Search results for: Chandan Deep Singh
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3193

Search results for: Chandan Deep Singh

1573 Changing Social Life of the Potters of Nongpok Sekmai in Manipur, India

Authors: Keisham Ingocha Singh, Mayanglambam Mani Babu, Lorho Mary Maheo

Abstract:

Background: The tradition of the development of pottery through the handling of clay is one of the earliest skills known to the Chakpas of Manipur. Nongpok Sekmai, a Chakpa village in Thoubal district of Manipur, India, is strictly associated with making pots of red ochre colour called uyan. In the past, pottery was in great demand, each family needed them in rituals, festive occasions and also for day to day use. The whole village was engaged in the occupation of pot making. However the tradition of pottery making is fast declining. People have switched over to other economic activities which can provide them a better socioeconomic life leaving behind the age-old tradition of pottery occupation. The present study was carried out to find out the social life of the potters of Nongpok Sekmai. Materials and Method: In-depth interviews, household survey and observation were conducted to collect information on the pottery trend in the village. Results: The total population of the surveyed village is 1194 persons out of which 582 are male and 612 are female, distributed through 252 households. At present 4.94 % of the total population are still engaged in this profession. The study recorded 19 occupations other than pottery among women indicating decline of the traditional occupation. Conclusion: The study has revealed the changing life of the potters due to technological development, globalization and social network.

Keywords: Chakpas, Nongpok Sekmai, pottery, uyan

Procedia PDF Downloads 225
1572 Application of Rapid Eye Imagery in Crop Type Classification Using Vegetation Indices

Authors: Sunita Singh, Rajani Srivastava

Abstract:

For natural resource management and in other applications about earth observation revolutionary remote sensing technology plays a significant role. One of such application in monitoring and classification of crop types at spatial and temporal scale, as it provides latest, most precise and cost-effective information. Present study emphasizes the use of three different vegetation indices of Rapid Eye imagery on crop type classification. It also analyzed the effect of each indices on classification accuracy. Rapid Eye imagery is highly demanded and preferred for agricultural and forestry sectors as it has red-edge and NIR bands. The three indices used in this study were: the Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) and all of these incorporated the Red Edge band. The study area is Varanasi district of Uttar Pradesh, India and Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Classification was performed with these three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 85% was obtained using three vegetation indices. The study concluded that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the Rapid Eye imagery can get satisfactory results of classification accuracy without original bands.

Keywords: GNDVI, NDRE, NDVI, rapid eye, vegetation indices

Procedia PDF Downloads 362
1571 Finite State Markov Chain Model of Pollutants from Service Stations

Authors: Amina Boukelkoul, Rahil Boukelkoul, Leila Maachia

Abstract:

The cumulative vapors emitted from the service stations may represent a hazard to the environment and the population. Besides fuel spill and their penetration into deep soil layers are the main contributors to soil and ground-water contamination in the vicinity of the petrol stations. The amount of the effluents from the service stations depends on strategy of maintenance and the policy adopted by the management to reduce the pollution. One key of the proposed approach is the idea of managing the effluents from the service stations which can be captured via use of a finite state Markov chain. Such a model can be embedded within a probabilistic operation and maintenance simulation reflecting the action to be done. In this paper, an approach of estimating a probabilistic percentage of the amount of emitted pollutants is presented. The finite state Markov model is used for decision problems with number of determined periods (life cycle) to predict the amount according to various options of operation.

Keywords: environment, markov modeling, pollution, service station

Procedia PDF Downloads 472
1570 An Investigation of the Therapeutic Effects of Indian Classical Music (Raga Bhairavi) on Mood and Physiological Parameters of Scholars

Authors: Kalpana Singh, Nikita Katiyar

Abstract:

This research investigates the impact of Raga Bhairavi, a prominent musical scale in Indian classical music, on the mood and basic physiological parameters of research scholars at the University of Lucknow - India. The study focuses on the potential therapeutic effects of listening to Raga Bhairavi during morning hours. A controlled experimental design is employed, utilizing self-reporting tools for mood assessment and monitoring physiological indicators such as heart rate, oxygen saturation levels, body temperature and blood pressure. The hypothesis posits that exposure to Raga Bhairavi will lead to positive mood modulation and a reduction in physiological stress markers among research scholars. Data collection involves pre and post-exposure measurements, providing insights into the immediate and cumulative effects of the musical intervention. The study aims to contribute valuable information to the growing field of music therapy, offering a potential avenue for enhancing the well-being and productivity of individuals engaged in intense cognitive activities. Results may have implications for the integration of music-based interventions in academic and research environments, fostering a conducive atmosphere for intellectual pursuits.

