations (e.g., VCM rectification 0.0973 ppm, polymerization 0.306 ppm, reaction tank 0.33 ppm, VCM recovery 1.4 ppm, control room 0.14 ppm, VCM storage tanks 0.095 ppm and wastewater treatment 0.390 ppm), and the above values were much lower than that of the permissible exposure limit (PEL; 3 ppm) of VCM promulgated in Taiwan. For non-routine workers, though their high exposure concentrations, their low exposure time and frequencies result in low corresponding health risks. Through the consideration of exposure assessment results, health risk assessment results, and QALE results simultaneously, it is concluded that the proposed method was useful for prioritizing SEGs for conducting exposure abatement measurements. Particularly, the obtained QALE results further indicate the importance of reducing workers’ VCM exposures, though their exposures were low as in comparison with the PEL and the acceptable health risk.

Keywords: exposure assessment, health risk assessment, petrochemical industry, quality-adjusted life years, vinyl chloride monomer

Procedia PDF Downloads 194