Search results for: real estate price
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6330

Search results for: real estate price

4740 Transaction Cost Analysis, Execution Quality, and Best Execution under MiFID II

Authors: Rodrigo Zepeda

Abstract:

Transaction cost analysis (TCA) is a way of analyzing the relative performance of different intermediaries and different trading strategies for trades undertaken in financial instruments. It is a way for an investor to determine the overall quality of execution of a particular trade, and there are many different approaches to undertaking TCA. Under the updated Markets in Financial Instruments Directive (2014/65/EU) (MiFID II), investment firms are required when executing orders, to take all sufficient steps to obtain the best possible result for their clients. This requirement for 'Best Execution' must take into account price, costs, speed, likelihood of execution and settlement, size, nature or any other consideration relevant to the execution of the order. The new regulatory compliance framework under MiFID II will now also apply across a very broad range of financial instruments. This article will provide a comprehensive technical analysis of how TCA and Best Execution will significantly change under MiFID II. It will also explain why harmonization of post-trade reporting requirements under MiFID II could potentially support the development of peer group analysis, which in turn could provide a new and highly advanced framework for TCA that could more effectively support Best Execution requirements under MiFID II. The study is significant because there are no studies that have dealt with TCA and Best Execution under MiFID II in the literature.

Keywords: transaction cost analysis, execution quality, best execution, MiFID II, financial instruments

Procedia PDF Downloads 291
4739 CyberSteer: Cyber-Human Approach for Safely Shaping Autonomous Robotic Behavior to Comply with Human Intention

Authors: Vinicius G. Goecks, Gregory M. Gremillion, William D. Nothwang

Abstract:

Modern approaches to train intelligent agents rely on prolonged training sessions, high amounts of input data, and multiple interactions with the environment. This restricts the application of these learning algorithms in robotics and real-world applications, in which there is low tolerance to inadequate actions, interactions are expensive, and real-time processing and action are required. This paper addresses this issue introducing CyberSteer, a novel approach to efficiently design intrinsic reward functions based on human intention to guide deep reinforcement learning agents with no environment-dependent rewards. CyberSteer uses non-expert human operators for initial demonstration of a given task or desired behavior. The trajectories collected are used to train a behavior cloning deep neural network that asynchronously runs in the background and suggests actions to the deep reinforcement learning module. An intrinsic reward is computed based on the similarity between actions suggested and taken by the deep reinforcement learning algorithm commanding the agent. This intrinsic reward can also be reshaped through additional human demonstration or critique. This approach removes the need for environment-dependent or hand-engineered rewards while still being able to safely shape the behavior of autonomous robotic agents, in this case, based on human intention. CyberSteer is tested in a high-fidelity unmanned aerial vehicle simulation environment, the Microsoft AirSim. The simulated aerial robot performs collision avoidance through a clustered forest environment using forward-looking depth sensing and roll, pitch, and yaw references angle commands to the flight controller. This approach shows that the behavior of robotic systems can be shaped in a reduced amount of time when guided by a non-expert human, who is only aware of the high-level goals of the task. Decreasing the amount of training time required and increasing safety during training maneuvers will allow for faster deployment of intelligent robotic agents in dynamic real-world applications.

Keywords: human-robot interaction, intelligent robots, robot learning, semisupervised learning, unmanned aerial vehicles

Procedia PDF Downloads 259
4738 Hybrid Data-Driven Drilling Rate of Penetration Optimization Scheme Guided by Geological Formation and Historical Data

Authors: Ammar Alali, Mahmoud Abughaban, William Contreras Otalvora

Abstract:

Optimizing the drilling process for cost and efficiency requires the optimization of the rate of penetration (ROP). ROP is the measurement of the speed at which the wellbore is created, in units of feet per hour. It is the primary indicator of measuring drilling efficiency. Maximization of the ROP can indicate fast and cost-efficient drilling operations; however, high ROPs may induce unintended events, which may lead to nonproductive time (NPT) and higher net costs. The proposed ROP optimization solution is a hybrid, data-driven system that aims to improve the drilling process, maximize the ROP, and minimize NPT. The system consists of two phases: (1) utilizing existing geological and drilling data to train the model prior, and (2) real-time adjustments of the controllable dynamic drilling parameters [weight on bit (WOB), rotary speed (RPM), and pump flow rate (GPM)] that direct influence on the ROP. During the first phase of the system, geological and historical drilling data are aggregated. After, the top-rated wells, as a function of high instance ROP, are distinguished. Those wells are filtered based on NPT incidents, and a cross-plot is generated for the controllable dynamic drilling parameters per ROP value. Subsequently, the parameter values (WOB, GPM, RPM) are calculated as a conditioned mean based on physical distance, following Inverse Distance Weighting (IDW) interpolation methodology. The first phase is concluded by producing a model of drilling best practices from the offset wells, prioritizing the optimum ROP value. This phase is performed before the commencing of drilling. Starting with the model produced in phase one, the second phase runs an automated drill-off test, delivering live adjustments in real-time. Those adjustments are made by directing the driller to deviate two of the controllable parameters (WOB and RPM) by a small percentage (0-5%), following the Constrained Random Search (CRS) methodology. These minor incremental variations will reveal new drilling conditions, not explored before through offset wells. The data is then consolidated into a heat-map, as a function of ROP. A more optimum ROP performance is identified through the heat-map and amended in the model. The validation process involved the selection of a planned well in an onshore oil field with hundreds of offset wells. The first phase model was built by utilizing the data points from the top-performing historical wells (20 wells). The model allows drillers to enhance decision-making by leveraging existing data and blending it with live data in real-time. An empirical relationship between controllable dynamic parameters and ROP was derived using Artificial Neural Networks (ANN). The adjustments resulted in improved ROP efficiency by over 20%, translating to at least 10% saving in drilling costs. The novelty of the proposed system lays is its ability to integrate historical data, calibrate based geological formations, and run real-time global optimization through CRS. Those factors position the system to work for any newly drilled well in a developing field event.