Keywords: bio-musicology, classical music, mood assessment, music therapy, physiology, Raga Bhairavi

Procedia PDF Downloads 53
1569 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network

Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing

Abstract:

Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.

Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes

Procedia PDF Downloads 177
1568 Isolation and Identification of Cytotoxic Compounds from Fruticose Lichen Roccella montagnei, and It’s in Silico Docking Study against CDK-10

Authors: Tripti Mishra, Shipra Shukla, Sanjeev Meena, , Ruchi Singh, Mahesh Pal, D. K. Upreti, Dipak Datta

Abstract:

Roccella montagnei belongs to lichen family Roccelleceae growing luxuriantly along the coastal regions of India. As Roccella has been shown to be bioactive, we prepared methanolic extract and assessed its anticancer potential. The methanolic extract showed significant in vitro cytotoxic activity against four human cancer cell lines such as Colon (DLD-1, SW-620), Breast (MCF-7), Head and Neck (FaDu). This prompted us to isolate bioactive compounds through column chromatography. Two compounds Roccellic acid and Everninic acid have been isolated, out of which Everninic acid is reported for the first time. Both the compounds have been tested for in vitro cytotoxic activity in which Roccellic acid showed strong anticancer activity as compared to the Everninic acid. CDK-10 (Cyclin-dependent kinase) contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases, therefore, constitute biomarkers of proliferation and attractive pharmacological targets for the development of anticancer therapeutics. Therefore both the isolated compounds were tested for in silico molecular docking study against CDK-10 isomer enzyme to support the cytotoxic activity.

Keywords: cytotoxic activity, everninic acid, roccellic acid, R. montagnei

Procedia PDF Downloads 326
1567 An Anatomic Approach to the Lingual Artery in the Carotid Triangle in South Indian Population

Authors: Ashwin Rai, Rajalakshmi Rai, Rajanigandha Vadgoankar

Abstract:

Lingual artery is the chief artery of the tongue and the neighboring structures pertaining to the oral cavity. At the carotid triangle, this artery arises from the external carotid artery opposite to the tip of greater cornua of hyoid bone, undergoes a tortuous course with its first part being crossed by the hypoglossal nerve and runs beneath the digastric muscle. Then it continues to supply the tongue as the deep lingual artery. The aim of this study is to draw surgeon's attention to the course of lingual artery in this area since it can be accidentally lesioned causing an extensive hemorrhage in certain surgical or dental procedures. The study was conducted on 44 formalin fixed head and neck specimens focusing on the anatomic relations of lingual artery. In this study, we found that the lingual artery is located inferior to the digastric muscle and the hypoglossal nerve contradictory to the classical description. This data would be useful during ligation of lingual artery to avoid injury to the hypoglossal nerve in surgeries related to the anterior triangle of neck.

Keywords: anterior triangle, digastric muscle, hypoglossal nerve, lingual artery

Procedia PDF Downloads 179
1566 Optimal Sortation Strategy for a Distribution Network in an E-Commerce Supply Chain

Authors: Pankhuri Dagaonkar, Charumani Singh, Poornima Krothapalli, Krishna Karthik

Abstract:

The backbone of any retail e-commerce success story is a unique design of supply chain network, providing the business an unparalleled speed and scalability. Primary goal of the supply chain strategy is to meet customer expectation by offering fastest deliveries while keeping the cost minimal. Meeting this objective at the large market that India provides is the problem statement that we have targeted here. There are many models and optimization techniques focused on network design to identify the ideal facility location and size, optimizing cost and speed. In this paper we are presenting a tactical approach to optimize cost of an existing network for a predefined speed. We have considered both forward and reverse logistics of a retail e-commerce supply chain consisting of multiple fulfillment (warehouse) and delivery centers, which are connected via sortation nodes. The mathematical model presented here determines if the shipment from a node should get sorted directly for the last mile delivery center or it should travel as consolidated package to another node for further sortation (resort). The objective function minimizes the total cost by varying the resort percentages between nodes and provides the optimal resource allocation and number of sorts at each node.

Keywords: distribution strategy, mathematical model, network design, supply chain management

Procedia PDF Downloads 297
1565 Enhancement in Digester Efficiency and Numerical Analysis for Optimal Design Parameters of Biogas Plant Using Design of Experiment Approach

Authors: Rajneesh, Priyanka Singh

Abstract:

Biomass resources have been one of the main energy sources for mankind since the dawn of civilization. There is a vast scope to convert these energy sources into biogas which is a clean, low carbon technology for efficient management and conversion of fermentable organic wastes into a cheap and versatile fuel and bio/organic manure. Thus, in order to enhance the performance of anaerobic digester, an optimizing analysis of resultant parameters (organic dry matter (oDM) content, methane percentage, and biogas yield) has been done for a plug flow anaerobic digester having mesophilic conditions (20-40°C) with the wet fermentation process. Based on the analysis, correlations for oDM, methane percentage, and biogas yield are derived using multiple regression analysis. A statistical model is developed to correlate the operating variables using the design of experiment approach by selecting central composite design (CCD) of a response surface methodology. Results shown in the paper indicates that as the operating temperature increases the efficiency of digester gets improved provided that the pH and hydraulic retention time (HRT) remains constant. Working in an optimized range of carbon-nitrogen ratio for the plug flow digester, the output parameters show a positive change with the variation of dry matter content (DM).

Keywords: biogas, digester efficiency, design of experiment, plug flow digester

Procedia PDF Downloads 378
1564 Seismic Behaviour of Bi-Symmetric Buildings

Authors: Yogendra Singh, Mayur Pisode

Abstract:

Many times it is observed that in multi-storeyed buildings the dynamic properties in the two directions are similar due to which there may be a coupling between the two orthogonal modes of the building. This is particularly observed in bi-symmetric buildings (buildings with structural properties and periods approximately equal in the two directions). There is a swapping of vibrational energy between the modes in the two orthogonal directions. To avoid this coupling the draft revision of IS:1893 proposes a minimum separation of more than 15% between the frequencies of the fundamental modes in the two directions. This study explores the seismic behaviour of bi-symmetrical buildings under uniaxial and bi-axial ground motions. For this purpose, three different types of 8 storey buildings symmetric in plan are modelled. The first building has square columns, resulting in identical periods in the two directions. The second building, with rectangular columns, has a difference of 20% in periods in orthogonal directions, and the third building has half of the rectangular columns aligned in one direction and other half aligned in the other direction. The numerical analysis of the seismic response of these three buildings is performed by using a set of 22 ground motions from PEER NGA database and scaled as per FEMA P695 guidelines to represent the same level of intensity corresponding to the Design Basis Earthquake. The results are analyzed in terms of the displacement-time response of the buildings at roof level and corresponding maximum inter-storey drift ratios.

Keywords: bi-symmetric buildings, design code, dynamic coupling, multi-storey buildings, seismic response

Procedia PDF Downloads 241
1563 Automated Buffer Box Assembly Cell Concept for the Canadian Used Fuel Packing Plant

Authors: Dimitrie Marinceu, Alan Murchison

Abstract:

The Canadian Used Fuel Container (UFC) is a mid-size hemispherical headed copper coated steel container measuring 2.5 meters in length and 0.5 meters in diameter containing 48 used fuel bundles. The contained used fuel produces significant gamma radiation requiring automated assembly processes to complete the assembly. The design throughput of 2,500 UFCs per year places constraints on equipment and hot cell design for repeatability, speed of processing, robustness and recovery from upset conditions. After UFC assembly, the UFC is inserted into a Buffer Box (BB). The BB is made from adequately pre-shaped blocks (lower and upper block) and Highly Compacted Bentonite (HCB) material. The blocks are practically ‘sandwiching’ the UFC between them after assembly. This paper identifies one possible approach for the BB automatic assembly cell and processes. Automation of the BB assembly will have a significant positive impact on nuclear safety, quality, productivity, and reliability.