Keywords: drilling optimization, geological formations, machine learning, rate of penetration

Procedia PDF Downloads 133
4737 Evaluation of Real-Time Background Subtraction Technique for Moving Object Detection Using Fast-Independent Component Analysis

Authors: Naoum Abderrahmane, Boumehed Meriem, Alshaqaqi Belal

Abstract:

Background subtraction algorithm is a larger used technique for detecting moving objects in video surveillance to extract the foreground objects from a reference background image. There are many challenges to test a good background subtraction algorithm, like changes in illumination, dynamic background such as swinging leaves, rain, snow, and the changes in the background, for example, moving and stopping of vehicles. In this paper, we propose an efficient and accurate background subtraction method for moving object detection in video surveillance. The main idea is to use a developed fast-independent component analysis (ICA) algorithm to separate background, noise, and foreground masks from an image sequence in practical environments. The fast-ICA algorithm is adapted and adjusted with a matrix calculation and searching for an optimum non-quadratic function to be faster and more robust. Moreover, in order to estimate the de-mixing matrix and the denoising de-mixing matrix parameters, we propose to convert all images to YCrCb color space, where the luma component Y (brightness of the color) gives suitable results. The proposed technique has been verified on the publicly available datasets CD net 2012 and CD net 2014, and experimental results show that our algorithm can detect competently and accurately moving objects in challenging conditions compared to other methods in the literature in terms of quantitative and qualitative evaluations with real-time frame rate.

Keywords: background subtraction, moving object detection, fast-ICA, de-mixing matrix

Procedia PDF Downloads 98
4736 The Research on Diesel Bus Emissions in Ulaanbaatar City: Mongolia

Authors: Tsetsegmaa A., Bayarsuren B., Altantsetseg Ts.

Abstract:

To make the best decision on reducing harmful emissions from buses, we need to have a clear understanding of the current state of their actual emissions. The emissions from city buses running on high sulfur fuel, particularly particulate matter (PM) and nitrogen oxides (NOx) from the exhaust gases of conventional diesel engines, have been studied and measured with and without diesel particulate filter (DPF) in Ulaanbaatar city. The study was conducted by using the PEMS (Portable Emissions Measurement System) and gravimetric method in real traffic conditions. The obtained data were used to determine the actual emission rates and to evaluate the effectiveness of the selected particulate filters. Actual road and daily PM emissions from city buses were determined during the warm and cold seasons. A bus with an average daily mileage of 242 km was found to emit 166.155 g of PM into the city's atmosphere on average per day, with 141.3 g in summer and 175.8 g in winter. The actual PM of the city bus is 0.6866 g/km. The concentration of NOx in the exhaust gas averages 1410.94 ppm. The use of DPF reduced the exhaust gas opacity of 24 buses by an average of 97% and filtered a total of 340.4 kg of soot from these buses over a period of six months. Retrofitting an old conventional diesel engine with cassette-type silicon carbide (SiC) DPF, despite the laboriousness of cleaning, can significantly reduce particulate matter emissions. Innovation: First comprehensive road PM and NOx emission dataset and actual road emissions from public buses have been identified. PM and NOx mathematical model equations have been estimated as a function of the bus technical speed and engine revolution with and without DPF.

Keywords: conventional diesel, silicon carbide, real-time onboard measurements, particulate matter, diesel retrofit, fuel sulphur

Procedia PDF Downloads 166
4735 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network

Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar

Abstract:

Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.

Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network

Procedia PDF Downloads 109
4734 The Effective Method for Postering Thinking Dispositions of Learners

Authors: H. Jalahi, A. Yazdanpanah Nozari

Abstract:

Background and Purpose: Assessment of learners’ performance is an important factors in teaching-learning process. When a factor is sensitive and has high influence on life, their assessment should be done precisely. Thinking dispositions are very important factors in medical education because of its specific condition. In this study a model is designed for fostering thinking dispositions of learners in which authentic assessment is an important element. Materials and Methods: Objective based research is developmental, and such a model was not designed for curricula. Data collection and comparing approaches about assessment and analyzing current assessments offered applied proposals. Results: Based on research findings, the current assessments are response-based, that is students instead of product of response, only offers the specific response which the teachers expects; but authentic assessment is a form of assessment in which students are asked to perform real-word tasks that demonstrate meaningful application of essential knowledge and skills. Conclusion: Because of the difficulties and unexpected problems in life and individuals needs to lifelong learning and conditions in medical course that require decision making in specific times, we must pay attention to reach thinking dispositions and it should be included in curriculum. Authentic assessment as an important aspect of curriculum can help fostering thinking dispositions of learners. Using this kind of assessments which focus on application of information and skills to solve real-word tasks have more important role in medical courses.