Keywords: used fuel packing plant, automatic assembly cell, used fuel container, buffer box, deep geological repository

Procedia PDF Downloads 275
1562 Leadership Dynamics and Teacher Engagement in Greek Education

Authors: Vasileios Floros

Abstract:

This article delves into the intricate interplay between leadership styles and teacher satisfaction within the Greek educational framework, underscoring the pivotal role of school leadership in shaping educational success and fostering a conducive school culture. Through a comprehensive analysis, the study explores various leadership theories, the psychological contract between teachers and leaders, and the impact of leadership on teacher job satisfaction and group dynamics within educational institutions. It highlights how leadership efficacy can significantly influence the organizational climate, teacher motivation, and, ultimately, educational outcomes. The findings suggest that effective leadership, characterized by a deep understanding of teacher psychology, thoughtful engagement with the school culture, and strategic application of leadership styles, can lead to heightened teacher satisfaction and enhanced educational performance. This research offers valuable insights for educational policymakers, school leaders, and the broader academic community interested in optimizing leadership practices to foster an enriching educational environment in Greece.

Keywords: educational leadership, teacher satisfaction, school culture, leadership styles, Greek education

Procedia PDF Downloads 50
1561 Machine Learning-Enabled Classification of Climbing Using Small Data

Authors: Nicholas Milburn, Yu Liang, Dalei Wu

Abstract:

Athlete performance scoring within the climbing do-main presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.

Keywords: classification, climbing, data imbalance, data scarcity, machine learning, time sequence

Procedia PDF Downloads 143
1560 Analgesic Efficacy of Opiorphin and Its Analogue

Authors: Preet Singh, Kavitha Kongara, Dave Harding, Neil Ward, Paul Chambers

Abstract:

The objective of this study was to compare the analgesic efficacy of opiorphin and its analogue with a mu-receptor agonist; morphine. Opiorphins (Gln-Arg-Phe-Ser-Arg) belong to the family of endogenous enkephalinase inhibitors, found in saliva of humans. They are inhibitors of two Zinc metal ectopeptidases (Neutral endopeptidase NEP, and amino-peptidase APN) which are responsible for the inactivation of the endogenous opioids; endorphins and enkephalins. Morphine and butorphanol exerts their analgesic effects by mimicking the actions of endorphins and enkephalins. The opiorphin analogue was synthesized based on the structure activity relationship of the amino acid sequence of opiorphin. The pharmacological profile of the analogue was tested by replacing Serine at position 4 with Proline. The hot plate and tail flick test were used to demonstrate the analgesic efficacy. There was a significant increase in the time for the tail flick response after an injection of opiorphin, which was similar to the morphine effect. There was no increase in time in the hot plate test after an injection of opiorphin. The results suggest that opiorphin works at spinal level only rather than both spinal and supraspinal. Further work is required to confirm our results. We did not find analgesic activity of the opiorphin analogue. Thus, Serine at position 4 is also important for its pharmacological action. Further work is required to illustrate the role of serine at position 4 in opiorphin.

Keywords: analgesic peptides, endogenous opioids, morphine, opiorphin

Procedia PDF Downloads 325
1559 Highly Sensitive Nanostructured Chromium Oxide Sensor for Analysis of Diabetic Patient’s Breath

Authors: Nipin Kohli, Ravi Chand Singh

Abstract:

Diabetes mellitus is a serious illness and can be life-threatening if left untreated. Acetone present in the exhaled breath of a diabetic person is a biomarker of patients suffering from diabetes mellitus and is higher than its usual concentration present in the breath of healthy people. In the present work, a portable gas sensor system based on chromium oxide (Cr₂O₃) nanoparticles has been developed that can analyze diabetic patient’s breath. Undoped and indium (In) doped Cr₂O₃ nanoparticles were synthesized by a chemical route and characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, UV-visible spectroscopy, and photoluminescence spectroscopy for their structural, morphological and optical properties. Thick film gas sensors were fabricated out of synthesized samples. To diagnose diabetes, the sensors’ response to low concentrations of acetone was measured, and it was found that the addition of indium dramatically enhances the acetone gas sensing response. Moreover, the fabricated sensors were highly stable, reproducible and resistant to humidity. Enhancement of sensor response of doped sensors towards acetone can be ascribed to increase in defects due to addition of a dopant, and it was found that in-doped Cr₂O₃ sensors are more useful for analysis of breath of diabetic patients.