Keywords: assessment, authentic, medical courses, developmental

Procedia PDF Downloads 365
4733 Effect of Needle Height on Discharge Coefficient and Cavitation Number

Authors: Mohammadreza Nezamirad, Sepideh Amirahmadian, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi

Abstract:

Cavitation inside diesel injector nozzle is investigated using Reynolds-Stress-Navier Stokes equations. Schnerr-Sauer cavitation model is used for modeling cavitation inside diesel injector nozzle. The carrying fluid utilized in the current study is diesel fuel. The flow is verified at the beginning by comparing with the previous experimental data, and it was found that K-Epsilon turbulent model could lead to a better accuracy comparing to K-Omega turbulent model. Moreover, the mass flow rate obtained numerically is compared with the experimental value, and the discrepancy was found to be less than 5 percent which shows the accuracy of the current results. Finally, a real-size four-hole nozzle is investigated, and the flow inside it is visualized based on velocity profile, discharge coefficient, and cavitation number. It was found that the mesh density could be reduced significantly by utilizing periodic boundary conditions. Velocity contour at the mid nozzle showed that the maximum value of velocity occurs at the end of the needle before entering the orifice area. Last but not least, at the same boundary conditions, when different needle heights were utilized, it was found that as needle height increases with an increase in cavitation number, discharge coefficient increases, while the mentioned increases are more tangible at smaller values of needle heights.

Keywords: cavitation, diesel fuel, CFD, real size nozzle, mass flow rate

Procedia PDF Downloads 150
4732 Evaluation of Rehabilitation in Ischemic Stroke

Authors: Amirmohammad Dahouri

Abstract:

Each year, more than 795,000 individuals in the United States grieve a stroke, and by 2030, it is predictable that 4% of the U.S. people will have had a stroke. Ischemic stroke, accounting for about 80% of all strokes, is one of the main causes of disability. The goal of stroke rehabilitation is to help patients return to physical and mental functions and relearn the required aids to living everyday life. This flagging has an adverse effect on patients’ quality of life and affects their daily living activities. In recent years, the rehabilitation of ischemic stroke attractions more attention in the world. A review of the rudimentary perceptions of stroke rehabilitation that are price stressing to all specialists who delicacy patients with stroke. Ideas are made for patients on how to functionally manage daily activities after they have qualified for a stroke. It is vital for home healthcare clinicians to understand the process from acute events to medical equilibrium and rehabilitation to adaptation. Different sources such as Pub Med Google Scholar and science direct have been used and various contemporary articles in this era have been analyzed. The care plan must also foundation actual actions to protect against recurrent stroke, as stroke patients are generally at significant risk for further ischemic or hemorrhagic attacks. Here, we review evidence of rehabilitation in treating post-stroke impairment.

Keywords: rehabilitation, stroke, ischemic, hemorrhagic, brain

Procedia PDF Downloads 167
4731 The Foundation Binary-Signals Mechanics and Actual-Information Model of Universe

Authors: Elsadig Naseraddeen Ahmed Mohamed

Abstract:

In contrast to the uncertainty and complementary principle, it will be shown in the present paper that the probability of the simultaneous occupation event of any definite values of coordinates by any definite values of momentum and energy at any definite instance of time can be described by a binary definite function equivalent to the difference between their numbers of occupation and evacuation epochs up to that time and also equivalent to the number of exchanges between those occupation and evacuation epochs up to that times modulus two, these binary definite quantities can be defined at all point in the time’s real-line so it form a binary signal represent a complete mechanical description of physical reality, the time of these exchanges represent the boundary of occupation and evacuation epochs from which we can calculate these binary signals using the fact that the time of universe events actually extends in the positive and negative of time’s real-line in one direction of extension when these number of exchanges increase, so there exists noninvertible transformation matrix can be defined as the matrix multiplication of invertible rotation matrix and noninvertible scaling matrix change the direction and magnitude of exchange event vector respectively, these noninvertible transformation will be called actual transformation in contrast to information transformations by which we can navigate the universe’s events transformed by actual transformations backward and forward in time’s real-line, so these information transformations will be derived as an elements of a group can be associated to their corresponded actual transformations. The actual and information model of the universe will be derived by assuming the existence of time instance zero before and at which there is no coordinate occupied by any definite values of momentum and energy, and then after that time, the universe begin its expanding in spacetime, this assumption makes the need for the existence of Laplace’s demon who at one moment can measure the positions and momentums of all constituent particle of the universe and then use the law of classical mechanics to predict all future and past of universe’s events, superfluous, we only need for the establishment of our analog to digital converters to sense the binary signals that determine the boundaries of occupation and evacuation epochs of the definite values of coordinates relative to its origin by the definite values of momentum and energy as present events of the universe from them we can predict approximately in high precision it's past and future events.

Keywords: binary-signal mechanics, actual-information model of the universe, actual-transformation, information-transformation, uncertainty principle, Laplace's demon

Procedia PDF Downloads 177
4730 Task Validity in Neuroimaging Studies: Perspectives from Applied Linguistics

Authors: L. Freeborn

Abstract:

Recent years have seen an increasing number of neuroimaging studies related to language learning as imaging techniques such as fMRI and EEG have become more widely accessible to researchers. By using a variety of structural and functional neuroimaging techniques, these studies have already made considerable progress in terms of our understanding of neural networks and processing related to first and second language acquisition. However, the methodological designs employed in neuroimaging studies to test language learning have been questioned by applied linguists working within the field of second language acquisition (SLA). One of the major criticisms is that tasks designed to measure language learning gains rarely have a communicative function, and seldom assess learners’ ability to use the language in authentic situations. This brings the validity of many neuroimaging tasks into question. The fundamental reason why people learn a language is to communicate, and it is well-known that both first and second language proficiency are developed through meaningful social interaction. With this in mind, the SLA field is in agreement that second language acquisition and proficiency should be measured through learners’ ability to communicate in authentic real-life situations. Whilst authenticity is not always possible to achieve in a classroom environment, the importance of task authenticity should be reflected in the design of language assessments, teaching materials, and curricula. Tasks that bear little relation to how language is used in real-life situations can be considered to lack construct validity. This paper first describes the typical tasks used in neuroimaging studies to measure language gains and proficiency, then analyses to what extent these tasks can validly assess these constructs.

Keywords: neuroimaging studies, research design, second language acquisition, task validity

Procedia PDF Downloads 141
4729 Foreign Tourists’ Attitude toward Service Marketing Mix and Intention to Revisit in Boutique Hotel

Authors: Nattapong Techarattanased

Abstract:

This survey research aimed to study the influence of attitude in services, product, and marketing mix affected intention to revisit in boutique hotel of foreign travelers in Bangkok, Thailand. The total 400 sets of closed-ended questionnaires were utilized for conducting data from foreign tourists who come to boutique hotel and can communicate in English. The descriptive statistics and multiple regression analysis were used to analyze data. The research found that tourists’ attitude towards the service of check in and check out process, food and beverage, guest room and other facilities affected in opportunity of revisiting, recommending to others and possibility of revisiting in the future at 0.05 statistically significant levels. Tourists’ attitude towards service and marketing mix in term of people, physical evidence, price, process and channel of distribution could forecast intention to revisit in term of recommending to others and intention to revisit in the future at 0.05 statistically significant levels.

Keywords: boutique hotel, foreign tourists, intention to revisit, service marketing mix

Procedia PDF Downloads 248
4728 Framework for Enhancing Water Literacy and Sustainable Management in Southwest Nova Scotia

Authors: Etienne Mfoumou, Mo Shamma, Martin Tango, Michael Locke

Abstract:

Water literacy is essential for addressing emerging water management challenges in southwest Nova Scotia (SWNS), where growing concerns over water scarcity and sustainability have highlighted the need for improved educational frameworks. Current approaches often fail to fully represent the complexity of water systems, focusing narrowly on the water cycle while neglecting critical aspects such as groundwater infiltration and the interconnectedness of surface and subsurface water systems. To address these gaps, this paper proposes a comprehensive framework for water literacy that integrates the physical dimensions of water systems with key aspects of understanding, including processes, energy, scale, and human dependency. Moreover, a suggested tool to enhance this framework is a real-time hydrometric data map supported by a network of water level monitoring devices deployed across the province. These devices, particularly for monitoring dug wells, would provide critical data on groundwater levels and trends, offering stakeholders actionable insights into water availability and sustainability. This real-time data would facilitate deeper understanding and engagement with local water issues, complementing the educational framework and empowering stakeholders to make informed decisions. By integrating this tool, the proposed framework offers a practical, interdisciplinary approach to improving water literacy and promoting sustainable water management in SWNS.

Keywords: water education, water literacy, water management, water systems, Southwest Nova Scotia

Procedia PDF Downloads 34
4727 Augmented Reality for Children Vocabulary Learning: Case Study in a Macau Kindergarten

Authors: R. W. Chan, Kan Kan Chan

Abstract:

Augmented Reality (AR), with the affordance of bridging between real world and virtual world, brings users immersive experience. It has been applied in education gradually and even come into practice in student daily learning. However, a systematic review shows that there are limited researches in the area of vocabulary acquisition in early childhood education. Since kindergarten is a key stage where children acquire language and AR as an emerging and potential technology to support the vocabulary acquisition, this study aims to explore its value in in real classroom with teacher’s view. Participants were a class of 5 to 6 years old kids studying in a Macau school that follows Cambridge curriculum and emphasizes multicultural ethos. There were 11 boys, 13 girls, and in a total of 24 kids. They learnt animal vocabulary using mobile device and AR flashcards, IPad to scan AR flashcards and interact with pop-up virtual objects. In order to estimate the effectiveness of using Augmented Reality, children attended vocabulary pre-posttest. In addition, teacher interview was administrated after this learning activity to seek practitioner’s opinion towards this technology. For data analysis, paired samples t-test was utilized to measure the instructional effect based on the pre-posttest data. Result shows that Augmented Reality could significantly enhance children vocabulary learning with large effect size. Teachers indicated that children enjoyed the AR learning activity but clear instruction is needed. Suggestions for the future implementation of vocabulary acquisition using AR are suggested.

Keywords: augmented reality, kindergarten children, vocabulary learning, Macau

Procedia PDF Downloads 152
4726 Overall Student Satisfaction at Tabor School of Education: An Examination of Key Factors Based on the AUSSE SEQ

Authors: Francisco Ben, Tracey Price, Chad Morrison, Victoria Warren, Willy Gollan, Robyn Dunbar, Frank Davies, Mark Sorrell

Abstract:

This paper focuses particularly on the educational aspects that contribute to the overall educational satisfaction rated by Tabor School of Education students who participated in the Australasian Survey of Student Engagement (AUSSE) conducted by the Australian Council for Educational Research (ACER) in 2010, 2012 and 2013. In all three years of participation, Tabor ranked first especially in the area of overall student satisfaction. By using a single level path analysis in relation to the AUSSE datasets collected using the Student Engagement Questionnaire (SEQ) for Tabor School of Education, seven aspects that contribute to overall student satisfaction have been identified. There appears to be a direct causal link between aspects of the Supportive Learning Environment, Work Integrated Learning, Career Readiness, Academic Challenge, and overall educational satisfaction levels. A further three aspects, being Student and Staff Interactions, Active Learning, and Enriching Educational Experiences, indirectly influence overall educational satisfaction levels.