Keywords: Diabetes mellitus, nanoparticles, raman spectroscopy, sensor

Procedia PDF Downloads 143
1558 Production, Optimization, Characterization, and Kinetics of a Partially Purified Laccase from Pleurotus citrinopileatus and Its Application in Swift Bioremediation of Azo Dyes

Authors: Ankita Kushwaha, M. P. Singh

Abstract:

Background: In the present investigation the efficiency of laccase (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) from Pleurotus citrinopileatus was assessed for the decolorization of azo dyes. Aim: Enzyme production, characterization and kinetics of a partially purified laccase from Pleurotus citrinopileatus were determined for its application in bioremediation of azo dyes. Methods & Results: Laccase has been partially purified by using 80% ammonium sulphate solution. Total activity, total protein, specific activity and purification fold for partially purified laccase were found to be 40.38U, 293.33mg/100ml, 0.91U/mg and 2.84, respectively. The pH and temperature optima of laccase were 5.0 and 50ºC, respectively, while the enzyme was most stable at pH 4.0 and temperature 30ºC when exposed for one hour. The Km of the partially purified laccase for substrates guaiacol, DMP (2,6-dimethoxyphenol) and syringaldazine (3,5-dimethoxy-4-hydroxybenzaldehyde azine) were 60, 95 and 26, respectively. This laccase has been tested for the use in the bioremediation of azo dyes in the absence of mediator molecules. Two dyes namely congo red and bromophenol blue were tested. Discussion: It was observed that laccase enzyme was very effective in the decolorization of these two dyes. More than 80% decolorization was observed within half an hour even in the absence of mediator and their lower Km value indicates that efficiency of the enzyme is very high. The results were promising due to quicker decolorization in the absence of mediators showing that it can be used as a valuable biocatalyst for quick bioremediation of azo dyes. Conclusion: The enzymatic properties of laccase from P. citrinopileatus should be considered for a potential environmental (biodegradation and bioremediation) or industrial applications.

Keywords: azo dyes, decolorization, laccase, P.citrinopileatus

Procedia PDF Downloads 220
1557 Design and Analysis of Shielding Magnetic Field for Active Space Radiation Protection

Authors: Chaoyan Huang, Hongxia Zheng

Abstract:

For deep space exploration and long duration interplanetary manned missions, protection of astronauts from cosmic radiation is an unavoidable problem. However, passive shielding can be little effective for protecting particles which energies are greater than 1GeV/nucleon. In this study, active magnetic protection method is adopted. Taking into account the structure and size of the end-cap, eight shielding magnetic field configurations are designed based on the Hoffman configuration. The shielding effect of shielding magnetic field structure, intensity B and thickness L on H particles with 2GeV energy is compared by test particle simulation. The result shows that the shielding effect is better with the linear type magnetic field structure in the end-cap region. Furthermore, two magnetic field configurations with better shielding effect are investigated through H and He galactic cosmic spectra. And the shielding effect of the linear type configuration adopted in the barrel and end-cap regions is best.

Keywords: galactic cosmic rays, active protection, shielding magnetic field configuration, shielding effect

Procedia PDF Downloads 144
1556 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 173
1555 Bioavailability of Iron in Some Selected Fiji Foods using In vitro Technique

Authors: Poonam Singh, Surendra Prasad, William Aalbersberg

Abstract:

Iron the most essential trace element in human nutrition. Its deficiency has serious health consequences and is a major public health threat worldwide. The common deficiencies in Fiji population reported are of Fe, Ca and Zn. It has also been reported that 40% of women in Fiji are iron deficient. Therefore, we have been studying the bioavailability of iron in commonly consumed Fiji foods. To study the bioavailability it is essential to assess the iron contents in raw foods. This paper reports the iron contents and its bioavailability in commonly consumed foods by multicultural population of Fiji. The food samples (rice, breads, wheat flour and breakfast cereals) were analyzed by atomic absorption spectrophotometer for total iron and its bioavailability. The white rice had the lowest total iron 0.10±0.03 mg/100g but had high bioavailability of 160.60±0.03%. The brown rice had 0.20±0.03 mg/100g total iron content but 85.00±0.03% bioavailable. The white and brown breads showed the highest iron bioavailability as 428.30±0.11 and 269.35 ±0.02%, respectively. The Weetabix and the rolled oats had the iron contents 2.89±0.27 and 1.24.±0.03 mg/100g with bioavailability of 14.19±0.04 and 12.10±0.03%, respectively. The most commonly consumed normal wheat flour had 0.65±0.00 mg/100g iron while the whole meal and the Roti flours had 2.35±0.20 and 0.62±0.17 mg/100g iron showing bioavailability of 55.38±0.05, 16.67±0.08 and 12.90±0.00%, respectively. The low bioavailability of iron in certain foods may be due to the presence of phytates/oxalates, processing/storage conditions, cooking method or interaction with other minerals present in the food samples.

Keywords: iron, bioavailability, Fiji foods, in vitro technique, human nutrition

Procedia PDF Downloads 529
1554 Neural Network Based Compressor Flow Estimator in an Aircraft Vapor Cycle System

Authors: Justin Reverdi, Sixin Zhang, Serge Gratton, Said Aoues, Thomas Pellegrini

Abstract:

In Vapor Cycle Systems, the flow sensor plays a key role in different monitoring and control purposes. However, physical sensors can be expensive, inaccurate, heavy, cumbersome, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor based on other standard sensors is a good alternative. In this paper, a data-driven model using a Convolutional Neural Network is proposed to estimate the flow of the compressor. To fit the model to our dataset, we tested different loss functions. We show in our application that a Dynamic Time Warping based loss function called DILATE leads to better dynamical performance than the vanilla mean squared error (MSE) loss function. DILATE allows choosing a trade-off between static and dynamic performance.

Keywords: deep learning, dynamic time warping, vapor cycle system, virtual sensor

Procedia PDF Downloads 146
1553 Importance of Collegiality to Improve the Effectiveness of a Poorly Resourced School

Authors: Prakash Singh

Abstract:

This study focused on the importance of collegiality to improve the effectiveness of a poorly resourced school (PRS). In an effective school that embraces collegiality as its culture, one can expect to find a teaching staff and a management team that shares responsibilities and accountabilities through the development of a common purpose and vision, regardless of whether the school is considered to be poorly resourced or not. Working together in collegial teams is a more effective way to accomplish tasks and to create a climate for effective learning, even for learners in PRSs from poor communities. The main aim of this study was therefore to determine whether collegiality as a leadership strategy could extract the best from people in a PRS, and consequently create the most effective and efficient educational climate possible. The responses received from the teachers and the principal at the PRS supports the notion that collegiality does have a positive influence on learning, as demonstrated by the improved academic achievement of the learners. The teachers were now more involved in the school. They agreed that this was a positive development. Their descriptions of increased involvement, shared accountability and shared decision-making identified important aspects of collegiality that transformed the school from being dysfunctional. Hence, it is abundantly clear that a collegial leadership style can help extract the best from people because the most effective and efficient educational climate can be created at a school when collegiality is employed. Collegial leadership demonstrates that even in PRSs, there are boundless opportunities to improve teaching and learning.

Keywords: collegiality, collegial leadership, effective educational climate, poorly resourced school

Procedia PDF Downloads 403
1552 Exhaustive Study of Essential Constraint Satisfaction Problem Techniques Based on N-Queens Problem

Authors: Md. Ahsan Ayub, Kazi A. Kalpoma, Humaira Tasnim Proma, Syed Mehrab Kabir, Rakib Ibna Hamid Chowdhury

Abstract:

Constraint Satisfaction Problem (CSP) is observed in various applications, i.e., scheduling problems, timetabling problems, assignment problems, etc. Researchers adopt a CSP technique to tackle a certain problem; however, each technique follows different approaches and ways to solve a problem network. In our exhaustive study, it has been possible to visualize the processes of essential CSP algorithms from a very concrete constraint satisfaction example, NQueens Problem, in order to possess a deep understanding about how a particular constraint satisfaction problem will be dealt with by our studied and implemented techniques. Besides, benchmark results - time vs. value of N in N-Queens - have been generated from our implemented approaches, which help understand at what factor each algorithm produces solutions; especially, in N-Queens puzzle. Thus, extended decisions can be made to instantiate a real life problem within CSP’s framework.

Keywords: arc consistency (AC), backjumping algorithm (BJ), backtracking algorithm (BT), constraint satisfaction problem (CSP), forward checking (FC), least constrained values (LCV), maintaining arc consistency (MAC), minimum remaining values (MRV), N-Queens problem

Procedia PDF Downloads 364
1551 Studying the Schema of Afghan Immigrants about Iranians; A Case Study of Immigrants in Tehran Province

Authors: Mohammad Ayobi

Abstract:

Afghans have been immigrating to Iran for many years; The re-establishment of the Taliban in Afghanistan caused a flood of Afghan immigrants to Iran. One of the important issues related to the arrival of Afghan immigrants is the view that Afghan immigrants have toward Iranians. In this research, we seek to identify the schema of Afghan immigrants living in Iran about Iranians. A schema is a set of data or generalized knowledge that is formed in connection with a particular group or a particular person, or even a particular nationality to identify a person with pre-determined judgments about certain matters. The schemata between certain nationalities have a direct impact on the formation of interactions between them and can be effective in establishing or not establishing proper communication between the Afghan immigrant nationality and Iranians. For the scientific understanding of research, we use the theory of “schemata.” The method of this study is qualitative, and its data will be collected through semi-structured deep interviews, and data will be analyzed by thematic analysis. The expected findings in this study are that the schemata of Afghan immigrants are more negative than Iranians because Iranians are self-centered and fanatical about Afghans, and Afghans are only workers to them.

Keywords: schema study, Afghan immigrants, Iranians, in-depth interview

Procedia PDF Downloads 86
1550 Fine Grained Action Recognition of Skateboarding Tricks

Authors: Frederik Calsius, Mirela Popa, Alexia Briassouli

Abstract:

In the field of machine learning, it is common practice to use benchmark datasets to prove the working of a method. The domain of action recognition in videos often uses datasets like Kinet-ics, Something-Something, UCF-101 and HMDB-51 to report results. Considering the properties of the datasets, there are no datasets that focus solely on very short clips (2 to 3 seconds), and on highly-similar fine-grained actions within one specific domain. This paper researches how current state-of-the-art action recognition methods perform on a dataset that consists of highly similar, fine-grained actions. To do so, a dataset of skateboarding tricks was created. The performed analysis highlights both benefits and limitations of state-of-the-art methods, while proposing future research directions in the activity recognition domain. The conducted research shows that the best results are obtained by fusing RGB data with OpenPose data for the Temporal Shift Module.

Keywords: activity recognition, fused deep representations, fine-grained dataset, temporal modeling

Procedia PDF Downloads 231
1549 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations

Authors: Zhao Gao, Eran Edirisinghe

Abstract:

The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.

Keywords: RNN, GAN, NLP, facial composition, criminal investigation

Procedia PDF Downloads 162
1548 The Rehabilitation Solutions for the Hydraulic Jump Sweepout: A Case Study from India

Authors: Ali Heidari, Hany Saleem

Abstract:

The tailwater requirements are important criteria in the design of the stilling basins as energy dissipation of the spillways. The adequate tailwater level that ensures the hydraulic jump inside the basin should be fulfilled by the river's natural water level and the apron depth downstream of the chute. The requirements of the hydraulic jump should mainly be checked for the design flood, however, the drawn jump condition should not be critical in the discharges lesser than the design flood. The tailwater requirement is not met in Almatti dam, built in 2005 in India, and the jump sweep out from the basin, resulting in significant scour in the apron and end sill of the basin. This paper discusses different hydraulic solutions as sustainable solutions for the rehabilitation program. The deep apron alternative is proposed for the fewer bays of the spillway as the most cost-effective, sustainable solution. The apron level of 15 gates out of 26 gates should decrease by 5.4 m compared to the existing design to ensure a safe hydraulic jump up to the discharge of 10,000 m3/s i.e. 30% of the updated PMF.