Keywords: attrition, retention, educational experience, pre-service teacher education, student satisfaction

Procedia PDF Downloads 353
4725 Rice Husk Silica as an Alternative Material for Renewable Energy

Authors: Benedict O. Ayomanor, Cookey Iyen, Ifeoma S. Iyen

Abstract:

Rice hull (RH) biomass product gives feasible silica for exact temperature and period. The minimal fabrication price turns its best feasible produce to metallurgical grade silicon (MG-Si). In this work, to avoid ecological worries extending from CO₂ release to oil leakage on water and land, or nuclear left-over pollution, all finally add to the immense topics of ecological squalor; high purity silicon > 98.5% emerge set from rice hull ash (RHA) by solid-liquid removal. The RHA derived was purified by nitric and hydrochloric acid solutions. Leached RHA sieved, washed in distilled water, and desiccated at 1010ºC for 4h. Extra cleansing was achieved by carefully mixing the SiO₂ ash through Mg dust at a proportion of 0.9g SiO₂ to 0.9g Mg, galvanised at 1010ºC to formula magnesium silicide. The solid produced was categorised by X-ray fluorescence (XRF), X-ray diffractometer (XRD), and Fourier transformation infrared (FTIR) spectroscopy. Elemental analysis using XRF found the percentage of silicon in the material is approximately 98.6%, main impurities are Mg (0.95%), Ca (0.09%), Fe (0.3%), K (0.25%), and Al (0.40%).

Keywords: siliceous, leached, biomass, solid-liquid extraction

Procedia PDF Downloads 71
4724 Preparing a Library of Abnormal Masses for Designing a Long-Lasting Anatomical Breast Phantom for Ultrasonography Training

Authors: Nasibullina A., Leonov D.

Abstract:

The ultrasonography method is actively used for the early diagnosis of various le-sions in the human body, including the mammary gland. The incidence of breast cancer has increased by more than 20%, and mortality by 14% since 2008. The correctness of the diagnosis often directly depends on the qualifications and expe-rience of a diagnostic medical sonographer. That is why special attention should be paid to the practical training of future specialists. Anatomical phantoms are ex-cellent teaching tools because they accurately imitate the characteristics of real hu-man tissues and organs. The purpose of this work is to create a breast phantom for practicing ultrasound diagnostic skills in grayscale and elastography imaging, as well as ultrasound-guided biopsy sampling. We used silicone-like compounds ranging from 3 to 17 on the Shore scale hardness units to simulate soft tissue and lesions. Impurities with experimentally selected concentrations were added to give the phantom the necessary attenuation and reflection parameters. We used 3D modeling programs and 3D printing with PLA plastic to create the casting mold. We developed a breast phantom with inclusions of varying shape, elasticity and echogenicity. After testing the created phantom in B-mode and elastography mode, we performed a survey asking 19 participants how realistic the sonograms of the phantom were. The results showed that the closest to real was the model of the cyst with 9.5 on the 0-10 similarity scale. Thus, the developed breast phantom can be used for ultrasonography, elastography, and ultrasound-guided biopsy training.

Keywords: breast ultrasound, mammary gland, mammography, training phantom, tissue-mimicking materials

Procedia PDF Downloads 94
4723 A Scalable Model of Fair Socioeconomic Relations Based on Blockchain and Machine Learning Algorithms-1: On Hyperinteraction and Intuition

Authors: Merey M. Sarsengeldin, Alexandr S. Kolokhmatov, Galiya Seidaliyeva, Alexandr Ozerov, Sanim T. Imatayeva

Abstract:

This series of interdisciplinary studies is an attempt to investigate and develop a scalable model of fair socioeconomic relations on the base of blockchain using positive psychology techniques and Machine Learning algorithms for data analytics. In this particular study, we use hyperinteraction approach and intuition to investigate their influence on 'wisdom of crowds' via created mobile application which was created for the purpose of this research. Along with the public blockchain and private Decentralized Autonomous Organization (DAO) which were elaborated by us on the base of Ethereum blockchain, a model of fair financial relations of members of DAO was developed. We developed a smart contract, so-called, Fair Price Protocol and use it for implementation of model. The data obtained from mobile application was analyzed by ML algorithms. A model was tested on football matches.

Keywords: blockchain, Naïve Bayes algorithm, hyperinteraction, intuition, wisdom of crowd, decentralized autonomous organization

Procedia PDF Downloads 171
4722 Gamification of eHealth Business Cases to Enhance Rich Learning Experience

Authors: Kari Björn

Abstract:

Introduction of games has expanded the application area of computer-aided learning tools to wide variety of age groups of learners. Serious games engage the learners into a real-world -type of simulation and potentially enrich the learning experience. Institutional background of a Bachelor’s level engineering program in Information and Communication Technology is introduced, with detailed focus on one of its majors, Health Technology. As part of a Customer Oriented Software Application thematic semester, one particular course of “eHealth Business and Solutions” is described and reflected in a gamified framework. Learning a consistent view into vast literature of business management, strategies, marketing and finance in a very limited time enforces selection of topics relevant to the industry. Health Technology is a novel and growing industry with a growing sector in consumer wearable devices and homecare applications. The business sector is attracting new entrepreneurs and impatient investor funds. From engineering education point of view the sector is driven by miniaturizing electronics, sensors and wireless applications. However, the market is highly consumer-driven and usability, safety and data integrity requirements are extremely high. When the same technology is used in analysis or treatment of patients, very strict regulatory measures are enforced. The paper introduces a course structure using gamification as a tool to learn the most essential in a new market: customer value proposition design, followed by a market entry game. Students analyze the existing market size and pricing structure of eHealth web-service market and enter the market as a steering group of their company, competing against the legacy players and with each other. The market is growing but has its rules of demand and supply balance. New products can be developed with an R&D-investment, and targeted to market with unique quality- and price-combinations. Product cost structure can be improved by investing to enhanced production capacity. Investments can be funded optionally by foreign capital. Students make management decisions and face the dynamics of the market competition in form of income statement and balance sheet after each decision cycle. The focus of the learning outcome is to understand customer value creation to be the source of cash flow. The benefit of gamification is to enrich the learning experience on structure and meaning of financial statements. The paper describes the gamification approach and discusses outcomes after two course implementations. Along the case description of learning challenges, some unexpected misconceptions are noted. Improvements of the game or the semi-gamified teaching pedagogy are discussed. The case description serves as an additional support to new game coordinator, as well as helps to improve the method. Overall, the gamified approach has helped to engage engineering student to business studies in an energizing way.

Keywords: engineering education, integrated curriculum, learning experience, learning outcomes

Procedia PDF Downloads 241
4721 Research on Models and Selection of Entry Strategies for Catering Industry Based on the Evolutionary Game Theory

Authors: Jianxin Zhu, Na Liu

Abstract:

Entry strategies play a vital role in the development of new enterprises in the catering industry. Different entry strategies will have different effects on the development of new enterprise. Based on the research of scholars at home and abroad, and combining the characteristics of the catering industry, the entry strategies are divided into low-price entry strategies and high-quality entry strategies. Facing the entry of new enterprise, the strategies of incumbent enterprises are divided into response strategies and non-response strategies. This paper uses evolutionary game theory to study the strategic interaction mechanism between incumbent companies and new enterprises. When different initial values and parameter values are set, which strategy will the two-game subjects choose, respectively? Using matlab2016 for numerical simulation, the results show that the choice of strategies for new enterprise and incumbent enterprise is influenced by more than one factor, and the system has different evolution trends under different circumstances. When the parameters were set, the choice of two subjects' strategies mainly depends on the net profit between the strategies.

Keywords: catering industry, entry strategy, evolutionary game, strategic interaction mechanism

Procedia PDF Downloads 134
4720 Human Resource Management Practices, Person-Environment Fit and Financial Performance in Brazilian Publicly Traded Companies

Authors: Bruno Henrique Rocha Fernandes, Amir Rezaee, Jucelia Appio

Abstract:

The relation between Human Resource Management (HRM) practices and organizational performance remains the subject of substantial literature. Though many studies demonstrated positive relationship, still major influencing variables are not yet clear. This study considers the Person-Environment Fit (PE Fit) and its components, Person-Supervisor (PS), Person-Group (PG), Person-Organization (PO) and Person-Job (PJ) Fit, as possible explanatory variables. We analyzed PE Fit as a moderator between HRM practices and financial performance in the “best companies to work” in Brazil. Data from HRM practices were classified through the High Performance Working Systems (HPWS) construct and data on PE-Fit were obtained through surveys among employees. Financial data, consisting of return on invested capital (ROIC) and price earnings ratio (PER) were collected for publicly traded best companies to work. Findings show that PO Fit and PJ Fit play a significant moderator role for PER but not for ROIC.

Keywords: financial performance, human resource management, high performance working systems, person-environment fit

Procedia PDF Downloads 167
4719 Embedded System of Signal Processing on FPGA: Underwater Application Architecture

Authors: Abdelkader Elhanaoui, Mhamed Hadji, Rachid Skouri, Said Agounad

Abstract:

The purpose of this paper is to study the phenomenon of acoustic scattering by using a new method. The signal processing (Fast Fourier Transform FFT Inverse Fast Fourier Transform iFFT and BESSEL functions) is widely applied to obtain information with high precision accuracy. Signal processing has a wider implementation in general-purpose pro-cessors. Our interest was focused on the use of FPGAs (Field-Programmable Gate Ar-rays) in order to minimize the computational complexity in single processor architecture, then be accelerated on FPGA and meet real-time and energy efficiency requirements. Gen-eral-purpose processors are not efficient for signal processing. We implemented the acous-tic backscattered signal processing model on the Altera DE-SOC board and compared it to Odroid xu4. By comparison, the computing latency of Odroid xu4 and FPGA is 60 sec-onds and 3 seconds, respectively. The detailed SoC FPGA-based system has shown that acoustic spectra are performed up to 20 times faster than the Odroid xu4 implementation. FPGA-based system of processing algorithms is realized with an absolute error of about 10⁻³. This study underlines the increasing importance of embedded systems in underwater acoustics, especially in non-destructive testing. It is possible to obtain information related to the detection and characterization of submerged cells. So we have achieved good exper-imental results in real-time and energy efficiency.