Keywords: dam, spillway, stilling basin, Almatti

Procedia PDF Downloads 57
1547 Intelligent Chatbot Generating Dynamic Responses Through Natural Language Processing

Authors: Aarnav Singh, Jatin Moolchandani

Abstract:

The proposed research work aims to build a query-based AI chatbot that can answer any question related to any topic. A chatbot is software that converses with users via text messages. In the proposed system, we aim to build a chatbot that generates a response based on the user’s query. For this, we use natural language processing to analyze the query and some set of texts to form a concise answer. The texts are obtained through web-scrapping and filtering all the credible sources from a web search. The objective of this project is to provide a chatbot that is able to provide simple and accurate answers without the user having to read through a large number of articles and websites. Creating an AI chatbot that can answer a variety of user questions on a variety of topics is the goal of the proposed research project. This chatbot uses natural language processing to comprehend user inquiries and provides succinct responses by examining a collection of writings that were scraped from the internet. The texts are carefully selected from reliable websites that are found via internet searches. This project aims to provide users with a chatbot that provides clear and precise responses, removing the need to go through several articles and web pages in great detail. In addition to exploring the reasons for their broad acceptance and their usefulness across many industries, this article offers an overview of the interest in chatbots throughout the world.

Keywords: Chatbot, Artificial Intelligence, natural language processing, web scrapping

Procedia PDF Downloads 66
1546 Variation of Quality of Roller-Compacted Concrete Based on Consistency

Authors: C. Chhorn, S. H. Han, S. W. Lee

Abstract:

Roller-compacted concrete (RCC) has been used for decades in many pavement applications due to its economic cost and high construction speed. However, due to the lack of deep researches and experiences, this material has not been widely employed. An RCC mixture with appropriate consistency can induce high compacted density, while high density can induce good aggregate interlock and high strength. Consistency of RCC is mainly known to define its constructability. However, it was not well specified how this property may affect other properties of a constructed RCC pavement (RCCP). This study suggested the possibility of an ideal range of consistency that may provide adequate quality of RCCP. In this research, five sections of RCCP consisted of both 13 mm and 19 mm aggregate sections were investigated. The effects of consistency on compacted depth, strength, international roughness index (IRI), skid resistance are examined. From this study, a new range of consistency is suggested for RCCP application.

Keywords: compacted depth, consistency, international roughness index (IRI), pavement, roller-compacted concrete (RCC), skid resistance, strength

Procedia PDF Downloads 243
1545 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry

Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard

Abstract:

Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.

Keywords: wetting, acoustic reflectometry, gigahertz, semiconductor

Procedia PDF Downloads 327
1544 Novel Pyrimidine Based Semicarbazones: Confirmation of Four Binding Site Pharmacophoric Model Hypothesis for Antiepileptic Activity

Authors: Harish Rajak, Swati Singh

Abstract:

A series of novel pyrimidine based semicarbazone were designed and synthesized on the basis of semicarbazone based pharmacophoric model to satisfy the structural prerequisite crucial for antiepileptic activity. The semicarbazones based pharmacophoric model consists of following four essential binding sites: (i) An aryl hydrophobic binding site with halo substituent; (ii) A hydrogen bonding domain; (iii) An electron donor group and (iv) Another hydrophobic-hydrophilic site controlling the pharmacokinetic features of the anticonvulsant. The aryl semicarbazones has been recognized as a structurally novel class of compounds with remarkable anticonvulsant activity. In the present study, all the test semicarbazones were subjected to molecular docking using Glide v5.8. Some of the compounds were found to interact with ARG192, GLU270 and THR353 residues of 1OHV protein, present in GABA-AT receptor. The chemical structures of the synthesized molecules were characterized by elemental and spectral (IR, 1H NMR, 13C NMR and MS) analysis. The anticonvulsant activities of the compounds were investigated using maximal electroshock seizure (MES) and subcutaneous pentylenetrtrazole (scPTZ) models. The neurotoxicity was evaluated in mice by the rotorod test. The attempts were also made to establish structure-activity relationships among synthesized compounds. The results of the present study confirmed that the pharmacophore model with four binding sites is essential for antiepileptic activity.

Keywords: pyrimidine, semicarbazones, anticonvulsant activity, neurotoxicity

Procedia PDF Downloads 254