Keywords: DE1 FPGA, acoustic scattering, form function, signal processing, non-destructive testing

Procedia PDF Downloads 79
4718 Revolutionizing Healthcare Facility Maintenance: A Groundbreaking AI, BIM, and IoT Integration Framework

Authors: Mina Sadat Orooje, Mohammad Mehdi Latifi, Behnam Fereydooni Eftekhari

Abstract:

The integration of cutting-edge Internet of Things (IoT) technologies with advanced Artificial Intelligence (AI) systems is revolutionizing healthcare facility management. However, the current landscape of hospital building maintenance suffers from slow, repetitive, and disjointed processes, leading to significant financial, resource, and time losses. Additionally, the potential of Building Information Modeling (BIM) in facility maintenance is hindered by a lack of data within digital models of built environments, necessitating a more streamlined data collection process. This paper presents a robust framework that harmonizes AI with BIM-IoT technology to elevate healthcare Facility Maintenance Management (FMM) and address these pressing challenges. The methodology begins with a thorough literature review and requirements analysis, providing insights into existing technological landscapes and associated obstacles. Extensive data collection and analysis efforts follow to deepen understanding of hospital infrastructure and maintenance records. Critical AI algorithms are identified to address predictive maintenance, anomaly detection, and optimization needs alongside integration strategies for BIM and IoT technologies, enabling real-time data collection and analysis. The framework outlines protocols for data processing, analysis, and decision-making. A prototype implementation is executed to showcase the framework's functionality, followed by a rigorous validation process to evaluate its efficacy and gather user feedback. Refinement and optimization steps are then undertaken based on evaluation outcomes. Emphasis is placed on the scalability of the framework in real-world scenarios and its potential applications across diverse healthcare facility contexts. Finally, the findings are meticulously documented and shared within the healthcare and facility management communities. This framework aims to significantly boost maintenance efficiency, cut costs, provide decision support, enable real-time monitoring, offer data-driven insights, and ultimately enhance patient safety and satisfaction. By tackling current challenges in healthcare facility maintenance management it paves the way for the adoption of smarter and more efficient maintenance practices in healthcare facilities.

Keywords: artificial intelligence, building information modeling, healthcare facility maintenance, internet of things integration, maintenance efficiency

Procedia PDF Downloads 61
4717 A Marketplace for Indonesian Culinary Innovation

Authors: Wildan Maulana, Machfudz Sa'idi

Abstract:

Yogyakarta is a city with the most students in Indonesia, more than 250 thousand students living in Yogyakarta and more than 140 universities in Yogyakarta. Therefore, Yogyakarta is a very strategic place for the culinary business. Food is a basic requirement of all living things, and the tasty food and cheap is the target of almost all students. The objective of this paper is to give an idea and the innovation of culinary business in Yogyakarta who apply the concept sociopreneur and technology as a tool to facilitate the course of this business. KedaiKampus is a startup that brings the food business operators such as food stalls, restaurants or angkringan (a traditional restaurant of Indonesia) and people who want to find the food with the best price and the best taste. The uniqueness of this business is offered weekly and monthly food packages for students in particular or for everyone who needs and will be delivered to their homes each every hour meal. KedaiKampus is also a marketspace for industrial and culinary houses, using technology based mobile application and website will allow the food industry to connect them with customers, but it also allows them to know the customer's desire for food trending in the market. The application to be developed is designed for ease of access to customers in finding their favorite foods and convenience for the culinary home to create amazing culinary innovation.

Keywords: marketplace, sociopreneur, culinary, meal

Procedia PDF Downloads 293
4716 Students' ExperiEnce Enhancement Through Simulaton. A Process Flow in Logistics and Transportation Field

Authors: Nizamuddin Zainuddin, Adam Mohd Saifudin, Ahmad Yusni Bahaudin, Mohd Hanizan Zalazilah, Roslan Jamaluddin

Abstract:

Students’ enhanced experience through simulation is a crucial factor that brings reality to the classroom. The enhanced experience is all about developing, enriching and applications of a generic process flow in the field of logistics and transportations. As educational technology has improved, the effective use of simulations has greatly increased to the point where simulations should be considered a valuable, mainstream pedagogical tool. Additionally, in this era of ongoing (some say never-ending) assessment, simulations offer a rich resource for objective measurement and comparisons. Simulation is not just another in the long line of passing fads (or short-term opportunities) in educational technology. It is rather a real key to helping our students understand the world. It is a way for students to acquire experience about how things and systems in the world behave and react, without actually touching them. In short, it is about interactive pretending. Simulation is all about representing the real world which includes grasping the complex issues and solving intricate problems. Therefore, it is crucial before stimulate the real process of inbound and outbound logistics and transportation a generic process flow shall be developed. The paper will be focusing on the validization of the process flow by looking at the inputs gains from the sample. The sampling of the study focuses on multi-national and local manufacturing companies, third party companies (3PL) and government agency, which are selected in Peninsular Malaysia. A simulation flow chart was proposed in the study that will be the generic flow in logistics and transportation. A qualitative approach was mainly conducted to gather data in the study. It was found out from the study that the systems used in the process of outbound and inbound are System Application Products (SAP) and Material Requirement Planning (MRP). Furthermore there were some companies using Enterprises Resources Planning (ERP) and Electronic Data Interchange (EDI) as part of the Suppliers Own Inventories (SOI) networking as a result of globalized business between one countries to another. Computerized documentations and transactions were all mandatory requirement by the Royal Custom and Excise Department. The generic process flow will be the basis of developing a simulation program that shall be used in the classroom with the objective of further enhanced the students’ learning experience. Thus it will contributes to the body of knowledge on the enrichment of the student’s employability and also shall be one of the way to train new workers in the logistics and transportation filed.

Keywords: enhancement, simulation, process flow, logistics, transportation

Procedia PDF Downloads 331
4715 Simulation of Utility Accrual Scheduling and Recovery Algorithm in Multiprocessor Environment

Authors: A. Idawaty, O. Mohamed, A. Z. Zuriati

Abstract:

This paper presents the development of an event based Discrete Event Simulation (DES) for a recovery algorithm known Backward Recovery Global Preemptive Utility Accrual Scheduling (BR_GPUAS). This algorithm implements the Backward Recovery (BR) mechanism as a fault recovery solution under the existing Time/Utility Function/ Utility Accrual (TUF/UA) scheduling domain for multiprocessor environment. The BR mechanism attempts to take the faulty tasks back to its initial safe state and then proceeds to re-execute the affected section of the faulty tasks to enable recovery. Considering that faults may occur in the components of any system; a fault tolerance system that can nullify the erroneous effect is necessary to be developed. Current TUF/UA scheduling algorithm uses the abortion recovery mechanism and it simply aborts the erroneous task as their fault recovery solution. None of the existing algorithm in TUF/UA scheduling domain in multiprocessor scheduling environment have considered the transient fault and implement the BR mechanism as a fault recovery mechanism to nullify the erroneous effect and solve the recovery problem in this domain. The developed BR_GPUAS simulator has derived the set of parameter, events and performance metrics according to a detailed analysis of the base model. Simulation results revealed that BR_GPUAS algorithm can saved almost 20-30% of the accumulated utilities making it reliable and efficient for the real-time application in the multiprocessor scheduling environment.

Keywords: real-time system (RTS), time utility function/ utility accrual (TUF/UA) scheduling, backward recovery mechanism, multiprocessor, discrete event simulation (DES)

Procedia PDF Downloads 306
4714 The Utilization of Bamboo for Wood Bamboo Composite in Lieu of Materials Furniture: Case Study of Furniture Industry in Jepara Indonesia

Authors: Muhammad Nurrizka Ramadhan

Abstract:

Today,Demand for wood increase in rapid rate. Wood is widely used for many things range from building materials to furniture materials. This makes the forest area in Indonesia dropped dramatically, it is estimated that the area of Indonesiaan forest in 2020 will be only about 16 million hectares. The more forest in Indonesia loss, people are required to look for another material to subtitute wood for the furniture. Jepara, a city with the largest furniture industry in Indonesia, requires a large supply of wood, it can reach 300.000 – 500.000 cubic meters per year. Most of the furniture in Jepara use teak, mahogany, and rosewood. Though teak wood is a rare species that must be protected. Today the availability of bamboo in Indonesia is very big. With cheap price, and the period of rapid growth makes bamboo can be used as a substitute for wood for the furniture industry in the future. By making use bamboo to make wood bamboo composite to replace the use of wood for furniture material. This paper is about the use of bamboo as a substitute for wood bamboo composite for the furniture industry. Expected in future, wood can be replaced by a wood bamboo composite.

Keywords: bamboo, composite, furniture, wood

Procedia PDF Downloads 377
4713 Structured Tariff Calculation to Promote Geothermal for Energy Security

Authors: Siti Mariani, Arwin DW Sumari, Retno Gumilang Dewi

Abstract:

This paper analyzes the necessity of a structured tariff calculation for geothermal electricity in Indonesia. Indonesia is blessed with abundant natural resources and a choices of energy resources to generate electricity among other are coal, gas, biomass, hydro to geothermal, creating a fierce competition in electricity tariffs. While geothermal is inline with energy security principle and green growth initiative, it requires a huge capital funding. Geothermal electricity development consists of phases of project with each having its own financial characteristics. The Indonesian government has set a support in the form of ceiling price of geothermal electricity tariff by 11 U.S cents / kWh. However, the government did not set a levelized cost of geothermal, as an indication of lower limit capacity class, to which support is given. The government should establish a levelized cost of geothermal energy to reflect its financial capability in supporting geothermal development. Aside of that, the government is also need to establish a structured tariff calculation to reflect a fair and transparent business cooperation.

Keywords: load fator, levelized cost of geothermal, geothermal power plant, structured tariff calculation

Procedia PDF Downloads 442
4712 Water Heating System with Solar Energy from Solar Panel as Absorber to Reduce the Reduction of Efficiency Solar Panel Use

Authors: Mas Aji Rizki Widjayanto, Rizka Yunita

Abstract:

The building which has an efficient and low-energy today followed by the developers. It’s not because trends on the building nowaday, but rather because of its positive effects in the long term, where the cost of energy per month to be much cheaper, along with the high price of electricity. The use of solar power (Photovoltaic System) becomes one source of electrical energy for the apartment so that will efficiently use energy, water, and other resources in the operations of the apartment. However, more than 80% of the solar radiation is not converted into electrical energy, but reflected and converted into heat energy. This causes an increase on the working temperature of solar panels and consequently decrease the efficiency of conversion to electrical energy. The high temperature solar panels work caused by solar radiation can be used as medium heat exchanger or heating water for the apartments, so that the working temperature of the solar panel can be lowered to reduce the reduction on the efficiency of conversion to electrical energy.

Keywords: photovoltaic system, efficient, heat energy, heat exchanger, efficiency of conversion

Procedia PDF Downloads 352
4711 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 150